第6章振动的主动控制
- 格式:ppt
- 大小:3.55 MB
- 文档页数:83
振动主动控制的基本原理振动主动控制的基本原理,哎呀,听起来好高深对吧?其实不然,咱们来聊聊这个话题,轻松又幽默,保证你听了之后恍若一阵春风拂面,心里暖暖的。
振动这个东西,真是无处不在,想想你坐的椅子,走的路,还有你心爱的手机,随时随地都在给你送上各种震动体验。
你是不是觉得生活中好多东西都跟振动扯上关系?没错!振动控制,简单来说,就是管理这些“抖动”,让它们不至于影响我们的生活和工作。
想象一下,家里的洗衣机在高速旋转时,整个地板都跟着它摇摆,这可不是什么好事。
如果不控制好,那可真是让人崩溃的场景。
就像你在外面聚会时,耳边总有一种“嗡嗡”的声音,真想让它安静下来。
这时候,振动主动控制就派上了用场。
它通过各种高科技手段,像是给机器加了一双“耳朵”,能及时察觉到振动的变化,立马采取措施,把不必要的振动给压下去,省得你受罪。
说到这里,不得不提一种神奇的装置,那就是“传感器”。
嘿,这小家伙就像是机器的“神经末梢”,随时在监测周围的环境。
它们能感知到任何微小的变化,比如说某个零件开始抖动,那可不能让它任性下去。
于是,控制系统会立刻启动,像个贴心的小助手,调整机器的运行状态,确保一切正常。
是不是感觉有点像科幻电影里的情节?不过,这可都是现实,真的很酷!然后我们得说说反馈控制。
这是个牛逼的概念,听着可能有点晦涩,但实际上它就是个“闭环”操作。
简单点说,就是机器在做什么,控制系统会实时监测,然后自动调整。
就像你在打篮球,投篮的时候看到球飞向篮筐,立马调整自己的姿势。
这样一来,振动就能被精准控制,真是让人拍手叫好。
振动主动控制并不是万能的,偶尔也会出现“意外”。
比如说,某些环境因素会影响到传感器的效果,甚至让机器产生意外的震动。
这就像你和朋友聚会时,有个小伙伴突然开始唱歌,大家都吓了一跳。
这个时候就需要更高级的技术来应对,比如算法和数据分析。
这些高科技手段就像是大厨的秘密调料,让你的机器不再“发疯”。
现在咱们来说说实际应用。
工程力学中的振动控制和振动衰减的方法振动是工程力学中非常重要且普遍存在的现象。
在很多情况下,振动会对结构物、机械设备以及人们的生活和工作环境带来一系列不利影响,比如疲劳破坏、能量浪费、噪音和震动等。
因此,振动控制和振动衰减在工程实践中具有重要意义。
本文将探讨几种常见的振动控制和振动衰减的方法。
一、主动振动控制主动振动控制是指通过激励源主动地施加力或扭矩,以减小结构或系统的振动响应。
其中,最常用的主动振动控制方法是通过控制系统实时测量振动信号并根据测量结果输出相应的激励信号,通过控制设备施加力或扭矩来实现振动的主动控制。
主动振动控制的优点在于可以实时检测振动,并根据测量结果来调节控制力;通过主动振动控制,可以减小结构或系统的振动幅值,并且能够适应不同振动特性的系统。
主动振动控制需要较为复杂的控制和反馈系统,以实时检测振动信号并作出相应的控制动作。
二、被动振动控制被动振动控制是指在结构或系统中添加被动元件,通过其自身的材料特性和力学行为来实现振动的控制和衰减。
被动振动控制方法通常包括减振器、阻尼器以及填充物等。
1. 减振器减振器是一种常见的被动振动控制装置,可以通过改变结构或机械系统的振动特性来减小振动幅值。
常见的减振器包括弹簧减振器、摆式减振器、液体减振器等。
弹簧减振器通过设置弹簧与结构相连,利用弹簧的弹性来吸收振动能量,达到减小振动幅值的目的。
摆式减振器则通过在结构上安装摆杆和摆球,将振动能量通过摆动的方式消耗掉。
液体减振器则通过将流体置于结构中的腔体中,利用流体的粘性和摩擦阻尼来吸收振动能量。
2. 阻尼器阻尼器是另一种常见的被动振动控制装置,它可以通过增加系统的阻尼来减小振动响应。
常见的阻尼器包括液体阻尼器、摩擦阻尼器和粘弹性阻尼器等。
液体阻尼器通过流体的粘性产生阻尼,将振动能量转化为热能进行耗散。
摩擦阻尼器则通过设置摩擦面来产生阻尼,将振动能量通过摩擦转化为热能来耗散。
粘弹性阻尼器则利用材料的粘弹性质来实现振动阻尼。
振动控制方案随着工业技术的不断发展和应用范围的扩大,机械设备运行时产生的振动问题越来越引起人们的关注。
振动不仅会增加机械设备的磨损和故障率,还会对操作人员的健康和安全造成威胁。
因此,制定有效的振动控制方案成为了工程师们的首要任务。
1. 振动控制方案的背景振动控制方案的制定需要了解振动问题的背景。
首先,对振动的产生原因进行分析。
振动可能是由于不平衡质量、结构固有频率与激振频率的共振、机械失调等因素引起的。
此外,了解振动问题对设备和人体的影响也是制定方案的前提。
通过对问题背景的了解,可以更好地选择适用的振动控制方法。
2. 振动控制方法2.1 主动振动控制方法主动振动控制方法主要通过在机械设备上添加传感器和执行器,利用反馈控制策略实时监测并调整设备的振动状态。
常见的主动振动控制方法包括主动质量平衡、主动振动隔离和主动调谐振动控制。
主动质量平衡可以通过添加平衡块或调整质量来减小不平衡振动。
主动振动隔离是通过控制系统的反馈环节来减小振动传递。
主动调谐振动控制则是通过调整设备的固有频率以避免共振现象。
2.2 被动振动控制方法被动振动控制方法主要是通过添加相应的控制装置,如减振器、缓冲器和阻尼器等来减小振动。
减振器是一种典型的被动振动控制装置,可以通过改变结构的刚度和阻尼特性来减小振动。
缓冲器可用于吸收冲击能量,阻尼器则可以通过消耗振动能量来减小振动幅值。
2.3 组合振动控制方法组合振动控制方法是将主动振动控制和被动振动控制方法相结合,以发挥各自的优势。
通过主动振动控制可以实时监测和调节设备的振动状态,而被动振动控制则可以提供更好的振动抑制效果。
3. 振动控制方案的选择与实施制定振动控制方案需要综合考虑多个因素,包括设备的振动特性、工作环境、成本等。
在选择振动控制方法时,应根据具体情况确定合适的方案。
选择好振动控制方法后,需要进行实施和调试。
实施过程中应严格按照相关标准和规范进行操作,确保方案的顺利实施。
4. 振动控制效果的评估和改进实施振动控制方案后,需要对控制效果进行评估和改进。
振动控制-主动、半主动⽬录0.前⾔ (1)0.1 结构振动控制研究与应⽤概况 (1)1.结构振动主动控制、半主动控制 (2)2.结构振动控制分类 (3)3.各类控制系统构造及性能 (4)3.1 结构振动主动控制概述 (4)3.1.1 主动控制控制原理 (5)3.1.2 加⼒⽅式及加⼒位置 (7)3.1.3 控制装置 (8)3.2 结构振动半主动控制概述 (8)4.结构振动主动控制、半主动控制算法 (11)4.1 主动控制算法 (12)4.1.2 ⼏种算法的简单介绍 (13)4.2 半主动控制算法 (21)4.3 智能控制算法 (22)5.结构主动、半主动控制系统分析⽅法及设计⽅法 (24)5.1 主动控制系统的最优控制⼒设计与分析 (25)5.1.1 主动控制系统的最优控制⼒设计 (25)5.1.2 主动最优控制⼒和受控反应特征分析 (26)5.2 结构主动变阻尼和智能阻尼控制系统的最优控制⼒设计与分析 (30) 5.2.1半主动最优控制⼒设计 (31)5.2.2系统反应分析 (36)5.3 结构主动变刚度控制系统的最优控制⼒设计与分析 (37)5.3.1主动变刚度最优控制⼒设计 (37)5.3.2系统反应分析 (40)6.结构振动主动控制、半主动控制系统的⼯程应⽤ (41)6.1 AMD控制系统的⼯程应⽤ (41)6.2 结构主动变刚度控制系统的⼯程应⽤ (41)6.3 结构主动变阻尼控制系统的⼯程应⽤ (42)6.4 其他结构振动控制系统的⼯程应⽤ (42)7.研究展望 (43)7.1 结构振动主动控制、半主动控制的研究与发展⽅向 (43)7.2 结构振动控制的有待研究的问题 (43)8.结语 (43)参考⽂献 (44)主动控制、半主动控制综述0.前⾔0.1 结构振动控制研究与应⽤概况结构振动控制技术与传统的依靠结构⾃⾝强度、刚度和延性来抵抗地震作⽤的做法不同,通过在结构中安装各种控制装置,从⽽达到减⼩结构地震反应、保障结构地震安全的⽬的。
硕士研究生非笔试课程考核报告(以论文或调研报告等形式考核用)2013 至 2014 学年 第 1 学期考核课程: 防灾减灾学提交日期: 2013 年 12月 20 日姓 名 程伟伟学 号 2012010305年 级 研二专 业 防灾减灾及防护工程所在学院 土木工程学院山东建筑大学研究生处制考核成绩 考核人结构振动的主动控制技术程伟伟(山东建筑大学土木工程学院,济南,250101)摘要:主动控制是一项积极主动的智能化措施,是根据外界刺激和结构响应预估计所需的控制力,从而输入能量驱使作动器施加控制力或调节控制器性能参数,达到减震效果。
对目前的主动控制技术的研究现状作了简要评述,阐述了振动主动控制中主要控制方法和策略及应用中存在的问题,并提出了振动主动控制技术的发展趋势。
Abstraction:Active Control is an intelligent proactive measures,are needed to control thepre-estimate based on external stimuli and response structures, thereby driving the input energy is applied to the actuator control or regulate the controller performance parameters to achieve the damping effect. The current research status of active control techniques are briefly reviewed, elaborated mainly active vibration control and application control methods and strategies for the problems and proposed active vibration control technology trends.关键词:主动控制作动器与传感器控制方法引言:主动控制是指在振动控制过程中,经过实时计算,进而驱动作动器对控制目标施加一定的影响,达到抑制或消除振动的目的。
一、主动控制简介1.概念:结构主动控制需要实时测量结构反应或环境干扰,采用现代控制理论的主动控制算法在精确的结构模型基础上运算和决策最优控制力,最后作动器在很大的外部能量输入下实现最优控制力。
2.特点:主动控制需要实时测量结构反应或环境干扰,是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗。
3.优缺点:主动控制具有提高建筑物的抵抗不确定性地面运动,减少输入的干扰力,以及在地震时候自动地调整结构动力特征等能力,特别是在处理结构的风振反应具有良好的控制效果,与被动控制相比,主动控制具有更好的控制效果。
但是,主动控制实际应用价格昂贵,在实际应用过程中也会存与其它控制理论相同的问题,控制技术复杂、造价昂贵、维护要求高。
4.组成:传感器、控制器、作动器5.工作方式:开环、闭环、开闭环。
二、简单回顾主动控制的应用与MATLAB应用1.主动变刚度AVS控制装置工作原理:首先将结构的反应反馈至控制器,控制器按照事先设定好的控制算法并结合结构的响应,判断装置的刚度状态,然后将控制信号发送至电液伺服阀以操纵其开关状态,实现不同的变刚度状态。
锁定状态(ON):电液伺服阀阀门关闭,双出杆活塞与液压缸之间没有相对位移,斜撑的相对变形与结构层变形相同,此时结构附加一个刚度;打开状态(OFF):电液伺服阀阀门打开,双出杆活塞与液压缸之间有相对位移,液压缸的压力差使得液体发生流动,此过程中产生粘滞阻尼,此时结构附加一个阻尼。
示意图如下:2. 主动变阻尼AVD控制装置工作原理:变孔径阻尼器以传统的液压流体阻尼器为基础,利用控制阀的开孔率调整粘性油对活塞的运动阻力,并将这种阻力通过活塞传递给结构,从而实现为结构提供阻尼的目的。
关闭状态(ON):开孔率一定,液体的流动速度受限,流动速度越小,产生的粘滞阻尼力越大,开孔率最小时,提供最大阻尼力,此时成为ON状态;打开状态(OFF):控制阀完全打开,由于液体的粘滞性可提供最小阻尼力。
工程力学中的振动控制方法有哪些?在工程领域中,振动现象是一个常见且重要的问题。
过度的振动可能会导致结构的疲劳破坏、降低设备的精度和可靠性、产生噪音等不良影响。
因此,研究和应用有效的振动控制方法对于保障工程结构和设备的安全稳定运行具有至关重要的意义。
一、被动振动控制被动振动控制是指不需要外部能源输入,依靠自身的结构特性来减少振动的方法。
常见的被动振动控制技术包括以下几种:1、阻尼减振阻尼是指系统在振动过程中能量耗散的能力。
通过在结构中增加阻尼材料,如粘弹性阻尼器、摩擦阻尼器等,可以将振动能量转化为热能等其他形式的能量而耗散掉,从而有效地降低振动幅度。
2、质量调谐减振质量调谐减振器是一种利用质量和弹簧组成的振动系统,通过调整其固有频率与主结构的振动频率接近,从而实现对主结构振动的抑制。
常见的有调谐质量阻尼器(TMD)和调谐液体阻尼器(TLD)。
3、隔振隔振是通过在振源和被保护对象之间插入弹性元件或阻尼元件,来减少振动的传递。
例如,在机械设备的底座安装隔振垫,可以有效地隔离设备产生的振动向基础的传递。
二、主动振动控制主动振动控制则需要外部能源输入,并通过传感器监测振动状态,控制器计算控制策略,执行器施加控制作用来实现振动的抑制。
1、主动质量阻尼(AMD)AMD 系统由传感器、控制器、作动器和质量块组成。
传感器检测结构的振动响应,控制器根据检测到的信号计算出所需的控制力,作动器将控制力施加到质量块上,从而产生与结构振动相反的力,达到减振的目的。
2、主动杆主动杆是一种可以主动施加轴向力的元件。
通过实时调整杆的长度或内部的压力,来改变结构的刚度和阻尼特性,实现振动控制。
3、压电陶瓷作动器压电陶瓷具有在电场作用下产生变形的特性。
利用这一特性,将压电陶瓷片粘贴在结构表面,通过施加电压来改变结构的振动特性。
三、半主动振动控制半主动振动控制介于被动控制和主动控制之间,它不需要持续的外部能源输入,但可以根据结构的振动状态实时调整自身的参数,以达到较好的振动控制效果。
振动主动控制及应用振动主动控制是指通过施加外部力或扭矩来减少或抑制机械系统或结构体的振动。
这种方法主要通过引入能量来抵消振动系统的能量损失,从而有效地控制振动,改善系统的稳定性和性能。
振动主动控制主要应用于以下几个方面:第一,机械系统的振动控制。
机械系统的振动控制是指通过施加与振动方向相反的力或扭矩来抵消振动系统的振动。
这种方法可以有效地减小机械系统的振动幅度,提高机械系统的稳定性和性能。
例如,在船舶上安装振动控制装置可以减小船舶在大海上的振动,从而提高船舶的航行稳定性和舒适度。
第二,建筑结构的振动控制。
建筑结构的振动控制是指通过施加与结构体振动方向相反的力或扭矩来减小结构体的振动。
这种方法可以有效地减小建筑结构的振动幅度,提高建筑结构的稳定性和安全性。
例如,在高层建筑中安装振动控制装置可以减小建筑结构因地震、风力等外界因素引起的振动幅度,从而提高建筑结构的抗震能力和安全性。
第三,车辆及交通工具的振动控制。
车辆及交通工具的振动控制是指通过施加与车辆振动方向相反的力或扭矩来减小车辆的振动。
这种方法可以有效地提高车辆的稳定性和行驶舒适度。
例如,在汽车中安装振动控制装置可以减小车辆因不平路面、车轮不平衡等因素引起的振动幅度,从而提高乘坐的舒适度和驾驶的稳定性。
第四,航空航天系统的振动控制。
航空航天系统的振动控制是指通过施加与系统振动方向相反的力或扭矩来减小航空航天系统的振动。
这种方法可以有效地提高航空航天系统的稳定性和性能。
例如,在飞机中安装振动控制装置可以减小飞机因气流、发动机振动等因素引起的振动幅度,从而提高飞机的飞行稳定性和乘客的舒适度。
振动主动控制的应用主要有以下几个方面:第一,智能建筑。
智能建筑是指通过引入先进的技术手段对建筑进行控制和管理,实现建筑与居住者之间的信息交流和能量交流。
在智能建筑中,振动主动控制技术可以用于减小建筑结构的振动幅度,提高建筑的稳定性和安全性,从而提供一个更加舒适和安全的居住环境。
高铁列车车体振动控制技术的研究与实践第一章引言随着高铁列车的迅猛发展和广泛运用,车体振动成为一个受关注的问题。
高铁列车的振动不仅影响乘客的舒适感受,还可能对列车结构以及运行安全造成不良影响。
因此,研究和实践高铁列车车体振动控制技术具有重要意义。
第二章高铁列车车体振动特性的分析在进行高铁列车车体振动控制技术的研究与实践之前,我们首先需要对车体的振动特性进行分析。
高铁列车的运行速度很高,因此车体振动呈现出多种不同频率的模态。
通过振动测试和有限元模拟等方法,可以得到高铁列车在不同运行状态下的振动特性参数,包括振动模态、频率和振幅等。
第三章车体振动控制技术的研究与实践方法针对高铁列车车体振动问题,研究人员提出了一系列的控制技术方法。
其中,主要包括主动控制和被动控制两大类。
在主动控制中,采用主动减振器、主动隔振器等装置,通过感知振动信号并作出相应的控制动作来控制车体振动。
被动控制则是基于固有装置,如弹簧减振器、液体隔振器等,通过选择合适的装置参数来实现车体振动控制。
第四章主动控制技术的研究与实践主动控制技术是目前研究和实践较为广泛的一种方法。
主动减振器是其中的关键装置,通过对车体振动作出动态控制,能够有效改善列车的振动状况。
同时,主动隔振器也得到了广泛的研究与应用。
采用传感器和执行器来感知和控制车体振动,可以实现对车体振动的主动控制,提升列车的舒适性和稳定性。
第五章被动控制技术的研究与实践被动控制技术虽然在高铁列车车体振动控制中不如主动控制技术广泛应用,但其在一些特定情况下具有独特的优势。
弹簧减振器和液体隔振器是经典的被动控制装置,通过调节弹簧或液体的参数,可以改变列车的振动特性,实现车体振动的控制。
第六章高铁列车车体振动控制技术的实际应用通过前文的研究与实践,高铁列车车体振动控制技术已经得到了广泛的应用。
一些高铁列车已经在实际运营中采用了振动控制技术,有效地提升了列车的运行质量和乘客的舒适感受。
同时,随着技术的不断进步,高铁列车车体振动控制技术也在不断优化和完善。
震动控制技术的主要原理
震动控制技术主要基于以下原理:
1.反馈控制:震动控制系统会通过传感器将振动信号转化为电信号,并将其反馈给控制器。
控制器会根据反馈的振动信息与设定的参考信号进行比较,然后通过调节控制器输出的控制信号来减小振动幅度。
反馈控制可以实时地调整控制量,以快速减小或消除振动。
2.负反馈控制:负反馈控制是一种常见的控制策略,其原理是通过将控制器输出信号与振动信号进行比较,并根据比较结果调整控制器输出,使振动信号减小。
负反馈控制可以通过调整控制器增益来改变系统响应,以适应不同的振动条件。
3.主动控制:主动控制是一种主动干预系统振动的控制策略。
主动控制系统使用主动振动控制器,可以通过传感器检测到振动信号,并通过激励器或执行器产生反向的激励力以抵消振动力。
主动控制可以实时调整激励力的大小和方向,以实现更精确的振动控制。
4.模态控制:模态控制是一种基于系统的模态响应特性设计的控制策略。
它通过分析系统的自然模态,确定系统的振动特性,并设计相应的控制器来抑制或减小系统的振动。
模态控制可以根据系统动态特性进行精确的振动抑制,并同时考虑系统的结构特性和控制器设计。
综上所述,震动控制技术主要基于反馈控制、负反馈控制、主动控制和模态控制等原理来减小或消除系统的振动。
不同的控制策略可以根据应用的具体需求来选择和设计。
机械振动控制中的主动与半主动技术机械振动是指机械系统在运行过程中产生的由于不平衡、不对中、不刚性等因素引起的物体振动。
这种振动不仅会影响机器设备的正常运行,还可能导致松动、磨损、疲劳等故障,降低设备的寿命。
因此,研究和应用有效的振动控制技术对于提高机械系统性能和可靠性至关重要。
在机械振动控制中,主动与半主动技术是常见且有效的控制手段,它们通过对机械系统施加实时的力或力矩,来抑制或减小机械振动。
主动振动控制是指通过外部激励系统主动地对振动系统施加控制力或控制力矩,以实现振动控制的技术手段。
而半主动振动控制是指通过控制隔离系统中的刚度、阻尼等参数,来实现对乘客或设备的振动控制。
主动振动控制技术利用先进的控制算法和电磁力执行器,主动地对机械振动系统进行控制。
其基本原理是通过传感器对机械系统的振动进行实时检测,然后根据检测结果计算出相应的控制力或力矩,再通过执行器施加在机械系统上。
这种技术可以根据实时振动状况进行自适应调节,能够有效地减小机械系统的振动幅值,并改善系统的稳定性和可靠性。
然而,主动振动控制技术也存在一些局限性。
首先,其系统复杂度较高,需要大量的传感器和执行器,并且需要专门的控制算法。
这增加了系统的成本和维护难度。
其次,由于控制力的主动施加,会产生额外的能量消耗,影响系统的能效。
此外,主动振动控制技术对于控制力的大小和方向要求较高,如果控制力不准确,可能会引起系统的共振或过补偿,导致控制效果不佳。
相比之下,半主动振动控制技术克服了主动振动控制技术的一些缺点,更加灵活且具有较高的效果。
半主动振动控制技术利用液压或电磁等基础装置对系统的刚度、阻尼等参数进行实时调节,从而实现对振动的控制。
与主动振动控制技术相比,半主动振动控制技术无需大量的传感器和执行器,系统复杂度低,成本和能耗也较低。
同时,半主动控制技术能够根据实时振动状况自适应调节参数,更加适应不同振动频率和幅值,控制效果相对较好。
半主动振动控制技术在实际应用中有着广泛的应用前景。
力学振动控制与主动振动减震技术振动是我们生活中常见的现象,它存在于各个领域。
在建筑工程、交通运输、航空航天等领域中,振动控制是一个重要的问题。
力学振动控制与主动振动减震技术的研究与应用,对于提高工程结构的稳定性和安全性具有重要意义。
力学振动控制是指通过改变系统的结构或参数,来减小或消除系统的振动。
在振动控制中,主动振动减震技术是一种较为先进的方法。
它通过在结构中引入主动控制装置,通过实时监测和控制系统的振动响应,来抑制或减小振动幅值。
主动振动减震技术的核心是控制装置。
控制装置可以根据实时的振动信号进行反馈控制,通过施加力或力矩来改变结构的振动特性。
常见的控制装置包括阻尼器、质量调节器和压电材料等。
这些装置可以根据需要选择合适的控制策略,如PID控制、模糊控制和神经网络控制等。
主动振动减震技术的应用广泛,可以用于建筑结构、桥梁、飞机、船舶等领域。
例如,在高层建筑中,主动控制装置可以减小地震或风荷载引起的结构振动,提高建筑的抗震性能。
在航空航天领域,主动振动减震技术可以减小飞机在飞行过程中的振动,提高乘坐舒适度和飞行安全性。
主动振动减震技术的研究还面临一些挑战。
首先,控制装置的设计和制造需要考虑到结构的特点和工作环境的复杂性。
其次,在振动控制过程中,需要实时监测和控制系统的振动响应,需要高精度的传感器和控制算法。
此外,控制装置的能耗问题也需要解决,以确保系统的可持续运行。
随着科技的不断进步,力学振动控制与主动振动减震技术的研究和应用将会取得更大的突破。
未来,我们可以期待更智能化、高效化的控制装置的出现,以及更精确、可靠的振动控制方法的发展。
这将进一步提高工程结构的稳定性和安全性,为人们的生活带来更多的便利和舒适。
总之,力学振动控制与主动振动减震技术是一个重要的研究领域。
通过引入主动控制装置,实时监测和控制系统的振动响应,可以减小或消除结构的振动。
这项技术的应用广泛,对于提高工程结构的稳定性和安全性具有重要意义。