4G网络高速铁路覆盖技术要求
- 格式:pptx
- 大小:1.88 MB
- 文档页数:27
中国联通高速铁路覆盖无线网络建设指导意见(试行)中国联通移动网络公司网络建设部二00九年十月目录1、高速铁路无线网络覆盖规划总体原则 (1)2、基本技术要求 (2)3、组网方式 (3)4、覆盖策略 (3)4.1地面高铁覆盖 (3)4.2隧道覆盖 (5)4.3桥梁覆盖 (6)4.4配套建设要求 (6)5、容量策略 (6)6、切换策略 (7)附件1:车体穿透损耗 (8)附件2:相邻基站重叠切换区域测算 (9)2.1 WCDMA系统重叠切换时间测算 (9)2.2 GSM系统重叠切换时间测算 (12)2.2 WCDMA/GSM系统重叠切换区域测算 (13)附件3:链路预算分析 (14)3.1 WCDMA系统链路预算 (14)3.2 GSM系统链路预算 (15)3.3 覆盖半径测算 (16)1、高速铁路无线网络覆盖规划总体原则近年来我国高速铁路建设事业飞速发展,多条城际快速铁路和高速客运专线已开通运营,还有大量的客运专线正在建设或列入十一五规划,可以预见,未来几年高速铁路将成为我国地面客运的主流。
高速铁路旅客中有较多的中高端用户,改善高铁覆盖质量,对于提高客户满意度、提升联通品牌形象至关重要。
高铁覆盖建设总体原则如下:(1)高铁覆盖是移动无线网络的一部分,要遵守移动无线网建设指导意见,符合2G/3G网络的定位和协调发展要求。
(2)应与铁路部门积极合作,可考虑共享其站址、杆路、隧道、洞室等基础设施;同时应积极与其他运营商进行沟通,采取共享共建的战略,以降低建设成本。
(3)高铁覆盖网络的建设从设计方案、现场勘查、施工规范、建设进度,到后期的运营维护等多方面都需要和高铁建设、管理部门充分沟通,达成一致;高铁沿线通信网络基础设施资源有限,需尽早启动规划和建设,抢占有利资源。
(4)对于已建成运营的高速铁路,各省分公司在移动网络公司统一领导下,应迅速启动高铁覆盖建设项目,尽快完成已建成高铁覆盖;对于在建的高速铁路,各省分公司应及时跟进,提前规划、提前选址、提前建设配套基础设施,力争与高速铁路同步开通;对于隧道、桥梁等通车后不便入场施工的地点,应优先考虑建设,同时尽量与其他运营商进行共建共享。
浅谈高速铁路的LTE无线网网络覆盖一、高铁4G无线网覆盖背景高速铁路,简称“高铁”,是指通过改造原有线路(直线化、轨距标准化),使最高营运速率达到不小于每小时200公里,或者专门修建新的“高速新线”,使营运速率达到每小时至少250公里的铁路系统。
高速铁路除了在列车在营运达到一定速度标准外,车辆、路轨、操作都需要配合提升。
随着环境问题的日益严峻,交通运输各行业中,从单位运量的能源消耗、对环境资源的占用、对环境质量的保护、对自然环境的适应以及运营安全等方面来综合分析,铁路的优势最为明显.然而高铁将通过中国大部分,把中国变成一个“中国村”.图1—1 CRH(China Railway High—speed),即中国高速铁路与传统的高速公路和航空运输相比,高铁的主要优势有:载客量高、输送力强、速度较快、安全性好、正点率高、舒适方便、能耗较低。
高铁作为一种高效经济的城际交通方式,日渐成为人们中长距离出行的首选。
随着智能终端及移动互联网业务的高速发展,用户搭乘高铁出行时,有越来越多的移动办公和网络娱乐需求,如电话会议、视频点播、互动游戏、上网等.由于高端商务客户云集,高铁通信逐步成为各运营商品牌展示、获取可观经济利润及拉升高端客户黏合度的新竞争领域。
如何在高速运行、客流集中、业务容量高、部署场景复杂的高铁内提供高质量的网络覆盖,成为运营商和设备商面临的重大挑战。
图1-2 2020年中国高速铁路网络二、高铁无线网络覆盖面临的问题1、穿透损耗大,高速铁路的新型列车采用全封闭车厢结构,车箱体为不锈钢或铝合金等金属材料,车窗玻璃为较厚的玻璃材料,导室外无线信号在高速列车内的穿透损耗较大,给车体内的无线覆盖带来较大困难。
不同的入射角对应的穿透损耗不同,当信号垂直入射时的穿透损耗最小.当基站的垂直位置距离铁道较近时,覆盖区边缘信号进入,车厢的入射角小,穿透损耗大.实际测试表明,当入射角小于10度以后,穿透损耗增加的斜率变大。
中国移动2017年4G⽆线⽹建设指导意见中国移动2017年4G⽆线⽹建设指导意见2016年,在4G⽆线⽹络建设中,公司紧密围绕“三领先、⼀确保”的⽬标,聚焦⽹络盲点、竞争差点和业务热点精准施策,使得4G⽹络竞争优势得以延续,整体客户感知领先竞争伙伴,有⼒地⽀撑了业务发展。
但是,我们⽬前⾯临的形势依然严峻。
⾸先,竞争伙伴聚焦4G⽹络建设,充分利⽤低频重耕FDD的优势,全⾯发⼒、深化合作,对我公司形成巨⼤压⼒;其次,受政策环境变化等因素影响,我公司的投资⾯临多重压⼒,粗放式规模建设难以为继;再次,虽然我公司的整体负载较低,客户感知较好,但是在“三⾼⼀限”等重要场景还存在深度覆盖不⾜、容量紧张、上⾏业务受限等问题。
2017年,中国移动4G⽆线⽹络建设要实现由关注⽹络覆盖领先向关注客户感知领先的转变,聚焦解决客户感知不好的重点场景⽹络能⼒问题,着⼒巩固竞争优势。
⼀、⽹络建设原则深⼊落实4G建设“三领先、⼀确保”⼯作要求,合理调配使⽤频谱资源,4G⼴覆盖以F频段为主、A频段为辅,D频段主要解决容量问题;把握好保持竞争优势、保障客户感知与保证投资效益之间的平衡,在保持整体⽹络覆盖、质量领先的基础上,重点针对“三⾼⼀限”特殊场景下容量不⾜、VoLTE城区深度覆盖不够的问题予以重点保障、优先解决,确保客户感知领先。
⽹络建设要严格遵循“三要三不要”的原则:竞争伙伴有覆盖的地⽅,要必须覆盖;新建城区、交通⼲线、景区等,要跟随覆盖;原有覆盖区域内的弱覆盖、盲点,要完善覆盖;农村偏远地区,不要盲⽬覆盖;利⽤率较低或以中⼩包业务为主的⼩区⽆容量需求、未来低频能解决的,不要急于⽤CA覆盖;室外⼿段能解决的住宅深度覆盖,不要⽤室分覆盖。
⼆、⽹络建设要求2017年4G⽆线⽹络要“强化提升深度覆盖⽔平,适度拓展农村覆盖⼴度,精准扩容保障厚覆盖容量,持续完善连续覆盖质量”,具体要求如下:(⼀)关键要点1.重点保障、多措并举解决“三⾼⼀限”等特殊场景下容量不⾜、VoLTE城区深度覆盖不够的问题。
中国铁塔⼤型项⽬设计编制指导意见-⾼铁附件1:铁塔公司⼤型项⽬设计编制指导意见(⾼铁部分)⼀、设计编制指导意见(⼀)总则1. 设计依据:需按照国家⼯程建设强制性技术标准、通信建设标准和相应设计规范进⾏设计,设计依据⾥应对强制性标准明确标识。
2. 与电信企业分⼯:(1)根据⼯信部联通[2014]586 号⽂,室内分布系统建设,铁塔公司与运营商以合路器输⼊端⼝为分界点;考虑到⾼铁红线内施⼯的特殊性,运营商设置于红线内的RRU、光缆以及⽆线主设备⾄电源设备的连接线可由铁塔公司承建或代建。
各分省公司需协调督促各省运营商,争取在新建铁路联调联试前完成运营商主设备的调试。
(2)铁塔公司可承接传输类产品需求,投资建设光缆,传输专业需按单项⼯程分册编制。
(⼆)⽆线专业1. 覆盖指标⾼铁(含隧道)设计⽆线⽹络覆盖应参考各省运营商室外覆盖指标设计,如对⾼铁有特殊覆盖要求的请参考电信运营企业相关覆盖指标需求。
2. 链路预算各省分公司应按照漏缆性能参数进⾏各系统链路预算编制,注意事项如下:(1)按选取POI具体型号和漏缆认证测试指标值确定参数;(2)边缘场强应根据各省运营商需求复核;(3)如果漏缆能敷设在靠列车窗体处,则穿损取值较附录中车体损耗典型值适当减⼩2dB左右。
3. ⼲扰分析分析各电信运营企业接⼊系统间的互调⼲扰、杂散⼲扰以及阻塞⼲扰,并提出相应的解决措施。
分析说明本系统对铁路信号有⽆⼲扰。
4. 单、双缆取定原则如果各省运营商提出LTE 的MIMO要求,则隧道需要按双缆布放,宜分别设置在距离轨⾯2.1m和2.6m处。
如果各省运营商提出隧道按单缆布放,为后续扩容⽅便,单缆宜设置在2.6m处。
5. POI设备要求POI设备采⽤满⾜《中国铁塔股份有限公司⽆源分布系统多系统接⼊平台(POI)技术要求及测试⽅法(试⾏)》(QZTT 1003.2-2014)要求的9端/12端设备,采购时应要求设备⼚家空余端⼝接假负载,施⼯阶段⽆需重复考虑相关⼯作量。
4G网络设备的技术要求随着移动通信技术的不断进步,4G网络设备已经成为人们生活中必不可少的一部分。
4G网络设备具有高速、高可靠性、高容量等特点,能够满足人们对网络速度和质量的要求。
下面,将详细介绍4G网络设备的技术要求。
首先,4G网络设备需要具备高速传输的能力。
4G网络使用OFDM技术(正交频分复用)和MIMO技术(多输入多输出),能够将频谱资源进行高效利用,提供更高的数据传输率。
4G网络设备应能够支持最新的无线通信标准,如LTE(长期演进)和WiMAX(全球互操作性微波接入)等,以获得更高的传输速率和更好的用户体验。
其次,4G网络设备需要具备高可靠性和稳定性。
4G网络设备应采用先进的信号处理和调度算法,能够自动选择最佳的信道和路径,减少信号干扰和丢包现象。
此外,4G网络设备还需要具备强大的容错能力,能够自动切换网络,保证网络的连续性和稳定性。
同时,4G网络设备还应支持多种拥塞控制技术,以提高网络的吞吐量和稳定性。
再次,4G网络设备需要具备高容量的特点。
4G网络设备应支持大规模的用户接入和高并发传输。
为了满足用户对网络带宽的需求,4G网络设备应支持灵活的资源分配和动态带宽管理,能够根据实际需求调整网络的带宽分配。
此外,4G网络设备还应具备优化的QoS(服务质量)机制,以确保关键业务的优先传输和高质量的网络体验。
另外,4G网络设备还需要具备智能化和可扩展性。
4G网络设备应能够自动识别用户设备并优化传输参数,提供个性化的网络服务。
4G网络设备还应支持分布式的架构和模块化的设计,能够快速、灵活地扩展网络容量,适应不断增长的网络需求。
最后,4G网络设备需要具备安全和隐私保护的能力。
4G网络设备应支持先进的加密和认证技术,保护用户数据的安全和隐私。
4G网络设备还应具备多层次的防护机制,防止黑客攻击和网络病毒的威胁。
总结起来,4G网络设备的技术要求包括高速传输、高可靠性、高容量、智能化和可扩展性、安全性和隐私保护等方面。
浅谈高铁场景 4G无线网络覆盖方案【摘要】:当前,我国乘坐高铁出行的人越来越多,高铁4G无线网络覆盖成为了各大电信运营商急需解决的问题。
本文论述了高速场景4G无线网络覆盖面临的挑战,并提出了组网部署策略和覆盖方案,以供大家参考。
关键词:高铁场景;4G;无线网络;覆盖;一、高铁场景4G无线网络覆盖面临的挑战高铁场景通信覆盖的特点是速度快、穿透损耗大、切换频繁,在车厢内使用移动通信网络面临着更大的挑战,其主要表现有:1、高铁列车运行速度高。
列车高速的运动,必然会带来接收端接收信号频率的变化,即产生多普勒效应,且这种效应是瞬时变的,高速引起接收机的解调性能下降,这是一个极大的挑战;2、穿透车体导致网络信号损耗大。
高铁列车采用全封闭车厢体结构,这导致信号在车内穿透损耗较大,从而导致掉线率、切换成功率、连接成功率等 KPI (关键绩效)指标发生变化,网络性能下降。
3、网络切换频繁。
由于单站覆盖范围有限,在列车高速移动之下,穿越单站覆盖所需时间是很短的,必然在短时间内频繁穿越多个小区。
终端移动速度过快,可能导致穿越覆盖区的时间小于系统切换处理最小时延,从而引起切换失败,产生掉线,影响了网络整体性能。
二、高铁场景4G无线网络组网部署策略1、组网策略。
高铁场景4G网络覆盖,可以考虑采用同频组网,也可以考虑使用异频组网。
(1)同频组网。
同频组网采用和大网宏站相同的频点、参数覆盖,不单独设置。
该组网需要兼顾高铁沿线及附近区域的网络覆盖和业务需求;(2)异频组网。
这是高铁覆盖目前普遍采用的组网方案,该组网是针对高铁场景使用单独的频点覆盖,配合独立参数配置以保证高铁场景的网络质量。
对比同频组网,异频组网采用单独位置设区,无需考虑高铁站点与周边站点间的频率干扰,避免覆盖和容量的降低,降低了因位置区更新导致的寻呼失败等异常情况。
通常下,一般高铁沿线场景可选用F或D频段双通道设备+高增益窄波束天线进行背靠背组网。
特殊场景则采用泄漏电缆方式覆盖,每个物理点安装一台RRU(射频拉远单元),以功分方式实现不同方向信号,多RRU进行小区合并实现覆盖。
2018年7月知造成影响。
因此,在建设移动互联网客户感知平台的过程中,不但要检测每段路径的KPI或KQI的质量,还要对其进行精确的评估。
移动互联网客户感知平台由被动探针和主动探针两部分组成,其中被动探针可以对移动互联网的流量进行DPI解析,以此来应用KQI指标体系,有效的监测和评价移动互联网端到端的业务感知。
主动探针可以测量每段路径的质量以及辅助网络中的故障。
3端到端的移动互联网客户感知的优化实践端到端的移动互联网客户感知优化不但可以提升移动互联网业务的质量,还可以给移动互联网客户提供更好的业务体验。
现实中的移动互联网业务包括“云”、“管”、“端”三个环节,以往对于电信运营企业而言,只是单纯的注重对“管”的优化工作,忽视了对“云”的优化,随着时代的发展,对“云”、“管”、“端”三个环节要同样重视。
3.1“云”优化①对于电信运营企业而言,要对分散在全国各地的热点网站进行优化,在全国各地的移动互联网出口设置内容缓存设备,以此来对互联网内容进行缓存。
②还可以和相关的互联网公司一起来开展路由优化的工作。
这样做,也可以明显的提升移动互联网业务的质量。
通过相关的实践工作表明,对“云”的优化可以有效的提升移动互联网客户的业务感知质量。
另外,要充分的了解移动互联网客户的实际需求,电信运营企业还应该建立和移动互联网客户的沟通机制,以移动互联网客户的实际需求为依据来进一步的完善日常的优化实践工作,从而提升移动互联网业务的质量。
3.2“管”优化对于电信运营企业而言,“管”优化一直是其提升网络质量的最有效方式。
①建立相应的移动互联网客户感知平台,以此来对客户感知进行有效的监测和评价,以便于对客户感知差的区域实施专项优化。
②优化无线资源和无线回传网络。
这样做可以有效的提升移动互联网客户的业务感知。
3.3“端”优化移动终端对移动互联网客户感知的影响也是比较明显的,因此,对“端”的优化实践工作也是尤为重要的。
通过相关的调查表明,WAP业务比例过高是影响客户感知的一个重要因素,针对这一情况:①可以优化APN列表顺序设置,因为通常WAP业务比例过高可能与终端APN设置有关。
高速铁路GSM网络覆盖规划建设指导原则一、前言为满足高铁移动用户的通信需求,扩展中国移动GSM网络覆盖的广度和深度,增强用户感知、提升企业形象,遵照集团公司对高铁网络的覆盖要求,特拟定本指导原则。本指导原则适用于江苏境内时速达350公里以上铁路沿线GSM网络覆盖工程的规划和建设,请各市分公司遵照执行。本指导原则由中国移动通信集团江苏公司规划技术部、工程建设部负责解释。二、总体建设原则为确保建设高铁GSM精确网络,提高网络投资效益,高铁GSM网络覆盖工程将推行精确化建设工作,总体建设原则如下:(一)利用铁路带状分布的特点,建设专门覆盖高铁的带状网络,其无线设备及组网独立于周边大网,高铁用户只在专网内通信。(二)相比数字光纤直放站(GRRU),分布式基站具有输出功率高、稳定性高、故障率低、网管能力强的技术优势。综合考虑网络质量、投资、维护和优化情况后,高铁GSM专网全面引入支持小区合并功能的分布式基站设备。(三)严格按照规划方案开展选址建设工作,并充分利用现网资源,实施共建共享,低成本建设网络,提升投资效益。(四)以提升网络质量和性能,提升客户感知为出发点,持续推进高铁网络的技术、工程创新工作。三、网络规划方案(一)组网原则选用支持小区合并技术的分布式GSM基站设备组建高铁GSM专网。相邻基站BBU集中设置在中心基站,普通末端覆盖站点只设置光纤拉远RRU,进行GSM无线覆盖。一般每个中心站带6-8个普通基站(沿线左右两侧分别带3-4个,以中心站为中心,星形或链形连接并采用共小区模式)。原则上中心站应尽量选择我公司现有GSM机房进行共址建设。高铁沿线火车站的候车室、站台必须采用室分系统覆盖,站台与专网基站使用同一厂家设备,并确保用户在站台处进出专网;同时,在郊区等区域设置后备专网入口,确保一旦出专网也能重新再进入专网。(二)站点选址原则为满足高速铁路各型号动车的覆盖,参考已有高铁的覆盖经验,高铁专网站点的选址要求如下:专网站点距离铁路的垂直距离要求在50米-200米范围内;站间距原则上要求在1公里左右;基站天线挂高宜高出铁轨路面15-20米。(三)发射点天线的架设方式发射点天线的假设方式有如下三种:以GSM网络为例,三种天线架设各有优缺点:方式A的站间距最小,需建设专网站点多,配套投资太大,不建议采用;方式B的无线RRU设备投入多,且网优灵活性差,如果局部覆盖欠佳,网优后期调整难度大,不建议采用;方式C推荐采用,主要其不仅投资最省,而且该方式对后期网优有一定的灵活性,如果局部地方覆盖欠佳,即可由方式C改为方式B,增强覆盖电平的同时,无需开展征地等工作。(四)频率设置为确保京沪、宁杭高铁专网质量,高铁专网频率与周边大网隔离,选取58-93共36个频点用于专网频点。频率配置CELL1 CELL2 CELL3 CELL4 CELL5 CELL6 CELL7 BCCH 84 78 92 87 81 89 84高铁两侧三层范围内的大网基站需增加1800小区、扩容1800M载频,将900M大网小区配置降至4载频及以下,以便于大网清频工作开展。(五)天线选型为了减少专网对周边公网的影响,建议距铁路垂直距离在150米内的专网站点采用21dBi窄波瓣高增益天线,具体参数如下:距铁路垂直距离超过150米的专网站点建议采用18dBi普通天线。(六)小区载波配置高铁专网信源小区的载频数根据拉远后的业务量综合测算。一般而言,车站专网小区要服务到站和登车的CRH乘客,建议采用8载频的容量配置;地市边界由于位置更新消耗大量的SDCCH资源,建议边界专网小区采用8载频的容量配置;其它专网小区专门为铁路CRH上的乘客服务,大部分情况只服务单列CRH,其载波配置建议采用6块。(七)小区合并规模高铁单方向每隔3分钟发1趟列车,按列车时速150-380公里计,两趟CRH间隔是7.5-19公里,专网小区的覆盖范围需要和同时覆盖的列车数相匹配。如果小区合并规模太小,则每小区的覆盖范围太小,重选和切换的次数过多,脱网和掉话的机会也更多,小区载波的容量利用不足;如果小区合并规模太大,则每小区的覆盖范围太大,同时覆盖的列车数过多,小区容量面临不足。建议平均1个BBU下挂6-8个RRU,单小区覆盖距离在5.4公里-7.2公里。(八)位置区规划考虑跨地市计费的调整实施难度过大,建议按地市设置LAC区。四、基站配套建设原则(一)总则根据其在高速铁路覆盖专网中的属性及未来潜在发展要求,从宏基站物理形式上,可分为以下几种情况。1、与我公司现有GSM机房共址站点。2、与电信、联通公司现有GSM/WCDMA/CDMA2000机房共址站点(共享)。3、与电信、联通公司移动机房共址新建站点(共建)。4、我公司自有新建机房站点(普通新建)。5、无机房站点(仅有铁塔及电源等必须的配套设备)。其中无机房站点的情况,仅适用于只设置GSM RRU的末端覆盖基站。(二)有机房基站建设原则1、BBU挂墙安装方式(1)设备挂墙安装时,安装墙体应为水泥墙或砖(非空心砖)墙,且具有足够的强度方可进行安装。(2)设备安装位置应便于线缆布放及维护操作且不影响机房整体美观,墙面安装面积应不小于600mm×600mm,设备下沿距地宜为1.4~1.6m。(3)设备安装可以采用水平安装方式或竖直安装方式。(4)设备安装时,设备上下左右应该预留不少于50mm的散热空间,前面要预留600mm的维护空间。2、BBU 19英寸标准落地机柜安装方式(1)机房内具备可供设备安装的19英寸标准机柜,且机柜内空间能够满足所需安装BBU的高度和深度要求,方可采用机柜安装方式。(2)BBU安装时,上下应该保留1U的空间用于设备散热。(3)BBU的接地由19英寸标准机柜统一提供即可。3、RRU及天线安装方式(1)RRU采用抱杆安装时应该选用符合土建要求的抱杆。(2)RRU在塔上安装时,应做好加固工作,确保稳定可靠受力。(3)天线安装时,天线支架顶端应高出天线上安装支架顶部200mm。天线支架底端应比天线长出200mm,以保证天线安装的牢固。(4) 应因地制宜选择合理的天馈支撑结构方案,需利旧的塔架,应根据工艺需求进行结构承载复核,不能盲目使用。(5)在满足设计挂高要求且铁塔平台可选择的情况下,原则上GSM天线宜安装在下一层平台,留较高平台给未来可能使用的3G/4G及其他业务天线。4、传输系统建设模式(1)中心基站传输接入采用光缆接入方式,选择PTN设备承载,结合PTN网络的整体部署策略,充分利用已建PTN传输资源。(2)具体PTN设备所需带宽,由中心站自身及所带远端站的GSM业务及其他业务需要决定。5、电源系统建设模式1.各站均配置1套交直流供电系统,分别由1台交流配电箱(屏)、1套-48V高频开关组合电源(含交流配电单元、高频开关整流模块、监控模块、直流配电单元)和2组阀控式蓄电池组组成。2.各站要求引入一路不小于三类的市电电源,站内交流负荷应根据各基站的实际情况按10kW~30kW考虑。3.交流配电箱的容量按远期负荷考虑,输入开关要求为100A,站内的电力计量表根据当地供电部门的要求安装。4.各站蓄电池组的后备时间按如下原则配置:市区基站的蓄电池后备时间≥3h,城郊及乡镇基站的蓄电池后备时间≥5h。(注:应结合基站重要性、市电可靠性、运维能力、机房条件等因素确定)5.各站高频开关组合电源机架容量均按600A配置,整流模块容量按本期负荷配置,整流模块数按n+1冗余方式配置。6.电源电缆均应采用非延燃聚氯乙稀绝缘及护套软电缆。7.基站防雷系统、接地系统的设置应符合中国移动通信企业标准《基站防雷与接地技术规范》(QB-W-011-2007)和《通信局(站)防雷与接地工程设计规范》(YD5098-2005)的要求。8.无线设备厂家应在RRU电源线两端配置浪涌保护器,屏蔽电缆的金属层在进入机房前应进行防雷接地,现有GSM RRU设备具体方案可参考工信部工信厅科函[2008]86号《通信局(站)在用防雷系统-TD-SCDMA 基站防雷接地检测指导书》的规定要求。9.独立新建基站地线系统应采用联合接地方式,即工作接地、保护接地、防雷接地共设一组接地体的接地方式。在机房内应至少设置1个地线排。6、RRU供电方案1.当RRU距BBU的线缆长度≤100m时,用标配的供电电缆从信号源处的-48V直流电源为其供电。2.当RRU距BBU的线缆长度>100m且≤300m时,可根据现场条件考虑如下三种供电方式:(1)使用信号源处的-48V直流电源为RRU供电,标配的供电电缆不能满足电压降的要求时,可加粗供电电缆线径;(2)线缆数量较多或敷设路由困难时,就近为RRU单独配置小型-48直流电源系统设备;(3)若电源设备安装位置受限或RRU为级联方式时,可采用从信源处引接经-48V/~220V逆变器逆变后的交流电源为RRU供电,逆变器要求为N+1工作方式。(三)、无机房基站建设原则短期内只有GSM高铁覆盖需求的非中心站,可选择无机房模式进行建设。无机房基站只需解决铁塔、与中心站的光纤连接、RRU/天线安装、本地RRU供电等问题。1、光纤连接采用光纤直连模式,无须光传输设备。为提高传输保障能力,原则上每个远端站应与归属中心站BBU采用星形光纤连接模式。如光纤资源受限或BBU侧光纤接口受限,可采取串行级联模式。2、RRU/天线安装同有机房基站。3、本地RRU供电可选择室外型电源柜(例如内置交直流开关电源、100AH左右的小型铁锂电池等)。具体室外型电源柜的安装模式,可因地制宜考虑。原则上应兼顾工程便利、安全可靠、维护要求、节约成本等因素。。