半导体光电子学第3章_平板介质光波导理论
- 格式:ppt
- 大小:1.29 MB
- 文档页数:5
第一章平板波导的射线理论光束在介质中传输时,由于介质的吸收和散射而引起损耗,由于绕射而引起发散,这些情况都会导致光束中心部分的强度不断地衰减。
因此,有必要设计制作某种器件,它能够引导光束的传播,从而使光束的能量在横的方向上受到限制,并使损耗和噪声降到最小,这种器件通常称为光波导,简称波导。
结构最简单的波导是由三层均匀介质组成的,中间的介质层称为波导层或芯层,芯两侧的介质层称为包层。
芯层的介电常数比芯两侧包层的介电常数稍高,使得光束能够集中在芯层中传输,因而起到导波的作用。
这种波导的介电常数分布是陡变的,也称为阶梯变化的,常称这种波导为平板波导。
对光波导特性的分析,应用两种理论,即射线光学理论和波动光学理论。
射线光学理论的优点是对平板波导的分析过程简单直观,对某些物理概念能给出直观的物理意义,容易理解。
缺点是对于结构复杂的多层波导射线光学理论不便于应用,或只能得出粗糙的结果。
一般而言,若想全面、正确地分析各种结构的光波导的模式特性,还必须采用波动理论。
光射线,简称射线或光线,可以这样理解:一条很细很细的光束,它的轴线就是光射线。
它的方向沿着光能流的方向。
光线与光束是不同的,光线是无限细的,光束则有一定的尺寸。
光线在均匀介质中的传输轨迹是一条直线,在非均匀介质中的传输轨迹是一条曲直线。
用射线去代表光能量传输路线的方法称为射线光学。
射线光学是忽略光波长的光学,亦即射线理论是光波长趋于零的波动理论。
本章将应用射线光学的基本理论对三层平板波导加以分析,目的是对波导的导波原理和与之相关的某些物理概念为读者给出直观的物理意义和清晰的理解,并为以后运用波动光学理论分析各种结构光波导的模式特性打好基础。
1.1 模式类型我们把波导中所能传输的电磁场型称为波导的模式,在平板波导中存在两种基本模式,一种称为TE 模,另一种称为TM 模。
两种模式用光的电场和磁场的偏振方向来定义比较直观。
选择电场只沿平行于波导界面的方向偏振,此时电场垂直于光的传播方向,是横向的,因而把这种模式称为横电模,英文为Transverse Electric Mode ,取其字头称为TE 模。