张量分析第一章
- 格式:ppt
- 大小:1.57 MB
- 文档页数:91
第⼀章张量分析基础知识晶体物理性能南京⼤学物理系由于近代科学技术的发展,单晶体⼈⼯培养技术的成熟,单晶体的各⽅⾯物理性能(如⼒、声、热、电、磁、光)以及它们之间相互作⽤的物理效应,在各尖端科学技术领域⾥,都得到了某些应⽤.特别是⽯英⼀类压电晶体作为换能器、稳定频率的晶体谐振器、晶体滤波器等在电⼦技术中,⽐较早地在⼯业规模上进⾏⼤批⽣产和⼴泛应⽤.激光问世的四⼗多年来,单晶体在激光的调制、调Q、锁模、倍频、参量转换等光电技术应⽤中,已成单晶体应⽤中极为活跃的领域.《晶体物理性能》是我系晶体物理专业的专业课程之⼀,⽬的就是希望对晶体特别是光电技术中使⽤的晶体(包括基质晶体与⾮线性光学晶体)的有关物理性能及其应⽤⽅⾯的基本知识,有⼀个了解.对今后从事光电晶体的⽣长、检测和应⽤的⼯作,在分析问题、解决问题⽅⾯有所帮助,同时要在今后⼯作中不断从实践和理论两个⽅⾯扩⼤知识领域,有⼀个基础.考虑到本专业属于晶体材料性质的专业特点,本课程不仅对晶体物理性能的各个⽅⾯作深⼊全⾯的介绍,也将侧重于激光晶体有关的⼀些性能及其应⽤.鉴于以上考虑,《晶体物理性能》讲义将以离⼦晶体为主要对象,以光电技术上应⽤为线索组织内容,共分为⼋章.着重于从宏观⾓度结合微观机制介绍晶体基本物理性能以及各种交互作⽤过程的物理效应和它们在光电技术中的某些应⽤,包括弹性与弹性波(第⼆章),晶体光学中的各向异性(第五章),压电与铁电现象(第四章),电光效应(第七章),光学参量过程(第六章),声光效应(第⼋章).由于晶体物理性能的各向异性的特点和晶体对称性有密切关系,通常正确、⽅便地描述这些物理性能必须使⽤张量来表⽰.因此,在第⼀章,我们介绍了关于张量分析基础知识⽅⾯的内容.由于⽔平有限,实践经验缺乏,时间仓促,因⽽内容安排不妥、取舍不当、错误之处⼀定很多,希望同学们提出宝贵意见,批评指正.第⼀章张量的基础知识§1.1标量、⽮量和⼆阶张量…………………………………………………………………2§1.2坐标变换和变换矩阵……………………………………………………………………§1.3正交变换矩阵的性质……………………………………………………………………§1.4晶体对称操作的变换矩阵……………………………………………………………§1.5⼆阶张量的变换与张量的定义………………………………………………………§1.6张量的⾜符互换对称…………………………………………………………………§1.7张量的矩阵表⽰和矩阵的代数运算…………………………………………………§1.8⼆阶对称张量的⼏何表⽰和⼆阶张量的主轴………………………………………§1.9⼆阶对称张量主轴的确定……………………………………………………………§1.10晶体张量与晶体对称性的关系………………………………………………………第⼆章晶体的弹性与弹性波§2.1弹性性质与原⼦间⼒…………………………………………………………………§2.2应变……………………………………………………………………………………§2.3应⼒……………………………………………………………………………………§2.4推⼴的虎克定律、弹性系数…………………………………………………………§2.5⽴⽅晶体的弹性系数…………………………………………………………………§2.6各向同性材料的弹性系数……………………………………………………………§2.7弹性扰动的传播――弹性波…………………………………………………………§2.8简谐振动和驻波……………………………………………………………………§2.9弹性常数及振动衰减因⼦的测量⽅法……………………………………………第三章晶体的介电性质§3.1介质中的宏观电场强度与极化强度………………………………………………§3.2晶体中的有效场……………………………………………………………………§3.3⾼频电场的介电极化(光的⾊散与吸收)………………………………………§3.4介电常数的测量……………………………………………………………………§3.5离⼦晶体的静电击穿………………………………………………………………§3.6激光的电击穿(激光的电击穿损伤)……………………………………………第四章铁电与压电物理§4.1铁电体的⼀般性质…………………………………………………………………§4.2常⽤铁电体的实验规律……………………………………………………………§4.3铁电体的相变热⼒学………………………………………………………………§4.4铁电体相变的微观机制……………………………………………………………§4.5晶体的压电效应……………………………………………………………………§4.6压电⽅程和机电耦合系数…………………………………………………………§4.7压电晶体的应⽤实例――⽯英……………………………………………………第五章晶体光学§5.1光学各向异性晶体…………………………………………………………………§5.2各向异性介质中光的传播…………………………………………………………§5.3折射椭球与折射率曲⾯……………………………………………………………§5.4晶体表⾯上的折射…………………………………………………………………§5.5晶体偏光⼲涉及其应⽤……………………………………………………………第六章倍频与参量频率转换§6.1⾮线性极化…………………………………………………………………………§6.2⾮线性极化系数……………………………………………………………………§6.3⾮线性介质中电磁场耦合⽅程……………………………………………………§6.4光倍频………………………………………………………………………………§6.5光倍频的相匹配……………………………………………………………………§6.6第II类相匹配………………………………………………………………………§6.7⾓度匹配和温度匹配扫描实验曲线………………………………………………§6.8内腔倍频……………………………………………………………………………§6.9光参量放⼤…………………………………………………………………………§6.10参量振荡器…………………………………………………………………………§6.11参量振荡器的调谐⽅法……………………………………………………………§6.12参量频率上转换……………………………………………………………………§6.13⾮线性材料的性能要求……………………………………………………………第七章电光效应及其应⽤§7.1线性电光效应………………………………………………………………………§7.2两种典型材料的电光效应…………………………………………………………§7.3电光滞后……………………………………………………………………………§7.4电光调制原理………………………………………………………………………§7.5实际调制器的⼏个问题……………………………………………………………§7.6晶体电光开关………………………………………………………………………§7.7电光Q开关…………………………………………………………………………§7.8电光偏转……………………………………………………………………………§7.9电光材料……………………………………………………………………………§7.10晶体均匀性的实验检测……………………………………………………………§7.11晶体的激光损伤……………………………………………………………………§7.12晶体均匀性实验检测………………………………………………………………第⼋章声光效应及其应⽤§8.1弹光效应……………………………………………………………………………§8.2声光交互作⽤产⽣的衍射现象……………………………………………………§8.3声光交互作⽤的理论………………………………………………………………§8.4声光效应在⼀些物理常数测量中的应⽤…………………………………………§8.5声光调制器…………………………………………………………………………§8.6声光偏转器…………………………………………………………………………§8.7声光调Q……………………………………………………………………………§8.8声光材料……………………………………………………………………………附录A.32点群投影图…………………………………………………………………………B.各阶张量在不同点群中的矩阵形式……………………………………………………C.主要常数表………………………………………………………………………………D.单轴晶体中光线离散⾓α的推导………………………………………………………E.双轴晶体中双折射⾯相差Γ的推导……………………………………………………F.贝塞尔函数的基本性质…………………………………………………………………第⼀章张量分析基础知识以前学的课程中,有关⼒学、热学、电学、光学等的性质都是以各向同性介质来表述的或以⼀维问题来说明问题,这对于突出某些物理现象的微观的物理原因⽅⾯是必要的,但晶体物理性能是讲晶体中的⼒学、电学、光学、声学、磁学、热学等物理性能,⽽晶体的各向异性却是⼀种很普遍的特性,特别是很多现象如热电、压电、电光、声光、⾮线性光学效应……等等物理现象则完全因为晶体具有各向异性性质才能表现出来.因此,晶体结构对称性和这些性质之间的关系成为问题的主要⽅⾯。
张量分析与场论 第一章 张量代数任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。
但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。
无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。
由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。
在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。
张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。
张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。
第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。
1.1点积、矢量分量及记号ij δ我们在以前的学习中已熟悉了用箭头表示的矢量,如位移u ρ,力F ρ等。
这些量满足平行四边形运算的矢量加法法则,即设u ρ,v ρ为矢量,则v u w ρρρ+=的运算如右图所示。
在理论力学中我们还知道,如u ρ表示某一点的位移,F ρ表示作用在该点上的力,则该力对物体质点所做的功为 其中F ρ、|u ρ|分别表示矢量F ρ、u ρ的大小,θ表示矢量F ρ与矢量u ρ之间的夹角,这就定义了一种称为点积的运算。
点积的定义:设u ρ,v ρ为两个任意矢量,设|u ρ|,|v ρ|分别为其大小(也称为模)。
θ为这两个矢量之间的夹角,则u ρ与v ρ的点积为由点积定义可知,点积具有交换律,即u ρ•v ρ=v ρ•u ρ。
可以用几何的方法证明点积也具有分配率,即如w ρ=u ρ+v ρ,则或可写为如果0v u =⋅ρρ则称u ρ垂直于v ρ,记为u ρ⊥v ρ。
由点积的定义可知,2u u u ρρρ=⋅。
第一章 张量的概念§ 1.1 引言什么是张量?这是读者在开始学习本课程时会提出的问题,现从读者已有的力学知识出发,举例对这个问题作一些初步的阐述,使读者对张量这个新的概念,有个初步的理解。
有三维空间,一个矢量(例如力矢量、速度矢量等)在某些参考坐标系中,有三个分量,这三个分量的集合,规定了这个矢量。
当坐标变化换时 ,这些分量按一定的变换法则变换。
在力学中还有一些更复杂的量。
例如受力物体内一点的应力状态,有9个应力分量,如以直角坐标表示,用矩阵形式列出,则有()⎪⎪⎪⎭⎫⎝⎛σσσσσσσσσ=σzz zyzxyz yy yxxz xy xx ij 这9个分量的集合,规定了一点的应力状态,称为应力张量。
当坐标变换时,应力张量的分量按一定的变换法则变换,再如,一点的应力状态,具有和应力张量相似的性质,称为应变张量。
把上述的力矢量、速度矢量、应力张量、应变张量等量的性质抽象化,撇开它们所表示的量的物理性质,抽出其数学上的共性,便得出抽象的张量概念。
所谓张量是一个物理量或几何量,它由在某参考坐标系中一定数目的分量的集合所规定,当坐标变换时,这些分量按一定的变换法则变换。
张量有不同的“阶”和“结构”,这由它们所遵循的不同的变换法则来区分。
矢量是一阶张量;应力张量、应变张量是二阶张量;还有三阶、四阶、......等高阶张量。
可以看出,张量是矢量概念的推广。
关于张量的严密的解析定义,将在 § 1.8中讨论。
由张量的特性可以看出,它是一种不依赖于特定坐标系的表达物理定律的方式。
采用张量记法表示的方程,在某一坐标系中成立,则在容许变换的其它坐标系中也成立,即张量方程具有不变性。
这使它特别适合于表达物理定律,因为物理定律与人们为了描述它所采用的坐标系无关。
因此,张量分析为人们提供了推导基本方程的有力工具。
此外,张量记法简洁,是一种非常精炼的数学语言。
张量这个名词是沃伊特(V oigt )首先提出的,用来表示晶体的应力(张力)状态,可见张量分析与弹性力学关系的密切。
第一章 笛卡儿张量§1.1 指标表示法一:指标标号,自由指标x x =1 y x =2 z x =3 i x 1=i ,2,3基矢量i e =1 j e =2 k e =3i e 1=i ,2,3 任意一个矢量 i a 1=i ,2,3 332211e a e a e a a ++=二:求和约定 哑标在一个单项式中,同一个指标重复出现两次,则将该指标按顺序1,2,3轮换求和。
该重复出现的指标为哑标。
如:332211b a b a b a b a i i ++=三:Kroneker ij δ⎨⎧≠==ji j i ij1δii δ=3 , ijj i j ij ij i j ij ijhj ih e e x x x a δλδαλδδδ=-=-=)(四:Levi —Civita 符号 i j k e⎪⎩⎪⎨⎧-=非循环序列逆循环序列(循环序列),,(0),,1),,(1k j i k j i k j i e ijk1、循环序列: 1312231123===e e e2、逆循环序列: 1132213321-===e e e3、非循环序列: i ,j ,k 中有两个以上的指标取相同值4、奇置换和偶置换: 在i ,j ,k 的具体序列中将指标顺序进行调换,奇数次为奇置换,偶数次为偶置换,序列偶置换属于原序列,奇置换则 循环↔逆循环,非循环序列任何置换均为非循环序列。
kj ijk i kk j j i i k j i ijk b a e c b a e b a c e c c e b b e a a ba c a a a e a a a a a a a a a a ==⨯====⨯===222321333231232221131211五:求导的简化法()()i ix ,=∂∂()i ix ,ϕϕ=∂∂()jk i kj i u x x u ,2=∂∂∂数量场Φ的梯度 i i e e x e x e x g r a d ,332211φφφφφ=∂∂+∂∂+∂∂=向量场v 散度: i i v x v x v x v v d i v ,332211=∂∂+∂∂+∂∂=向量场的旋度:ki j k i j e e v e x v x v e x v x v e x v x v r o t v ,321122133113223)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=§1.2 坐标变换旧坐标系 321x x ox :321,,e e e新坐标系 321x x x o ''' :321,,e e e ''''11新旧坐标系间方向余弦为:332313333222122231211111332211)()()()()()('''''''''''''''αααααααααe x e x e x e x e x e x则新旧坐标关系为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''''''''''''321332313322212312111321x x x x x x ααααααααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡'''''''''321333231232221131211321x x x x x x ααααααααα j j i i x x '='α k j k j x x ''=α基矢量关系为j j i i e e ''=α k j k j e e ''=α k i j k j i ''''=δαα jk k i j i δαα='' 即变换系数矩阵为正交矩阵对a , j j i i e a e a a =='' k j k j i i e a e a ''''=α 两边点乘j e ' ,有: j j j j a a ''=αj j i i a a ''=α k j k j a a ''=α即:矢量分量变换与坐标变换服从相同规律。
各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。
张量分析与连续介质力学教材:《The Mechanics and Thermodynamics of Continua》M.E. Gurtin, E. Fried, L. Anand. Cambridge University Press, 2010教学参考书:1、《An Introduction to Continuum Mechanics》, M.E. Gurtin, AcademicPress, 1981. (中译本:郭仲衡等译,连续介质力学引论,高等教育出版社,1992)2、《连续介质力学基础》,熊祝华等,湖南大学出版社,19973、《连续介质力学基础》,黄筑平,高等教育出版社,20034、《非线性连续介质力学》,匡正邦,上海交大出版社,2002x vy第一章张量分析基础第一节矢量和张量代数一、矢量代数本课程只在三维欧氏空间 内讨论连续介质力学的基础原理。
1、点——反应一定的空间位置,由x表示2、矢量——具有大小和方向且满足一定规则的空间实体,用v来表示。
(两点间的距离可由一矢量表示)(点x和矢量v之和是另一个点y)3、矢量的点积和叉积1)点积(θ为两个矢量间的夹角)u 表示矢量的大小,为一标量,有u u u ⋅=。
2)叉积w v u =⨯ (为一新的矢量)v u ⨯表示由u 和v 构成的平行四边形的面积。
θsin v u v u =⨯且u w ⊥,v w ⊥3)混合积()w v u ⨯⋅()w⋅表示由u,v和w三个矢量围成的体的体积。
vu⨯●如果该体的体积不为零,则称u,v和w线性无关。
●如果对于不为零的常数a,b,c,有:u cabv+w=+则称u,v和w线性相关。
不满足线性相关的矢量则是线性无关的。
4、矢量空间及其性质由欧氏空间ε中对应的点构成的矢量形成的空间称为矢量空间ν。
如果u,v和w是线性无关的,则{}wu,构成矢量空间ν的基,即ν中任一矢量v,都可以表示为:w v u γβα++=a1) 如果()0>⨯⋅w v u ,则基{}w v ,u,是正向的(右手法则)。
第一篇 张量分析第一章 矢 量 §1—1 矢量表示法物理中的位移、速度、力都是矢量。
利用三维空间中的有向线段ν表示矢量是最直观的表示法,如图1-1所示。
有向线段的长度v 代表矢量的大小。
这种方法不依赖于坐标系的选择。
矢量的分量表示法是另一种表示方法,选定一个坐标系。
比如通常的正交直线坐标系,即卡氏坐标系,然后确定矢量对于该坐标系的分量(,,)x y z v v v ν(1-1a)这一有序数也可视作一个单行矩阵。
矢量也可以用基矢与其对应分量写成x y z iv jv kv ν=++ (1-1b)其中,,x y z iv jv kv 称为分矢量。
而i(1,0,0),j(0,1,0),k(0,0,1) (1-1c)是单位矢量,它们组成卡氏系中的一组基矢(称为标架)。
§1-2指标符号上面所述用分量(,,)x y z v v v 或用基矢量i,j,k 来表示矢量的方法,在推广到比三维更高的空间时就有困难了。
因此,发展了另一种记法。
把x 、y 、z 分别记为111,,x y z 这样,一个n 维空间的矢量(无法用直观图表示)用分量表示时为123(,,,...,)n v v v v ν= (1-2a)它可视为一个M 维的单行矩阵,且可写为{}i v ν= (1,2,3,...,)i n =同理,基矢i,j,k 可分别写为123,,e e e ,n 维空间的基矢i e (1,2,3,...,)i n =。
而与式(1-1b)对应的写法为112233n n e v e v e v e v ν=++++ (1-2b)相应的分矢量为11,,,i i e v e v ,其中1e =(0,…,0,1,0,…,0) (1-2c)↑ 顺序第i 个这里i 叫做v 的下标,也有记作jv (如本书第三章以后章节所出现)的,这时j 称为上标。
有些量比矢量更复杂,只用一个下(或上)指标还不够,还要采用更多的指标,比如,,,ij ij ijk A B C ,等等。