G[3] 1
k 0,1, , N 1
2
13
4.2 按时间抽取(DIT)的基2–FFT算法
将系数统一为 WNk 2 WN2k ,则可得
x[0]
N 4点
x[4]
DFT
G[0]
X [0]
G[1]
X [1]
x[2]
N 4点
WN0
x[6]
DFT
WN2
G[2]
1 G[3]
1
X [2] X [3]
x[1]
N 4点
X m1[i] WNr X m1[ j] , X m1[i] WNr X m1[ j]
m 1, 2 ,
每一个蝶形需要一次复数乘法和两次复数加法。
17
4.2 按时间抽取(DIT)的基2–FFT算法
N点的DIT-FFT计算量为
复数乘法:
1
N 2
log2
N
N 2
复数加法:
2
N 2
log2
N
N
例: 如果每次复数乘法需要100us,每次复数加法需要20us,来 计算N=1024点DFT,则需要
12
4.2 按时间抽取(DIT)的基2–FFT算法
同理
( N 4)1
( N 4)1
G[k] DFT[g[r]]
g[2l]WN2lk2
g[2l 1]WN(22l1)k
l 0
l 0
( N 4)1
( N 4)1
g[2l]WNlk 4 WNk 2
g[2l 1]WNlk 4 ,
l 0
l 0
k 0,1,
(3) WN0 WN4 WN8 WN12 WN16 WN20 WN24 WN28
或 WN4i i 0,1, 2, 3, 4, 5, 6, 7 (dm 1)