张量分析第三章
- 格式:ppt
- 大小:1.88 MB
- 文档页数:41
第三章 一般曲线坐标系中的张量分析初步为了对张量有一个全面的了解,本章对一般曲线坐标系中的张量分析做一个初步的介绍。
3.1、曲线坐标,基矢量,度量张量在一般曲线坐标系中,由于必须要用两套基矢量,因此指标要分上标和下标,在正交曲线坐标系中经常用的ij δ应分为i j δ和j i δ,ijk ε也常分为ijk ε和ijkε。
设给定曲线坐标(1q ,2q ,3q ),过空间任一点M 沿每一坐标曲线可得一个切矢量,记为i i qr g ∂∂=i g 是线性独立的矢量,在正交曲线坐标系中,选i g /ig为基矢量。
由于i g 的正交性,有ij j i j i g g g g δ =⋅。
而在一般曲线坐标系中,i g 不一定是相互正交,但任选i g为基矢量(不为单位矢量),称为协变基矢量,在协变基矢量i g的基础上,我们还可以选i g ,使得1g 与2g ,3g 正交,且111=⋅g g ,其他类似。
i g 也是一组基矢量,称为逆变基矢量,i g 与i g是正交的,他们称为互逆基矢量。
我们令j i ij g g g ⋅= j i ij g g g ⋅=i i i j j j g g g g g =⋅=⋅分别称为协变度量张量,逆变度量张量及混合度量张量。
由协变基矢量i g 与逆变基矢量i g的正交性,有i j j i i j g g g δ=⋅=逆变基矢量可以用协变基矢量表示,可以推出j ij i g g g =因为j j ik ij k ij k i k ik g g g g g g g g δ==⋅=⋅=同理有j ij i g g g =可以看到协变度量张量和逆变度量张量起着升标和降标的作用。
注意,在这里我们用了约定求和,不过这里求和中的指标应是一个是上标,另一个是下标。
由于jl il l k jl ik l k jl ik l jl k ik j i i j g g g g g g g g g g g g g g ==⋅=⋅=⋅=δδ)()(可知ij g 和ij g 互为逆矩阵。
2.9克里斯托弗尔符号 ij i g j gkk ig j gkrgr gkr ig j g r gkr ijr(2.9.08) (2.9.09)同样地, ijk g kr ijr在基矢量组 g 1 , g 2 , g 3 中把 i g j 按下式分解 igj(4)在直线坐标系中, ijk 0 , ij 0k(2.9.10)k ij ijp gp ij g pp(2.9.01) (2.9.02)p ij事实上,因为在斜角和直角坐标系中基矢量 i i 和 e i 均为常量,故 ijk 0 和 (5)克里斯托弗尔符号可用度量张量表示。
事实上,由于g ij , k gk 0。
ig j 这里分解系数 ijp 和 分别称为第一类和第二类克里斯托弗尔(Christoffel)符号。
在某些文献中, p 第一类和第二类克里斯托弗尔符号分别用 ij , p 和 表示。
ij gigj kgi gj g i k gj kij kji(2.9.11) (2.9.12) (2.9.13)对指标进行轮换,则有jk , i ijk ikj用 g k 和 g 分别点乘式(2.9.01)和式(2.9.02)两边,则得 ijp gpkg ki , j jki jik把式(2.9.12)和式(2.9.13)相加,再减去式(2.9.11),则得 (2.9.03) (2.9.04) 另外, ijk 1 2 g k ijp kp k ijk i g j g kk ij ig j ggkrjk , i g ki , j gji , k(2.9.14)现述克里斯托弗尔符号的性质如下。
第三章仿射空间中的张量分析任何物理量通常都可以用一组数来表示,这组数的值一般与坐标的选择有关,研究这组数与坐标变换的关系导致了张量的概念。
我们对三维空间中矢量的概念已经十分熟悉,矢量可以表示力、速度、加速度、动量等等,它通常可以用一组数(3个代数值)表示,并且随着坐标的变化而变化。
然而即使这组数本身随坐标变化了,矢量本身却还是恒定的。
张量的概念可以看作是三维空间中矢量的概念在任意维空间中的推广,是比矢量还要复杂的一种客观存在的物理量的数学表示。
借助于张量,广义相对论可以把物理规律表达为看起来简单的张量方程,使它在任一种坐标下具有相同的形式。
本章我们将在仿射空间中建立张量的定义和运算,并利用它来讨论空间的几何性质。
狭义相对论的四维Minkowski时空中,最常用的一种坐标变换就是代表惯性系之间关系的洛仑兹变换。
从数学的角度来说,洛仑兹变换是一种最简单的线性正交变换,其变换矩阵不依赖于空间点而变化,矩阵元是常数。
然而,广义相对论中由于时空的弯曲,一般不再能够找到如此简单的覆盖全时空的坐标变换。
通常的坐标变换矩阵都是空间点的函数,当然一般也就不再满足线性、正交的条件。
本章从数学的角度讨论一般的坐标变换下,张量的定义和性质。
3.1 n 维仿射空间中的张量虽然相对论所借助的空间通常是四维的,但本章所讨论的数学对任意维数n 都适用,是更加宽泛的、一般性的张量理论。
n 维空间中的点,在某个已经给定的坐标系中可以用n 个数构成的数组来描述,这组数叫做该点的坐标).,,,(21n x x x x =μ (3-1-1)同一空间中坐标的选取方式是任意的和多种多样的,两组坐标μx 与μx ~(μ取1至n )的联系叫坐标变换),(~~νμμx x x = (3-1-2)上式中的νx 和μx ~分别代表两套坐标下的两个数组。
从(3-1-2)式可导出任一点的坐标微分的变换公式,~~ααμμdx xx x d ∂∂= (3-1-3) 式中对重复指标α自动求和,这叫爱因斯坦求和约定,本书中将始终采用这约定。
第三章 张量分析将偏导数的概念推广,建立协变导数的概念,使得一个张量的协变导数是另一个张量,这是张量分析发展中最重要的里程碑碑。
张量的协变导数是本章讨论的重点。
§3.1 基矢量的偏导数与克里斯托费尔符号求一个矢量的导数,必须对它的各个分量与基矢量乗积之和求导:j ,i i i i j ,j ,i i j ,jg V g V )g V (V xV +===∂∂ (3.1-1a) i j ,i i j ,i j ,i i g V g V )g V (+== (3.1-1b) 上式中的“,”号表示偏导数,本书以后均采用此记法。
(3.1-1a )、(3.1-1b )式中有基矢量i g 和对偶基矢量i g 对于曲线坐标j x 的偏导数j ,i g 和i j ,g 。
下面分别进行讨论。
一、基矢量i g 的偏导数j ,i g由基矢量的定义[(1.4-4)式]可以写出s j i s2s i s j j ,i i xx z )i x z (x g ∂∂∂=∂∂∂∂=这表示基矢量i g 对于坐标j x 的偏导数也是矢量,它也可以分解成沿对偶基矢量i g 或基矢量i g 方向的分量:kkijkijkj,i g g g Γ=Γ= (3.1-2)式中ijk Γ是j ,i g 沿k g 方向的分量;k ij Γ是j ,i g 沿k g 方向的分量。
从它们的意义可以理解,为什么ijk Γ和k ij Γ中包含I,j,k 三个指标。
若用另一基矢量点乘(3.1-2)式,就得到i j klk i j l k l i j l k j ,i g g g g Γ=δΓ=⋅Γ=⋅ (3.1-3a) k ij k l l ij k l l ij k j ,i g g g g Γ=δΓ=⋅Γ=⋅ (3.1-3b)ijk Γ称为第一类克里斯托费尔(Christoffel )符号;k ij Γ称为第二克里斯托费尔符号。
(3.1-2)式或(3.1-3)式都可以作为克里斯托费尓符号的定义。
各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。