自耦变压器降压启动电路图
- 格式:doc
- 大小:68.50 KB
- 文档页数:4
自耦降压启动介绍自耦变压器降压启动是指电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。
待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运动。
这种降压启动分为手动控制和自动控制两种。
1.2 特点设自耦变压器的变比为K,原边电压为U1,副边电压U2=U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小。
又因为变压器原副边的电流关系I1=I2/K,可见原边的电流(即电源供给电动机的启动电流)比直接流过电动机定子绕组的要小,即此时电源供给电动机的启动电流为直接启动时1/K2 倍。
由于电压降低为1/K 倍,所以电动机的转矩也降为1/K2 倍。
自耦变压器副边有2~3 组抽头,如二次电压分别为原边电压的80%、60%、40%。
1.3 优点可以按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,而且不论电动机的定子绕组采用Y 或Δ接法都可以使用。
1.4 缺点设备体积大,投资较贵。
2自动控制电动机自耦降压起动(自动控制)电路原理图如图是交流电动机自耦降压启动自动切换控制电路,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。
2.1 控制过程1、合上空气开关QF接通三相电源。
2、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。
3、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。
4、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时KM2线圈断电,其主触头断开,切断自耦变压器电源。
按钮接触器中间继电器控制的补偿器降压启动笼型电动机定子串联电阻降压启动的控制电路JJ1B-75型自耦降压启动器电路JK1-125型自耦降压启动器电路22~75型自耦降压启动电路11~75型自耦降压启动电路按钮、接触器控制星三角降压启动控制电路QX3-13型星三角降压启动器电路电动机星三角降压启动电路电动机不带电切换的星三角启动电路使用中间继电器防飞弧短路的Y星三角启动电路使用断星合三角隔延时的星三角启动电路星三角启动电路图采用继电器和限流电阻构成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。
电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻 R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。
限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。
为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。
图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。
在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。
当电容器C充电到约80%额定电压时,逆变器正常工作。
经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。
在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。
电动机接线图-控制线路图大全时间:2013-05-03 来源:电气自动化技术网编辑:李亮点击:36191次字体设置: 大中小Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。
由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。
Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。
OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。
OX3—13型Y-△自动启动器的控制线路如图11—11所示。
()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形(Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。
Y —△起动只能用于正常运行时为△形接法的电动机。
1.按钮、接触器控制Y —△降压起动控制线路图2.19 (a )为按钮、接触器控制Y —△降压起动控制线路。
线路的工作原理为:按下起动按钮SB1 ,KM1 、KM2 得电吸合,KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下SB2 ,KM2 断电、KM3 得电并自锁,电动机转换成三角形全压运行。
2.时间继电器控制Y —△降压起动控制线路图2.19 (b )为时间继电器自动控制Y —△降压起动控制线路,电路的工作原理为:按下起动按钮SB1 ,KM1 、KM2 得电吸合,电动机星形起动,同时KT 也得电,经延时后时间继电器KT 常闭触头打开,使得KM2 断电,常开触头闭合,使得KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。
自耦变压器的原理、接线、结构自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。
通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。
因为初级和次级线圈直接相连,有跨级漏电的危险。
所以不能作行灯变压器。
区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。
220KV以下几乎没有自耦变压器。
自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。
对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。
干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。
工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。
⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。
通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。
因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。
18种电动机降压启动电路图一、自耦减压启动自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。
它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。
图1 自耦减压启动工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。
待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。
此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。
停转时,按下SB按钮即可。
自耦变压器次级设有多个抽头,可输出不同的电压。
一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。
二、手动控制Y-△降压启动Y-△降压启动的特点是方法简便、经济。
其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。
图2 手动控制Y-△降压启动图2所示为QX1型手动Y-△启动器接线图。
图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。
当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组接成Y形降压启动;当电动机转速上升到一定值时。
将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。
三、定子绕组串联电阻启动控制电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。
定子绕组串联电阻启动控制线路如图3所示。
当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。
这时时间继电器KT线圈也得电,KT 常开触点经过延时后闭合,使KM2线圈得电吸合。
自耦变压器的原理、接线、结构自耦变压器降压启动控制线路在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。
通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为:1~2:1。
因为初级和次级线圈直接相连,有跨级漏电的危险。
所以不能作行灯变压器。
区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。
220KV以下几乎没有自耦变压器。
自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。
对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。
干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。
工作原理自耦变压器零序差动保护原理图自耦变压器1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。
⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。
通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。
因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。
自耦变压器降压启动电路图【改进版】
自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。
传统自耦变压器起动大多数是用加时间继电器来控制。
以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。
改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。
一、原动作原理
原电路的控制原理如图1 所示
自耦变压器降压启动电路图【改进版】
控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。
再按下停止按钮使电动机停转。
采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。
但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,
有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。
二、线路的弊病- 竞争冒险现象
分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。
电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM
线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。
但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。
此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。
三、改进后的接线方法
经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线
路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。
四、改进后的工作原理
接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。
经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。