当前位置:文档之家› 考虑原子纵向位移单原子链横向振动压电控制

考虑原子纵向位移单原子链横向振动压电控制

考虑原子纵向位移单原子链横向振动压电控制
考虑原子纵向位移单原子链横向振动压电控制

挠曲轴系横向振动计算及分析

万方数据

2010年12月噪声与振动控制第6期 时可忽略阻尼的影响。忽略阻尼的单元动平衡方程如下: 瞰H甜)。+区]I“}。={厂}。 式中:[M卜质量矩阵; {瑟■单元节点加速度; [K】乞单元的刚度矩阵; {扰■单元节点位移矩阵; {厂}f-等效节点力。 1.2梁单元BEAMl88的描述 BEAMl88假设与限带0: (1)梁长度不能为0。 (2)默认的翘曲约束效应假定为忽略。 (3)截面失效和折叠不计算。 (4)如果存在偏移的话,转动自由度在集中质量矩阵时不计算。 2挠曲轴系有限元模型的计算 船舶推进轴系是一个结构复杂的弹性连续系统,为了便于计算,必须对实际轴系进行简化,而模型简化得是否合理,对计算结果具有很大的影响【7】。常规的推进轴系振动计算中,过去大多采用集总参数模型。对于轴系这样的复杂结构,运用有限元方法进行振动计算具有明显的优越性。本文应用ANSYS有限元软件对其传动轴系进行振动计算,为进一步的设计提供参考。 针对本文的研究对象即某近海拖轮推进轴系,根据其实际结构,发动机输出法兰通过齿轮箱变速后,和中间轴连接;中间轴和艉轴之间有联轴节。中间轴长7.6m,外径0.26m,有一个轴承支承;艉轴长10.75m,外径0.248m,前、中、后分别有三个轴承;中间轴和艉轴中都布置有润滑系统;螺旋桨总重2739kg。见图1,为此轴系经简化处理后的结构示意图。研究其横向振动的模型对轴系部件的简化方法如下: (1)将推力轴、中间轴及螺旋桨轴按自然分段为等截面均质轴段元件,对轴系本体部分采用BEAMl88梁单元模拟。 (2)对联轴节部分,将其同样简化为梁单元,其内径不变,只是将梁单元的外径适当放大,来模拟这部分的强度。 (3)对螺旋桨部分,将艉轴部分适当延长来模拟螺旋桨部分的长度,将螺旋桨的质量加上附水质量(变距桨按30%的螺旋桨干质量计算)简化为集中质量,集中质量直接加在螺旋桨的几何中心位置。 (4)一般不考虑齿轮啮合刚度和油膜刚度。 (5)对弹性支承的轴承部分采用COMBINEl4 簧单元模拟,略去其长度的影响。 (6)与主机相连的连轴节或离合器如系弹性连接算作弹性支座,如为刚性连接则作为固定端。 在轴系的有限元建模中,只保留从齿轮箱输出法兰到螺旋桨部分的轴系。经过以上简化处理,可以建立轴系的计算模型。如图2为其有限元计算模型。轴系共有节点98个,BEAMl88梁单元73个,采用了11种不同的截面形状,COMBINEl4弹簧单元12个,MASS21质量单元1个。 对其进行计算,从而求出固有频率,见表1。 图1轴系的简化模型 Fig.1Simplified modeloftheshaft 图2轴系的有限元模型 Fig.2Finiteelementmodeloftheshaft 对已经建好的正常轴系的有限元模型进行静力分析,轴系的挠曲状态如图3。 图3静力分析后轴系的弯曲变化 Fig.3Bendingdeflectionoftheshaftafterstaticanalysis根据此状态时节点的位移变化,利用同样的方法建立挠曲轴系有限元模型(由于本论文所研究的实船轴系较短,总长度是15.2m,当量直径是0.248m,因此静力分析后轴系上各节点的位移变化比较小,即轴系的挠度也较小)。然后进行横向振动计算,求出固有频率值,见表1。 经过比较,发现挠曲轴系固有频率的大小比正常轴系的固有频率要小,而且随着振动阶数的上升 而明显减小。 万方数据

理论实验

以压电陶瓷作为实验材料,压电陶瓷-高聚物复合材料作为无机压电陶瓷和有机高分子树脂构成的压电复合材料,兼备无机和有机压电材料的性能,具有结构简单,不易受电磁干扰,便于加工制作,且结构易于实现小型化、集成化以及便携式的特性。可以根据需要,综合两项材料的优点,制作性能良好的换能器和传感器,最新的技术已制造出压电系数较以往更大的材料,为今后的压电陶瓷的广泛应用奠定了坚实的基础,因此采用压电陶瓷制作的压电式传感器具有较高的灵敏度,更加利于电能的收集与储存,具有良好的市场前景。本“集中负荷压电陶瓷发电装置”是采用压电陶瓷材料这一无机非金属功能陶瓷新材料制作技术,在力的作用下,产生形变,引起介质表面带电,产生正压电效应;在能量转换方面,利用压电陶瓷将机械能转换成电能的特性、电路设计技术及电力输送技术,利用压电效应,实现机械能和电能互相转换。1电陶瓷发电装置的样机与实验研究实验装置有发电装置,滤波装置,储能装置以及用电装置构成。发电装置由压电振子构成。压电振子有金属片、压电片组成。在金属表面粘贴压电片,分别从金属片和压电片上引出电极由于人走动产生压力,使得压电振子产生形变,进而引起压电层内应变和应力的变化。根据压电陶瓷的压电效应,在压电片表面会产生电荷,从而产生电压。试验中输入为机械能,输出为电能,由于人走动过程中产生的能量不稳定,压电振子输出的电压不是稳定值,所以用稳压和滤波装置进行整流和滤波。此时输出的电压为稳定值,可以用于储备和应用。由于压电振子在每个振动周期产生的能量很小, 且输出为高电压低电流的交流电。在实验中采取压电陶瓷并联的方式,以获取更大的电流在实际应用中, 为了提高整个系统的能量捕获效率, 往往需要在整流电路和存储介质之间加入不同类型的DC- DC降压增流电路, 通过实验验证, 降压增流电路的加入往往可以使整个系统效率提高一倍以上。2实验整体设计2.1电陶瓷所受压力对其发电能力关系研究本次试验,采用直径20mm的压电片作为发电材料,将压电片片作为正极,铜线作为负极,先串联1kΩ的电阻以及发光二极管作为负载,所测电压为负载端电压,实验中,分别以为不同体重的人作为实验对象,对其正常行走时踩压陶瓷产生的电压进行统计和整理,每个实验对象分别进行了100组实验数据的记录,计算出产生电压的平均值和最大值(实验所测得数据皆为输出电压的平均值)。2.2探究发电效能与压电陶瓷片数关系试验中,为探究压电振子的发电效能,制作了一套利用测量电容充电时间估算压电振子发电效率的装置,装置由整流单元,滤波单元,稳压单元,储能单元组成,储能单元由五个规格为2200μF,35V的电容并联组成。利用整流,滤波,稳压单元对压电振子输出的电能进行降压增流处理,输出为稳定的9V电压。以一个体重为65kg的人作为实验对象,在其正常行走情况下分别测得在不同压电陶瓷片数下电容两端达到稳压电压值所需时间,并进行分析。结论:1、压电陶瓷产生的开路电压与其受到的压力有关,且在理想状态下,随着压力的增加,开路电压越大。2、在压力一定的情况下,压电陶瓷装置的发电能力随着片数的增加呈现递增态势。3.本装置可以将人走动时产生的不可利用的机械能转化为可被利用的电能,产生的电能即可直接用于供电,也可用于储备。而且装置简单,极易安装,成本低,利用率高,不但可以应用于步行街,车站等人流流动密集区域,而且可以作为便携式电源对手机等小功率的用电器进行充电。也可以安装在一些机械上,利用其工作时的振动为自身充电。

压电材料发电

压电材料发电 压电材料的晶体结构使其具有正压电效应和逆压电效应,即将机械能转化成电能,和将电能转化为机械能。压电发电正是利用压电陶瓷的正压电效应。在压电发电领域中,电量储存的研究基本局限于以电容作为电量储存媒介的方法上,在国内,尚未发现以可充电电池为压电发电储能媒介的研究。 压电陶瓷发电装置的优点在于结构简单、无污染、能量密度大、易于加工等,尤其适用于各类传感器网络及监测系统。压电陶瓷换能器通过一定的工艺加工可以制成各种电子设备的供电能源,能够使电子设备适应环境进行自供电,提高设备的免维护性。由于这些特点,使得压电陶瓷发电技术的应用逐渐成为研究的热点[1]。 1.惯性自由振动式 曾平等人[2]在总结国外研究者的试验结果基础上,提出了利用小面积压电振子为电能源,给可充电电池充电的研究思想。在他的文章中所研究的压电发电装置中的压电振子由磷青铜基板和一个粘在其表面的矩形压电晶片构成,磷青铜板和压电晶片的厚度分别为0.3m m和0.3mm。 1.1压电发电装置的实验研究系统如下图所示。 压电陶瓷 图1压电发电实验装置 磷青铜板 将压电振子一端基板的露出部分作为固定支撑端,另一端自由,在自由端基板露出部分上端和激振器的激振头接触,形成悬臂梁激振系统。试验时,通过脉

冲信号发生器输出控制信号,激振器振子产生振动,并将振动传递给悬臂支撑的压电振子,使压电振子产生上下弯曲振动,则压电振子上的压电晶片在弯曲变形的作用下,将产生电量。通过示波器可观测到压电振子在上下弯曲振动时产生电信号的变化情况。 1.2充电电池储存电路设计 以充电电池为储存媒介的储存电路,其作用是将来自压电振子的电量,储存到一个镍氢钮扣电池中。为减少其他因素的干扰,电路的组成元件较少。图2为设计研制的以充电电池为储存媒介的储存电路。其基本结构为压电振子(电能发生源)、全桥校正器、储存电容元件、充电电池及连接线路等。 图2镍氢电池充电电路 试验研究时,压电振子在外加振动激励的作用下,产生交流变化的电荷信号,产生的电荷经全桥校正器,收集进入一个大容量的电容中,电容一般大于1 000μF,电池和电容并联,电容将收集来的电量储存入充电电池中。 2.冲击自由式振动[3] 冲击自由振动式,是利用自由振动金属球(或有一定势能的冲击头)撞击压电振子,使之产生弯曲振动,如图3所示。该发电方式能产生瞬间的大电流,产生的电量可以点亮数十个mW级的发光二极管。

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电式传感器测振动实验.

实验二十一压电式传感器测振动实验 一、实验目的:了解压电传感器的原理和测量振动的方法。 二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1、压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图21—1 压电效应 2、压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。其中e a=Q/C a。式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。 实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容

振动与压电陶瓷实验

压电陶瓷特性及振动的干涉测量 具有压电效应的材料叫压电材料,可将电能转换成机械能,也能将机械能转换成电能,它包括压电单晶、压电陶瓷、压电薄膜和压电高分子材料等。压电陶瓷制造工艺简单,成本低,而且具有较高的力学性能和稳定的压电性能,是当前市场上最主要的压电材料,可实现能量转换、传感、驱动、频率控制等功能。由压电陶瓷制成的各种压电振子、压电电声器件、压电超声换能器、压电点火器、压电马达、压电变压器、压电传感器等在信息、激光、导航和生物等高技术领域得到了非常广泛的应用。本实验通过迈克尔逊干涉方法测量压电陶瓷的压电常数及其振动的频率响应特性。 【实验目的】 1.了解压电材料的压电特性; 2.掌握用迈克尔逊干涉方法测量微小位移。 3. 测量压电陶瓷的压电常数。 4. 观察研究压电陶瓷的振动的频率响应特性。 【实验原理】 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 (1)正压电效应 压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力j T 时,晶体将在X ,Y ,Z 三个方向出现与j T 成正比的极化强度, 即: j mj m T d P =, 式中mj d 称为压电陶瓷的 压电应力常数。 (2)逆压电效应 当给压电晶体施加一电场E 时,不仅产生了极化,同时还产生形变S ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系n ni i E d S =,式中ni d 称为压电应变常数 ,对于正和逆压电效应来讲,d 在数值上是相同的。压电晶体的压电形变有厚度变形型、长度变形型、厚度切变型等基本形式。当对压电晶体施加交变电场时,晶体将随之在某个方向发生机械振动。在不同频率区间压电陶瓷阻抗性质(阻性、感性、容性)不同,对某一特定形状的压电陶瓷元件,在某一频率处(谐振频率),呈现出阻抗最小值,当外电场频率等于谐振频率时,陶瓷片产生机械谐振,振幅最大;而在另一频率处(反谐振频率),呈现出阻抗最大值。

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端 Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

基于压电材料的振动能量收集试验研究

第27卷第3期2010年6月 现代电力 M oder n Electr ic P ower Vol127No13 June2010 文章编号:100722322(2010)0320070205文献标识码:A 基于压电材料的振动能量收集试验研究 任思源,何青 (华北电力大学能源动力与机械工程学院,北京102206) Experimental S tudy on Vibration Energy Collection Based on Piezoelectric Material Ren Siyuan,H e Q ing (School of Energy,P ower and Mechanical Engineering,North China Elect ric Power Univer sity,Beijing102206,China) 摘要:针对设备状态监测与故障诊断实时监测的要求,以应用于无线传感器网络节点供电为目的,根据材料的压电特性及其等效电模型,设计出将振动能转化成电能的能量收集的试验系统。该试验系统由压电片、振动台、整流转换、充电电路以及可充电锂离子电池等组成。以整流电路、开关控制部分,结合超级电容,设计出基于压电材料的振动能综合转换收集试验方案,制作出小型设备,通过试验验证其应用的可行性,记录并分析试验数据。试验表明,振动能量能够被有效地转化为电能并先储存于超级电容中,后由开关系统控制充电芯片实现断续充电,将电能储存至锂电池中。 关键词:压电材料;振动;能量收集;超级电容;锂电池 Abstract:Based on the piezoelectric characteristics and e2 quivalent electrical model of the material,an experimental system has been designed to convert the energy of vibration into the elect ric power.The experimental system takes the real time requirement of condition monitoring and faults di2 agnosis as background and aims at the application of the power supply for wireless sensor network nodes.It consists of piezoelectric ceramics,vibration shaker,rectifier con2 verter,charge circuit,Lithium battery,etc.,the experi2 mental scheme is accomplished to convert and collect the vi2 brat ion energy of the piezoelectric material with synthesizing rectifier,switching part and super capacitor.A small device has been analyzed and verified with experiments and the re2 corded data.The experiment shows that vibration energy can be converted to electrical energy and then electrical en2 ergy is stored in Super Capacitor,intermittently charged through switching part into charge chip,and stored in a lith2 ium battery. Key w ords:piezoelectric;vibration;energy harvesting; Super Capacitor;Lithium Battery 0引言 随着无线设备的广泛应用,其供电问题受到人们的广泛关注。在许多使用电池供电的场合,电池的频繁更换不仅会增加使用费用,而且会造成环境污染,特别在一些人类无法到达、无法接触的特殊场合,其电池更换更难。另外在设备监测与故障诊断的应用中,电池电量用完且又无法及时更换会造成严重的后果[1]。为解决这些问题,人们开始考虑把周围环境中的能量,如化学能、光能及机械振动能等,转换成电能收集并存储起来。 在工矿、电力、石油等行业内部,大型机械设备的应用极为广泛。与此同时,随着联合能量收集技术的发展,大型机械设备的振动能量收集利用也随之广泛发展起来。 研究人员目前已经开发出从振动中收集能量的装置。这些装置可采用电磁式、静电式或压电式将机械运动转换为电能。这3种机电转换方式的能量贮存密度比较如表1所示。而且,现在一些公司开始生产振动能量转换器,每一种转换器各有优缺点。一般来说,静电式转换器需要保持一很小的空气间隙,且功率密度较低,电磁转换器常常输出电压低,而压电式转换器却要依赖于较脆的陶瓷[2]。依据理论、仿真和实验,对大部分应用来说,3种转换器中压电式转换器是最有潜力的。 表1能量贮存密度比较 类型实际最大值/(mJ#cm-3)理论最大值/(mJ#cm-3) 压电式3514335 静电式444 电磁式2418400 本文所介绍的是一种基于压电片的压电振动能量收集技术试验,该能量收集技术试验是由振动台作为动力源,压电片产生电流可以存放在超级电容

高桥墩长窄桥梁横向振动分析与振动控制设计

高桥墩长窄桥梁横向振动分析与振动控制设计 近年来,随着社会的不断进步以及经济水平的迅猛提升,我国交通运输行业获得深化发展,各类型桥梁的大规模建设为人们的日常生产生活带来极大便利,为充分顺应国家发展发展需求,铁路交通运输趋向于重载以及高速、车辆运营频次等多元化方向发展,随之而来的桥梁失稳问题会对国家及人民生命财产安全造成直接的消极影响,严重时催生重大损失,为此,文章将针对高桥墩长窄桥梁横向振动分析与振动控制设计进行简要探讨。 标签:桥梁;高桥墩;横向振动;振动控制 1 桥梁应用的重要意义 在交通设施建设中,桥梁可谓是其中的关键构成部分,对于我国人民日常的生产生活以及国家经济建设而言起着十分重要的作用,为此,全球均针对桥梁设计建设提出相互较为严格的规定要求。近些年来,伴随着科技水平的稳步提高,人们就自身的生活质量提出更高的实际需求,要求各类型交通设施需拥有较高的安全可靠性以及便捷使用性,可见,桥梁能够实现时间节约以及便利交通、安全顺畅对于所在区域交通运输的实际效用之间存在有直接必然联系,其中,保障桥梁顺畅运行可谓是确保桥梁质量的基础性内容,确保桥梁设施正常运行,使其能够更好地服务于人们日常的生产生活。 现如今,我国桥梁建设技术水平显著提升,获取较大成就,已然能够赶超世界先进水平,然而,在桥梁项目建设施工进程当中常常会暴露出各类型安全隐患问题,导致交通良性发展受到严重制约,譬如说高桥墩长窄桥梁横向振动问题。具体来说,单线特路桥梁所拥有的相关特征为相对较窄且甚为狭长,具有较大刚度的同时对应的跨度较小,伴随着铁路火车速度的不断加快,铁路线路从单线逐渐变更为复线,在增加桥梁宽度的同时导致桥梁跨度也在增加,能够由几十米至一两百米,综合分析铁路这种交通设施的前几阶振型可知,其中横向振幅占据相对较大的比重,就目前的情况而言,针对高桥墩长窄桥梁横向振动展开有效的振动控制可谓是桥梁建设中需重点研究的问题,为此可运用TMD这种被动控制系统进行振动控制设计,该方法的应用优势在于拥有良好的控制成效且不需配备电源设备、可实现便利维护、安装制造简单便捷。 2 基于被动控制系统TMD进行高桥墩长窄桥梁横向振动控制设计 2.1 高桥墩长窄桥梁横向振动力 直桥横向振动通常是通过实际的桥梁施工所催生的误差问题造成的,假设高桥墩长窄桥梁横向线形方程为y=f(x),则列车所形成的横向力可大写字母F进行表示。 F(x)=f(x)*?棕2*m(x);

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

超高速电梯轿厢横向振动控制方法

超高速电梯轿厢横向振动控制方法 发表时间:2018-06-11T14:40:08.440Z 来源:《建筑学研究前沿》2017年第36期作者:富雪 [导读] 超高速梯是随着高层建筑的出现而发展起来的一种垂直运输工具,是现代生活必不可少的交通工具。 东芝电梯(中国)有限公司辽宁省沈阳市 110168 摘要:随着电梯运行速度的提高,由导轨或井道空气激励引起的电梯轿厢横向振动也越来越大,大大降低了电梯乘坐的舒适性。本文介绍了国内外超高速电梯横向振动的一些控制方式。综合对比分析后提出,考虑主被动控制的耦合性,采用多目标、系统级的集成设计方法,对主被动控制方法进行优化设计,可能取得较为满意的控制效果。 关键词:超高速电梯;轿厢横向振动;集成设计 超高速梯是随着高层建筑的出现而发展起来的一种垂直运输工具,是现代生活必不可少的交通工具。由于亚洲的人口密度远远超过欧美,因此对高层和超高层建筑有着一定的需求。为了节省运送乘客的时间和提高电梯运送乘客的效率,有效地解决高层和超高层建筑内的交通问题,客观上提出了对超高速电梯的需求。目前,习惯上将速度高于5.0m/s的电梯称为超高速梯。但是电梯速度的提高,使得其横向振动随之加剧。强烈的振动不仅会减短精密仪器仪表的寿命,影响电梯的工作性能,甚至导致安全事故的发生;即使电梯有可能承受这样的振动,也会大大降低电梯乘坐的舒适性,影响电梯企业的信誉,削弱其市场竞争力。目前,我国国内电梯企业生产的超高速电梯与国外同类产品相比存在较大的差距。 1.造成电梯横向振动的原因 1.1电梯导向系统 电梯导向系统由导轨和导靴等部件组成,其作用是限制轿厢与对重的运动自由度,使轿厢和对重只能沿着导轨做升降运动。导轨本身的安装缺陷,如导轨对中误差、导轨垂直度误差、导轨接头不平整、轨距在全高上误差过大、导轨支架松动和自身缺陷等,均可能引起电梯轿厢水平振动。此外,导轨由一系列按一定间距分布的导轨支架支撑着,在导轨支架直接支撑的地方导轨弯曲刚度相对较强,而导轨支架之间的部分弯曲刚度则明显较弱,这意味着导轨的弯曲刚度在高度方向上呈周期性变化,这也会导致轿厢产生振动。总的来说,导轨扰动可以分为弹性弯曲、接头阶跃、接头倾斜和表面磨损4种形态,如图1所示。Utsunomiya对导轨的分析表明,导轨扰动主要集中在低频区,并且存在一个主要的扰动频率,该频率与电梯运行速度成正比,与导轨的长度成反比。国内学者通过导轨直线度实测数据,分析了轿厢横向振动特性,研究结果表明,轿厢横向振动理论结果的频谱特征与实测结果基本一致。 1.2空气压力扰动 随着电梯运行速度的提高,井道内气压变化会对轿厢产生波动。国内学者通过对井道中运行过程中进行风速测试得出,额定速度7m/s,额定载重量1600kg 单电梯运行过程中井道内会产生平均12.5m/s的风速,这种压力波动会使轿厢产生振动。 2.轿厢横向振动控制方法 根据轿厢横向振动的形成原因,目前采用的控制方法有减少振源、被动控制和主动控制3类。 2.1减少振源 通过设计新型导靴和轿厢可以有效地降低振动传递和减少电梯运行中所受到的气压波动。日本三菱电机Okamoto设计了一种新型导靴来降低振动的传递,试验表明该新型导靴与传统的滑动导靴相比可以降低43%的轿厢横向振动幅度。国外学者采用流线型的轿厢外形可以减少超高速电梯在运行中由于气体湍流而引起的轿厢横向振动。新型导靴和轿厢设计、制造成本较为高昂,因此,无法得到广泛地推广应用。 2.2被动控制 除了减少振源的措施外,也可以通过优化电梯轿厢支撑弹簧和橡胶等参数来降低轿厢振动。Sissals采用模态分析法来优化电梯滚动导靴支撑弹簧的刚度,通过改变滚动导轮支撑弹簧刚度来优化轿厢横向振动的固有频率,使轿厢横向振动共振频率避开导轨振动主频,从而达到抑制和降低轿厢振动的目的。通过在导轮上安装摩擦和油液阻尼器的方式来增大系统阻尼,抑制轿厢横向振动。试验表明,通过增加阻尼器可以降低20%振动幅度。上述方法虽然费用低廉,可靠性好,但无法取得较好的控制效果。 2.3主动控制 当被动控制效果不能满足电梯横向振动控制的要求时,需要采用主动控制装置。目前,研究人员已经设计出一些轿厢横向振动主动控制方法,例如预存导轨不平度、加速度反馈和位移反馈等。有学者提出采用预存导轨不平度的补偿方法,即在电梯正式运行前,先记录电梯导轨不平顺度与轿厢垂直位置之间的关系。在运行过程中,根据电梯轿厢所处位置求出需要对导轨进行补偿的位移值,从而调整滚动导轮的位置以减少轿厢横向振动的大小。还有学者采用基于轿厢加速度反馈的PI控制策略,设计了安装在轿厢底部的横向振动主动控制系统,试验结果表明,该系统能够降低50%左右的轿厢厢体地板横向振动加速度。也有学者则在传统滚动导靴的基础上并联电磁主动滑动导靴,采用位移反馈来控制电磁主动导靴与导轨之间的距离,仿真和试验表明该方法能够大大降低轿厢厢体地板的加速度。 上述主动控制系统方法效果明显,但都是在给定某一结构参数情况下进行设计的,即采用单输入单输出系统模型来设计的主动控制系统,这可能会导致各个局部控制力之间的冲突,无法得到最优化的效果。 目前,有研究表明被动控制和主动控制之间往往存在耦合关系。通过研究弹簧质量系统模型不确定性对于系统能够获得最优性能的影响,定量指出系统模型不确定性越大以及系统性能越高,则主被动控制间的耦合程度越大。实际上,在电梯轿厢横向振动控制中主被动控制往往同时存在于一个系统中。因此,考虑到被动控制和主动控制之间的耦合性,采用集成设计方法,对二者同时进行优化设计,可能是未来控制轿厢横向振动的研究方向。 以前高速电梯的拖动系统,为了改善轿厢和机械系统及控制系统所发生的共振,增加了振动控制的计算机处理SFC(Simulator Following Control),即把由模拟演算得到的速度信号和实速信号相比较,抽出实时速度内包含的振动成分,以补正扭矩指示值而控制振动。据资料所得,目前是通过实用的控制设计理论开发了适合于高层化高速化新的振动控制技术。把速度控制性能设定为目标,是设计成

压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电陶瓷片等组成。(观察实验用压电加速度计结构)工作时

工程压电式加速度传感器的功能特点

工程振动量值的物理参数常用位移、速度和加速度来表示。由于一般情况下频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。要想得到加速度的值需要用到测量的仪器是加速度传感器,使用过加速度传感器的人们知道,一般加速度传感器都是用恒流源供电,传感器输出的信号通常也就是电压信号,除了部分传感器有过处理,输出信号有常规的标准电流电压信号。加速度传感器正弦波输出的形式早已是最常见的。 对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。对加速度传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。 最常见的压电式加速度传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。 IEPE型压电加速度计即通常所称的ICP型压电加速度传感器。压电传感器换能器输出的电荷通过装在传感器内部的前置放大器转换成低阻抗的电压输出。IEPE型传感器通常为二线输出形式,即采用恒电流电压源供电。直流供电和信号使用同一根线,通常直流电部分在恒电流电源的输出端通过高通滤波器滤去。IEPE型加速度传感器的最大优点是测量信号质量好、噪声小、抗外界干扰能力强和远距离测量,特别是新型的数采系统很多已配备恒流电压源,因此,IEPE 传感器能与数采系统直接相连而不需要任何其它二次仪表。加速度传感器的性能逐渐变得便捷使用,而且将会越来越受工程振动测量的最佳帮手。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/6a9601597.html,/

振动传感器的类型

根据不同的分类标准,有不同的分类,一般来说,有三种分类标准。按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。下面简单介绍几种振动传感器。 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。 压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。 电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。电阻应变片的工作原理为:应变片粘贴在某试件上时,试件受力变形,应变片原长变化,从而应变片阻值变化,实验证明,在试件的弹性变化范围内,应变片电阻的相对变化和其长度的相对变化成正比。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游

相关主题
文本预览
相关文档 最新文档