航空燃气轮机基础知识
- 格式:pptx
- 大小:15.33 MB
- 文档页数:69
航空燃气轮机系统的研究开发航空燃气轮机是现代飞机的重要动力装置之一,不仅在民用航空领域,也在军用领域得到广泛应用。
为了满足对飞机性能不断提高的需求,航空燃气轮机系统研究开发也在不断推进。
一、航空燃气轮机系统的基本原理航空燃气轮机系统是由压气机、燃烧室、涡轮等部分组成,其基本工作原理是将空气通过压气机压缩并进入燃烧室,在燃烧室中与燃料混合燃烧,产生高温高压气体,然后再通过涡轮驱动压气机,形成轮机循环。
这样,从外界提取能量的过程即为航空燃气轮机系统的工作过程。
二、航空燃气轮机系统的分类根据不同的分类标准,航空燃气轮机系统可以分为多个类别,如按用途分类可以分为军用燃气轮机及民用燃气轮机;按推进方式分类则可分为喷气式燃气轮机、涡扇式燃气轮机等等。
目前,随着燃气轮机技术的不断发展,涡扇式燃气轮机已经成为主流。
三、航空燃气轮机系统的关键技术在航空燃气轮机系统的研究开发中,有一些技术尤为重要,如下:(一)高温材料技术随着航空燃气轮机系统推动效率不断提高,高温材料的应用也成为关键。
高温材料不仅可以承受高温和高压环境下的工作,还可以减轻整个系统的重量,提高燃气轮机推动效率。
(二)压气机技术航空燃气轮机系统中的压气机是一个重要的部件,它主要负责将空气压缩到高压状态。
为了提高航空燃气轮机系统效率,要求压气机尽可能高的压比,并保证良好的气流流动性能。
因此,压气机的设计和优化是燃气轮机系统研究开发中重要的技术。
(三)燃烧系统技术燃烧系统技术是航空燃气轮机系统中最为核心的技术之一。
在燃烧系统中,燃料和空气混合燃烧产生高温高压燃气,这些高温高压气体会直接决定燃气轮机性能。
因此,燃烧系统的设计和优化是提高燃气轮机整体效率、降低污染排放的关键。
(四)涡轮机技术涡轮机技术是航空燃气轮机系统中非常关键的部分。
涡轮机在轴流动和轴向紊流流动中将气体动能转变为机械能,是整个轮机系统驱动装置。
为了提高涡轮机的效率,研究人员需要改善涡轮机的流体动力性能以及涡轮机材料的高温强度等。
燃气轮机手册燃气轮机是一种热力机械,将燃料的化学能转化为机械能。
下面是一份简要的燃气轮机手册,介绍燃气轮机的基本原理、类型、应用和维护。
一、燃气轮机基本原理燃气轮机的工作原理是基于热力学循环,通常采用布雷顿循环。
在布雷顿循环中,气体在高温高压条件下膨胀,产生动力,然后通过冷却在低压低温条件下收缩,形成一个闭合的循环。
燃气轮机的四个主要部分是:燃烧室、喷嘴、涡轮和压缩机。
1. 燃烧室:燃烧室是将燃料和空气混合并燃烧的地方。
燃料可以是天然气、石油气、煤炭气等多种形式。
2. 喷嘴:喷嘴是将高温高压的气体排放到涡轮的地方。
喷嘴的设计对燃气轮机的性能至关重要。
3. 涡轮:涡轮是燃气轮机的核心部分,利用高温高压气体的能量驱动。
涡轮的叶片设计要承受高速气流的冲击,因此需要高温合金等先进材料。
4. 压缩机:压缩机是将空气压缩并送入燃烧室的地方。
压缩机的工作效率直接影响到燃气轮机的性能。
二、燃气轮机类型1. 轴流式燃气轮机:轴流式燃气轮机的气体流动方向与轴线平行,具有结构简单、体积小、重量轻、维护方便等优点。
2. 径流式燃气轮机:径流式燃气轮机的气体流动方向与轴线呈径向,具有效率高、抗振性能好等优点。
3. 反动式燃气轮机:反动式燃气轮机在涡轮后方设有反作用轮,可以提高输出功率和效率。
三、燃气轮机应用燃气轮机广泛应用于电力、石油、化工、航空、航天等领域。
在电力领域,燃气轮机主要用于应急发电、调峰发电和热电联产等。
在航空航天领域,燃气轮机是飞机和火箭的动力装置。
四、燃气轮机维护1. 定期检查:定期对燃气轮机进行检查,确保各部件工作正常,及时发现并排除故障。
2. 清洁保养:保持燃气轮机清洁,避免灰尘和污物进入机内,影响性能和寿命。
3. 燃料系统维护:定期检查燃料系统,确保燃料供应稳定,防止泄漏。
4. 冷却系统维护:保持冷却系统畅通,避免过热损坏。
5. 润滑系统维护:定期更换润滑油,保证各部件润滑良好。
燃气轮机是一种高效、环保的热力机械,具有广泛的应用前景。
(861)航空燃气轮机原理
航空燃气轮机是一种使用燃气作为动力源的内燃机,其工作原理可以简述为燃烧气体通过喷嘴喷射到高速旋转的涡轮上,使得涡轮转动,并通过轴将动能传递给工作设备,最终产生推力或者做功。
航空燃气轮机主要由压气机、燃烧室和涡轮组成。
首先,空气通过进气道经过压气机被压缩。
压气机是由一系列圆盘或叶片组成的,当空气通过叶片时,叶片对空气施加作用力,将空气压缩。
压气机的任务是提供高密度的压缩空气。
然后,压缩后的空气进入燃烧室。
燃烧室内喷入燃油并点火,形成高温高压的燃烧气体,这些燃烧气体能够释放出巨大的热能。
燃烧气体通过喷嘴进入涡轮,由于喷嘴的作用,燃烧气体以高速喷射到涡轮叶片上,使涡轮旋转起来。
涡轮一般是由多级叶片组成的,其中前级涡轮通过轴与压气机相连,驱动压气机工作,后级涡轮通过轴与外部设备(例如飞机的螺旋桨)相连,产生推力。
涡轮旋转的同时,废气被排出,进一步利用余热燃烧废气发电,提高热效率。
总之,航空燃气轮机通过压缩空气,燃烧燃油产生高温高压气体,并利用这些气体的动能来驱动涡轮旋转,从而实现飞机的
推进。
由于其高效、可靠等特点,航空燃气轮机已经成为现代商用飞机和军用飞机的主要动力装置。
燃气轮机工作原理与应用技术燃气轮机是一种能够将燃料的热能转化为动能的发电机组,被广泛应用于发电、航空、船舶等领域。
本文旨在介绍燃气轮机的工作原理和应用技术。
一. 燃气轮机的工作原理燃气轮机的基本构成包括压气机、燃烧室、涡轮和发电机。
其工作原理可以简单概括为:压缩来自空气压力机的压缩空气,送入燃烧室燃烧燃料,产生高温高压气流,通过涡轮转子驱动发电机发电,同时排出尾气。
1. 压气机压气机的作用是将空气压缩并提高压力,为下一步的燃烧提供充足的氧气。
一般情况下,燃气轮机会使用多级离心式压气机,它的作用是将来自空气压力机的空气进行多级压缩,以达到较高的压力和温度。
2. 燃烧室燃烧室是将燃料燃烧,产生高温高压气流的空间。
在燃烧室中,燃料喷射器将燃料喷入燃烧室中,随后点火引燃。
经过燃烧后,气流温度达到1000℃以上,并且压力增加。
3. 涡轮涡轮是燃气轮机中最重要的组成部分之一。
涡轮的作用是将由燃烧室排出的高温高压气流转化为机械能,启动发电机转子,发电机转子通过旋转发电。
通常,燃气轮机会采用多级叶轮式涡轮,不同级数叶片的转速和角度不同,以适应不同的压力和温度。
4. 发电机发电机是将涡轮输出的机械能转化为电能的装置。
发电机一般采用在转子上安装绕组的感应式发电机。
整个燃气轮机的工作过程,最终会输出电能。
二. 燃气轮机的应用技术燃气轮机作为一种高效能、节能、环保的发电机组,具有着广泛的应用领域。
1. 发电在发电领域,燃气轮机可以单独或者联合热电联产的方式来输出电能和热能,具有高效能、低污染等优点。
另外,由于其响应速度较快,可以在短时间内投入运行,满足紧急情况下的电力需求。
2. 航空领域燃气轮机在航空领域中可以作为飞机推进装置,为飞机提供动力。
燃气轮机具有高可靠性、高效能、快速响应等优点,很好地满足了航空领域对发动机的高要求。
3. 船舶领域燃气轮机在船舶领域中可以作为动力装置,为船只提供足够的动力。
燃气轮机具有启动响应快、可调速、低振动、低噪音等优点,非常适合船舶的工作环境。
航空燃气轮机原理航空燃气轮机是现代飞机动力系统的核心部件之一,它以其高效、可靠的特点成为了飞机动力系统的主力。
那么,究竟航空燃气轮机是如何工作的呢?接下来,我们将深入探讨航空燃气轮机的原理。
首先,我们来了解一下航空燃气轮机的基本构成。
航空燃气轮机主要由压气机、燃烧室、涡轮和推力矢量控制系统组成。
其中,压气机负责将大气中的空气压缩,提高空气的密度;燃烧室将压缩后的空气与燃料充分混合并燃烧,产生高温高压的燃气;涡轮则利用燃气的高温高压能量驱动风扇和压气机,推力矢量控制系统则用于调节发动机喷口的方向,从而实现飞机的姿态控制。
其次,我们来了解一下航空燃气轮机的工作原理。
当飞机起飞时,航空燃气轮机开始工作。
首先,压气机将大气中的空气压缩,提高空气的密度,然后将高压空气送入燃烧室。
在燃烧室内,高压空气与燃料充分混合并燃烧,产生高温高压的燃气。
随后,这些高温高压的燃气驱动涡轮旋转,涡轮带动风扇和压气机工作,产生推力。
最终,推力矢量控制系统调节发动机喷口的方向,实现飞机的姿态控制,飞机顺利起飞。
再者,我们来了解一下航空燃气轮机的优势。
相比于传统的活塞发动机,航空燃气轮机具有功率重量比高、燃料效率高、可靠性高、噪音低等优势。
这使得航空燃气轮机成为了现代飞机动力系统的主力,广泛应用于商用飞机、军用飞机以及直升机等领域。
最后,我们来了解一下航空燃气轮机的发展趋势。
随着科技的不断进步,航空燃气轮机的技术也在不断创新。
未来,航空燃气轮机将更加注重环保、节能和智能化,同时也将更加注重减少噪音和提高可靠性,以满足不断发展的航空市场需求。
综上所述,航空燃气轮机作为现代飞机动力系统的主力,其原理清晰明了,工作高效可靠,优势明显,发展前景广阔。
相信随着科技的不断进步,航空燃气轮机将会迎来更加美好的未来。
燃气轮机原理、结构及应用(上、下册)pdf燃气轮机原理、结构及应用(上、下册)PDF一、引言燃气轮机作为一种高效、清洁、低碳的能源转换设备,已经广泛应用于发电、工业驱动、航空航天、交通运输等领域。
本篇文章将详细介绍燃气轮机的原理、结构及应用,帮助读者深入了解这一重要的动力装置。
二、燃气轮机工作原理燃气轮机是一种旋转式热力发动机,它以连续流动的气体为工质,将燃料的化学能转化为机械能。
燃气轮机的主要工作过程包括吸气压缩、燃烧加热、膨胀做功和排气放热。
在这个过程中,气体依次经过压气机、燃烧室和透平,完成由热变功的热力循环。
1.吸气压缩:燃气轮机的压气机从外界大气环境中吸入空气,并逐级压缩空气。
随着压缩过程的进行,空气的温度和压力逐渐升高。
2.燃烧加热:压缩空气被送到燃烧室,与喷入的燃料混合燃烧,产生高温高压的燃气。
3.膨胀做功:高温高压的燃气进入透平,推动透平叶片旋转。
透平叶片经过设计,使燃气在通过时产生旋转动力,将燃气的压力能转化为机械能。
4.排气放热:经过透平膨胀做功后的燃气,温度和压力降低。
透平排气可以直接排放到大气中,自然放热给环境,也可以通过换热设备回收部分余热。
三、燃气轮机结构燃气轮机的主要结构包括压气机、燃烧室和透平。
1.压气机:压气机是燃气轮机的关键部件之一,负责吸入空气并压缩。
它由多个级数组成,随着级数的增加,空气的压力和温度逐渐升高。
2.燃烧室:燃烧室是燃气轮机中燃料与空气混合燃烧的场所。
燃烧室的设计需要确保高效、安全、稳定的燃烧过程。
3.透平:透平是燃气轮机中将燃气的压力能转化为机械能的关键部件。
透平叶片经过精密设计,使燃气在通过时产生旋转动力,驱动燃气轮机旋转。
四、燃气轮机应用燃气轮机在多个领域具有广泛的应用,包括:1.发电:燃气轮机发电机组具有启动快、调峰能力强、效率高等优点,适用于电力系统的调峰和应急电源。
2.工业驱动:燃气轮机可用于驱动压缩机、泵等工业设备,提高工业生产效率。
航发原理1、燃气涡轮发动机工作原理1.1、航空发动机概述活塞、涡喷、涡扇、涡轴、涡桨、桨扇,短距离垂直起降动力装置。
1.2、燃气涡轮发动机的工作原理空气连续不断地被吸入压气机,并在其中压缩增压后,进入燃烧室中喷油燃烧成为高温高压燃气,再进入涡轮中膨胀做功。
燃烧的膨胀功必然大于空气在压气机中被压缩所需要的压缩功,使得有部分富余功可以被利用。
燃气涡轮发动机的膨胀功可以分为两部分:一部分膨胀功通过传动轴传给压气机,用以压缩吸入燃气涡轮发动机的空气;另一部分膨胀功则对外输出,作为飞机、舰船、车辆或发电机等的动力装置。
1.3、喷气发动机热力循环(P123)涡喷发动机的理想循环:(p-v 、压力-比体积)等熵压缩:进气道、压气机(0、2、3,特征截面)等压加热:燃烧室(3、4)等熵膨胀:涡轮、喷管(4、5、9)等压放热:大气环境(9、0)(P125)理想循环功L id =q 1−q 2=C p (T t4−T t3)−C p (T 9−T 0)=C p T 0(e −1)(∆e −1)T t4T 0=∆ 加热比 (P t3P 0)k−1k =e P t3P 0=π 总增压比 加热比增加,理想循环功增加。
总增压比为1,理想循环功为0;总增压比为最大,理想循环功为0;存在使理想循环功最大的最佳增压比πopt 。
从物理意义分析,影响理想循环功L id 的是加热量q 1和热效率两个因素。
当π从1.0开始增加时,热效率急剧增加,使L id 增加,一直达到其最大值;此后π继续增加则q 1的减小起了主导作用,使L id 下降。
e opt =√∆πopt =∆k2(k−1)L id =C p T 0(√∆−1)2ηti =1−1πk−1k 只与总增压比有关对应于有效功最大值的最佳增压比πopt 远小于对应于最大热效率的增压比πopt ′。
1.4、喷气发动机的推力(P13)F eff =F −X d −X p −X fX d :进气道附加阻力X p :短舱压差阻力X f:摩擦阻力F=W9c9+(p9−p0)A9−W a c0 1.5、涡喷发动机的总效率、热效率及推进效率η0=ηtηpηp=21+c9c0=推进功循环有效功遗留在空中的动能损失,称为离速损失,排气速度和飞行速度差别越大,动能损失越多。
航空燃气涡轮发动机原理复习知识点第一章记住华氏度与摄氏度之间的关系:Tf=32+9/5Tc记住P21的公式1-72,p23的公式1-79,1-80 ,p29的公式1-85以及p33的公式1-99。
第二章燃气涡轮发动机的的工作原理1.燃气涡轮发动机是将燃油释放出的热能转变成机械能的装置。
它既是热机又是推进器。
2.燃气涡轮发动机分为燃气涡轮喷气发动机,涡轮螺旋桨发动机,涡轮风扇发动机。
其中涡轮风扇发动机是由进气道,风扇。
低压压气机,高压压气机,燃烧室,高压涡轮,低压涡轮和喷管组成。
涡轮风扇发动机是由两个涵道的。
3.外涵流量与内涵流量的比值,称为涵道比,B=Qm1/Qm2.4.与涡轮喷气发动机相比,涡轮风扇发动机具有推力大,推进效率高,噪音低等特点。
5.单转子涡轮喷气发动机是由进气道,压气机,燃烧室,涡轮和喷管五大部件组成的。
其中压气机,燃烧室,涡轮称为燃气发生器,也叫核心机。
6.涡轮前燃气总温用符号T3*来表示,它是燃气涡轮发动机中最重要的,最关键的一个参数,也是受限制的一个参数。
7.发动机的排气温度T4*,用符号EGT表示。
8.发动机的压力比简称为发动机压比,用符号EPR表示。
9.要会画书本p48页的图2-9的布莱顿循环并且要知道每一个过程表示什么意思。
10.要知道推力的分布并且要掌握推力公式的推导过程。
(简答题或者综合题会涉及到。
自己看书本p5到P56)。
11.了解几个喷气发动机的性能指标:推力,单位推力,推重比,迎面推力,燃油消耗率。
第三章 进气道1.进气道的作用:在各种状态下,将足够量的空气,以最小的流动损失,顺利的引入压气机;当压气机进口处的气流马赫数小于飞行马赫数时,通过冲压压缩空气,以提高空气的压力。
2.掌握气流参数沿流程的变化。
(p63)3.单位时间进入进气道的空气质量称为空气流量。
影响流量的因素有大气密度,飞行速度和压气机的转速。
4.流动损失:存在唇口损失和内部流动损失。
5.进气道的流动损失用总压恢复系数来描写,进气道的总压恢复系数是进气道出口的处的总压与来流的总压之比。
第2章航空燃气轮机的工作原理Principle of Aero Gasturbine Engine第2.1节概述Introduction涡轮喷气发动机是航空燃气轮机中最简单的一种,它是飞机的动力装置。
涡轮喷气发动机在工作时,连续不断地吸入空气,空气在发动机中经过压缩、燃烧和膨胀过程产生高温高压燃气从尾喷管喷出,流过发动机的气体动量增加,使发动机产生反作用推力(图2.1.1)图2.1.1 单轴涡轮喷气发动机涡轮喷气发动机(图2.1.2)作为一个热机,它将燃料的热能转变为机械能。
涡轮喷气发动机同时又作为一个推进器(,它利用产生的机械能使发动机获得推力。
图2.1.2 表示热机和推进器的单轴涡轮喷气发动机涡轮喷气发动机,作为热机,它和工程中常见的活塞式发动机一样,都是以空气和燃气作为工作介质。
它们的相同之处为:均以空气和燃气作为工作介质。
它们都是先把空气吸进发动机,经过压缩增加空气的压力,经过燃烧增加气体的温度,然后使燃气膨胀作功。
燃气在膨胀过程中所作的功要比空气在压缩过程中所消耗的功大得多。
这是因为燃气是在高温下膨胀的,于是就有一部分富余的膨胀功可以被利用。
它们的不同之处为:•进入活塞式发动机的空气不是连续的;而进入燃气轮机的空气是连续的。
•活塞式发动机中喷油燃烧是在一个密闭的固定空间里,称为等容燃烧,而燃气轮机则在前后畅通的流动过程中喷油燃烧,若不计流动损失,则燃烧前后压力不变,故称为等压燃烧。
下面给出了涡轮喷气发动机的简图,图中标出了发动机各部件名称和各个截面的符号。
对于单轴和双轴涡轮喷气发动机的尾喷管,若为收敛性喷管,其出口截面9在临界或超临界状态下成为临界截面,故也可以标注为8。
0---远前方,1---发动机进气道入口,2---压气机入口,3---燃烧室入口,4---涡轮入口,5---尾喷管入口,8---尾喷管临界截面,9---尾喷管出口图 2.1.3涡轮喷气发动机各部分名称请记住上图涡轮喷气发动机各个截面符号的含义。