考虑原子纵向位移单原子链横向振动压电控制
- 格式:pdf
- 大小:1.02 MB
- 文档页数:6
一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体中原子的振动行为。
在这个模型中,原子由质量为m的核和劲度系数为K的弹性相互作用构成。
通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。
下面将介绍一维单原子链晶格振动解析步骤:第一步:建立模型首先,我们要建立一维单原子链的模型。
假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。
原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。
这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。
第二步:求解运动方程接下来,我们需要求解原子在这个一维单原子链中的运动方程。
假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0))上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) -2*Un(t) + Un(t-0))表示受到的弹性相互作用力。
第三步:假设解的形式由于原子在一维单原子链中的振动属于谐振动问题,我们可以假设原子的位移满足解的形式为:Un(t) = An*exp(i*(k*n*a - ω*t))其中,An是振幅,k是波数,ω是角频率,n是原子的编号。
将这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。
声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。
第四步:得到声子色散关系将解的形式代入运动方程,我们可以得到关于角频率ω和波数k的关系式。
具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|声子色散关系描述了一维单原子链中的声子能量随波数变化的规律。
从这个关系式可以看出,一维单原子链中的声子有声学支和光学支两种振动模式,它们的能量随波数的变化方式不同。
固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
《固体物理学》习题解答黄昆原著韩汝琦改编 (陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率,VcnV x =(1)对于简立方结构:(见教材P2图1-1) a=2r ,V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34ar 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒=n=2, Vc=a 3∴68.083)r 334(r 342ar342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r344ar344x 3333≈π=π⨯=π⨯=(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个74.062r224r 346x 33≈π=π⨯=(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r338r 348ar348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
⎪⎭⎫ ⎝⎛∆-=⎪⎭⎫ ⎝⎛∆-⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∆-==Γ=RT G a RT G a RT G ZP a ZP a a D m m m exp exp 22612exp 6161612020222νννωνν自扩散系数:不依赖于浓度梯度的扩散所定义的扩散系数()⎥⎦⎤⎢⎣⎡∂∂=→∂∂*x C J D x C lim 0 考虑对于fcc 结构的纯金属的原子自扩散(空位机构),则要考虑P ν。
实际上P ν就等于系统平衡空位缺陷的浓度N ν:⎪⎪⎭⎫ ⎝⎛∆-=RTG N fexp ν。
所以自扩散系数表为:⎪⎭⎫⎝⎛∆-⎪⎪⎭⎫ ⎝⎛∆-=*RT G RTG Z a D m f exp exp 612ν。
它也是基于无序游动扩散过程。
(二)偏扩散系数偏扩散系数:几种离子同时进行扩散的多元系统中每个组元的扩散系数,严格说这儿扩散是处在化学位梯度条件下进行的。
偏扩散系数的热力学分析:例如CoO 和NiO 二元系统的扩散。
A 、令μ1、μ2表示1、2两点的化学位。
设μ1>μ2,且x∂∂μ是力的单位,也称化学位梯度,故作用在一个第i 组元粒子上的扩散力作用下粒子平均迁移速度v i 为:x N B v ii i ∂∂-=μ,式中B i 是在单位作用力作用下粒子的平均迁移速度,称绝对迁移率;N 是阿佛加德罗常数;B 、若i 组元的粒子浓度为C i ,则扩散通量J i 为:xN B C J i i i i ∂∂-=μ。
C 、对理想溶液系统有:i i i a RT ln 0μμ=。
式中μi0是i 组元折合到一摩尔纯物质的自由焓。
a i 是i 组元的活度。
因为活度系数γi =a i /C i,代入得:x C CkT B J i i ii i ∂∂⎪⎪⎭⎫ ⎝⎛∂∂+-=ln ln 1γ。
D 、与菲克第一定律比较得:⎪⎪⎭⎫ ⎝⎛∂∂+=i i i i CkT B D ln ln 1γ,其中括号部分称为扩散系数的热力学因子。
固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。
证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。