高速铁路(公路)GSM网络设置规范
- 格式:pptx
- 大小:664.49 KB
- 文档页数:20
《铁路技术管理规程》(高速铁路部分)第三章信号、通信一般要求第58条为保证信号、通信设备的质量,应设电务段、通信段等电务维修机构。
电务段、通信段管辖范围应根据信号、通信设备等条件确定。
第59条电务维修机构应具备设备检修、测试场所,配置相应的仪器仪表、工装机具以及交通工具、应急通信设备等。
在动车组、机车和轨道车的检修地点应设列控车载设备、机车信号、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)及车载无线通信设备等的检修与测试场所。
铁路电务设备维护工作应按设备技术状态进行维修,并按周期进行中修和大修。
电务车载设备结合动车组、机车和轨道车各级检修修程,同步进行检修。
第60条对设有加锁加封的信号设备,应加锁加封,必要时可设置计数器,使用人员应负责其完整。
对加封设备启封使用或对设有计数器的设备每计数一次时,使用人员均须在《行车设备检查登记簿》内登记,写明启封或计数原因。
加封设备启封使用后,应及时通知信号部门加封。
使用计算机技术控制的信号设备实现加锁加封功能时,应使用密码方式操作。
第61条集中联锁车站和自动闭塞区段应装设信号集中监测系统,对信号设备运用状态进行实时监测,实现故障及超限告警。
第62条信号、通信设备及机房,应采取综合防雷措施,设置机房专用空调。
信号及通信设备,应装有防止强电及雷电危害的浪涌保护器等保安设备,电子设备应符合电磁兼容有关规定。
第63条列控车载设备、机车信号设备、列车运行监控装置(LKJ)、轨道车运行控制设备(GYK)和车载无线通信设备等的电源,均应取自车上直流控制电源系统,直流输出电压为110 V时,电压波动允许范围为-20%~+5%。
信号第64条信号机按用途分为进站、出站、通过、进路、复示、调车信号机等。
第65条各种信号机及表示器,在正常情况下的显示距离:1.高柱进站、高柱通过信号机,不得小于1 000 m;2.高柱出站、高柱进路信号机,不得小于800 m;3.调车、矮型进站、矮型出站、矮型进路、矮型通过、复示信号机,引导信号及各种表示器,不得小于200 m。
科技运[2008]168号CTCS-3级列控系统GSM-R网络需求规范(V1.0)2008年12月修改记录目录修改记录 (I)目录 (2)1................................................................................... 引言41.1目的和范围 (4)1.2缩略语 (4)1.3参考文献 (6)2..................................... CTCS-3级列控系统与GSM-R网络之间的界面73..................................... CTCS-3级列控系统对GSM-R网络的业务需求83.1数据承载业务 (8)3.1.1数据承载业务 (8)3.1.2数据承载业务特性 (8)3.2补充业务 (8)3.2.1补充业务 (8)3.2.2补充业务类型 (8)3.3铁路特殊业务 (9)3.4需要特殊说明的问题 (9)4................................................................. GSM-R网络Q O S要求104.1一般规定 (10)4.2网络注册时延 (10)4.2.1定义 (10)4.2.2指标要求 (10)4.2.3其它说明 (10)4.3连接建立时延 (11)4.3.1定义 (11)4.3.2指标要求 (11)4.3.3其它说明 (11)4.4连接建立失败概率 (11)4.4.1定义 (11)4.4.2指标要求 (11)4.5用户数据帧传送时延 (12)4.5.1定义 (12)4.5.2指标要求 (12)4.5.3其它说明 (12)4.6链路断开(失效)概率 (12)4.6.1定义 (12)4.6.2指标要求 (12)4.7传输干扰 (13)4.7.1定义 (13)4.7.2指标要求 (14)5................................................................. GSM-R网络设计要求155.1GSM-R网络与RBC 互联的要求 (15)5.1.1MSC与RBC的连接方式 (15)5.1.2MSC与RBC的接口设置 (15)5.2无线覆盖要求 (15)5.2.1无线覆盖指标要求 (15)5.2.2无线覆盖范围要求 (16)5.2.3越区切换要求 (17)5.3无线小区容量要求 (17)5.3.1RBC切换区无线容量要求 (17)5.3.2枢纽和大站无线容量要求 (18)1.引言1.1目的和范围1.1.1.1为明确CTCS-3级列控系统与GSM-R网络之间的接口界面,并为承载CTCS-3级列控业务的GSM-R网络设计、测试及产品研发提供技术依据,特制订本规范。
GSM针对高铁场景的覆盖方案前言大规模的高铁建设,给人们工作生活带来方便的同时也对移动通信提出更高的要求。
高铁正逐步成为商务及旅游出行人士必选的交通工具,由于高铁行驶速率达到300km/h,传统的GSM组网方式已不能满足移动语音及数据业务需求,这就给GSM网络覆盖提出新的问题。
一、GSM高铁覆盖存在的主要问题1、GSM与GSM-R频点三阶互调干扰GSM-R930-935MHz为铁路专用频段,GSM任何系统都是非线性系统,两个信号F1和F2经过该系统后都会有新的频率分量产生,所以为了减少互调对GSM-R的影响,就需要把互调产物尽量避免落入GSM-R带内,但考虑到互调阶数越高互调产物的电平就越小,且随着网络越来越复杂,要避免所有互调产物几乎不可能,所以实际操作中一定要避免三阶互调落入GSM-R带内。
由于GSM-R 在GSM低频段,频点在-25~0之间(含),则说明三阶互调落在了GSM-R频点内,这就需要在高铁小区频点规划时尽量规避三阶互调。
由于GSM频点有限,以及三阶互调限制,原有的GSM频点规划方案已不能应用于高铁频点规划。
2、高速移动下的多普勒频移多普勒频移是指接收到的信号波长因为信号源和接收机相对运动而产生附加频移。
频移大小和运动速度成正比,运动速度越快频偏越大。
当频偏移动过大时,会导致解调符号产生较大的相位偏差,从而导致数据的误码率升高,基站与移动台之间的频率同步出现问题。
多普勒频移的存在,导致基站和手机相干解调性能下降,300km/h运动速度下900M频段终端等效衰落1dB,2000M频段等效衰落4dB。
因为对于移动台是一倍的多普勒频移,而对于基站是二倍的频移。
故多普勒频移对移动台的影响小于对基站的影响。
移动台在靠近和远离基站时,合成频率会在中心频率上下偏移。
当移动台驶向基站方向时,频率增加,波长变短,频偏减小;当移动台远离基站方向时,频率降低,波长变长,频偏偏大。
列车在高速移动下,移动台与基站的距离频繁改变,这使得频移现象非常严重。
高速铁路调度通信系统摘要:高铁通信系统是高铁的神经系统,是高铁重要的关键技术,是高铁发展的重要推动力。
高速铁道通信系统各子系统包括:传输系统、电话交换及接入系统、数据通信系统、专用移动通信系统、调度通信系统、会议电视系统、应急通信系统、综合网管系统、时钟及时间同步系统、通信电源、电源及环境监控系统、综合视频监控系统、通信防雷等系统。
调度通信系统是高铁通信系统的核心之一,是指挥运输的重要基础设施,对铁路运输指挥与安全生产起着至关重要的作用。
为适应在高速铁路GSM-R大环境下铁路有线、无线调度通信统一的要求,GSM-R调度通信系统中的固定用户接入系统(FAS),得到了广泛的应用。
关键词:高速铁路通信系统调度通信系统FASAbstract: the high speed rail communication system is high iron nervous system, is the key technology of high iron important, is an important impetus of the development of the high iron. High speed railway communication system each subsystem including transport system, telephone exchange and access system, data communication system, special mobile communication system, scheduling communication system, meeting TV system, emergency communication system, integrated network management system, clock and time synchronization system, communication power supply, power supply and environment monitoring system, integrated video monitoring system, the lightning protection system such as communication. Scheduling communication system is the core of high iron communication system, was one of the important infrastructure command transportation, railway transportation command and safety production play a crucial role. In order to adapt to the high speed railway GSM-R environment railway cable, wireless scheduling communication uniform requirements, GSM-R scheduling communication system of fixed user access system (FAS), a wide range of applications.Keywords: high speed railway communication system scheduling FAS communication system一、铁路调度通信的发展简介高速铁道通信系统把通信技术、计算机及网络技术结合在一起,构成了一个综合性的通信系统。
78科技时空 Technical Horizon中国电信业CHINA TELECOMMUNICATIONS TRADE高速铁路GSM-R 关键指标覆盖优化是GSM 无线网络优化的核心之一。
GSM-R 系统承载CTCS-3级列控数据传送业务,场强覆盖应符合规定,95%的时间、地点概率条件下,最小可用接收电平Prmin 应高于-92dBm。
GSM-R 的网络服务质量全面反映了网络质量的好坏。
结合高铁C3线路联调联试来看,时速350公里的高速铁路对传输干扰时间、无差错传输两个指标要求极高,需要投入很大的人力物力。
覆盖和干扰问题是影响两个指标的关键因素,其原因类别及场景见表1。
干扰直接影响列控业务链路性能,会造成误码;基站覆盖异常,会导致切换位置不合理,发生错切、回切,这些都会影响指标达标。
表1 GSM-R 关键指标不达标原因及问题突出场景类别原因类别问题较为突出场景网内干扰1.直放站多径干扰2.网内同邻频干扰1.隧道区段2.交叉并线区段外网干扰1.运营商基站同邻频干扰2.宽频(阻塞)干扰靠近市区铁路覆盖不合理1.基站覆盖异常、天线角度产生变化2.参数设置不合理1.平原区段2.枢纽地区GSM-R 关键指标不达标优化方案平原区段无线网络覆盖优化平原地区过覆盖情况较为常见,过量覆盖会350公里时速下高铁线路GSM-R 无线网络优化高铁线路动车组列车运行途中发生C3无线超时、降级可能会导致列车晚点,降低运输效率,从而影响铁路运输秩序。
作为承载C3的通信网络,GSM-R 无线网导致的超时、降级问题需要重点关注。
从近年来的大数据分析结果看,湖北武汉铁路局管内高铁线路GSM-R 无线网存在基站覆盖情况变化、无线网络运行质量不稳等问题。
实现已开通高铁350公里时速常态化运营,涉及电务、通信、工务、供电等各专业协同调整。
其中,通信专业最主要的就是对GSM-R 服务质量进行优化调整,以下将结合郑武高铁达速的实施经验就网络服务质量优化进行研究探讨。
高铁GSM网络【摘要】文章基于专网优化思路,阐述了中国移动泰安分公司针对时延干扰、功率输出、DRU环路保护、供电和防雷、远程监控、防盗等展开的高铁GSM通信专网优化和维护整改活动,提升了高铁沿线的整体覆盖和通信质量,并改善了设备维护中的监控及时性和运行稳定性。
【关键词】GSM GRRU DRU 专网优化收稿日期:2011-11-17京沪高速铁路于2011年开通运营,给沿线各地的发展带来了新的机遇,也给高铁的GSM移动通信提出了更高要求。
京沪高速铁路全长约1318km,目前运营时速300km,地形和通信环境复杂,给网络覆盖和优化带来了难题,影响实际通信质量的隐性问题多,日常维护中面临的监控、防盗、供电、故障抢修、设备运行不稳定等问题也很突出。
中国移动泰安分公司对高铁通信覆盖采取了专网方式,全程使用GRRU(GSM Digital Remote RF Units,数字光纤射频拉远)设备,并采用多DRU(Digital Remote RF Unit,数字射频远端单元)共信源小区的方式,在光缆路由和组网方式中充分考虑提高设备运行的稳定性,日常维护中针对设备隐性问题、供电、防盗等展开改善和保障。
本文现就公司在专网建设、优化和日常维护中存在的问题及经验进行总结。
1 专网优化思路1.1 实现连续覆盖的专网方案针对高铁的通信特点,利用专网重点解决:连续覆盖、降低干扰以及减少切换。
高铁用户通信时容易发生切换混乱、无法接通、掉话等现象,CMCC对铁路测试的手机接收电平值要求为-94dBm,但多次DT测试的结果表明高铁车厢内手机接收电平达到-90dBm是保证正常通话的最低要求,在部分通信性能要求较高的路段应提升至-85dBm。
若高铁通信专网的小区间重叠覆盖区不够,将导致小区重选和切换混乱。
因此,需要充分考虑地形地物的影响和行驶速度,确保有足够的小区重叠覆盖区域,这是首要因素。
小区重选规则中,手机测量到邻小区C2值高于服务小区C2值且维持5s,将发起小区重选;若在跨位置区,则邻小区C2值必须高于服务小区C2值与CRH设置值的和,并且维持5s,手机将发起小区重选和位置更新;小区切换的时间取决于SACCH(Slow Associated Control Channel,慢速随路控制信道)的设置值(通常设为8),估算时长小于5s。
高速铁路GSM -R 无线通信网络的优化设计□段清豪中国铁建电气化局集团北方工程有限公司互联网+通信nternet Communication _________________________,______________________________________【摘要】GSM -R 覆盖整体上呈现出线状,导致列车在实际行驶中经常出现频繁切换网络现象,严重影响了列车行驶速度,为了解 决这一问题,现针对高速铁路无线通信网络关键问题,根据铁路数字移动通信系统GSM -专业人员网络结构及工作原理,从直放站 优化方案、无线通信网络覆盖优化、越区切换优化三个方面入手,为实现对高速铁路GSM -R 无线通信网络的科学设计提出具有建 设性的建议。
结果表明:无线通信网络优化措施具有非常高的可行性和有效性,不仅解决了高速铁路无线通信网络小尺度衰落、越区 频繁切换问题,还提高了无线通信网络性能,为乘客和司机提供了良好、稳定、可靠的无线通信网络环境,满足人们的无线通信需求。
【关键词】高速铁路GSM -R 无线通信网络优化设计随着社会经济水平的不断提高和信息时代的不断发展, 高速铁路行业取得了良好的发展,而这得益于GSM -R 无线 通信网络的出现和应用,但是,一旦GSM -R 无线通信网络 没有得到科学优化和设计,将会直接影响高速铁路通信水平, 给乘客或者司机与外界沟通、通信造成了很大的不便,因此,为了提高高速铁路通信水平,如何科学优化设计GSM -R 无 线通信网络是专业人员必须思考和解决的问题。
一、高速铁路无线通信网络关键问题1.1小尺度衰落小尺度衰落主要是指无线通信网络信号在短时间传输期 间或者短距离传输期间,出现快速衰落现象,导致小尺度路 径出现严重的损耗问题m ,这种小尺度衰落出现的根本原因 是统一传输信号沿着多条路径进行传输,由于受接收机信号 的干涉和影响而出现的。
接收机天线根据多径波信号强弱, 在尽可能缩小传输时间的基础上,实现对传播信号带宽的科 学控制。
科技运[2009]19号CTCS-3级列控系统与GSM-R网络接口规范(V1.0)2009年2月目录修改记录 (1)目录 (2)1.引言 (4)1.1目的和范围 (4)1.2术语和定义 (4)1.3缩略语 (4)1.4参考文献 (6)2.CTCS-3级列控系统与GSM-R网络之间的界面 (8)3.I FIX接口 (8)3.1接口定义 (8)3.1.1一般规定 (8)3.1.2接口协议栈 (8)3.2物理、电气及机械特性 (9)3.3I FIX接口上的数据传输 (9)3.4I FIX接口上的信令传输 (9)3.4.1应符合的规范 (9)3.4.2信令流程 (10)4.I GSM-R接口 (18)4.1接口定义 (18)4.1.1一般规定 (18)4.1.2接口操作模式 (19)4.2物理、电气及机械特性 (19)4.3I GSM-R接口上的数据传输 (21)4.4I GSM-R接口上的信令传输 (22)4.5AT命令 (24)4.5.1AT命令定义 (24)4.5.2AT命令语法 (24)4.5.3TE-TA接口命令 (24)4.5.4呼叫控制命令 (26)4.5.5通用DCE控制命令 (32)4.5.6网络业务相关命令 (32)4.5.7基本呼叫流程 (33)5.编号方案 (35)1.引言1.1目的和范围1.1.1.1为明确CTCS-3级列控系统与GSM-R网络之间的接口要求,为CTCS-3级列控产品的研发、测试、互联互通及承载CTCS-3级列控业务的GSM-R网络设计、测试提供技术依据,特制订本规范。
1.1.1.2本规范规定了CTCS-3级列控系统与GSM-R网络之间各接口的定义、物理、电气、机械特性及各接口的数据传输、信令流程等内容。
1.2术语和定义1.2.1.1移动终端MT0:MT0是完整的移动台,它包括数据终端和适配功能,但不提供外部终端接口。
1.2.1.2移动终端MT1:MT1提供外部终端接口,该接口遵循ISDN用户网络接口规范中的GSM建议子集。
高速铁路长大隧道GSM-R网络冗余组网方案分析袁廷瑞1,熊 洁1,路晓彤2,焦晓辉2(1.中铁二院工程集团有限责任公司,成都 610031;2.中国国家铁路集团有限公司工管中心,北京 100844)摘要:高速铁路长大隧道需要按照GSM-R冗余组网方案进行覆盖。
目前GSM-R网络可采用数字直放站与分布式基站作为数字中继设备,两种设备均有多种组网方案。
从故障应对能力、载频利用率、建设成本等多个角度开展分析,对比多种高速铁路隧道内GSM-R数字中继设备冗余组网方案,提出各种方案的适用范围和性能优劣。
关键词:GSM-R;组网;高速铁路;隧道;无线通信中图分类号:U285.21 文献标志码:A 文章编号:1673-4440(2024)01-0036-06Analysis of GSM-R Redundancy Networking Scheme forLong Tunnel of High Speed RailwayYuan Tingrui1, Xiong Jie1, Lu Xiaotong2, Jiao Xiaohui2(1. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, China)(2. Engineering Management Center, China State Railway Group Co., Ltd., Beijing 100844, China)Abstract: Long tunnels of high-speed railway need to be covered according to GSM-R redundancy networking scheme. At present, GSM-R network can use two kinds of digital relay equipment: digital repeater and distributed base station. Both of the equipment have a variety of networking solutions.This paper analyzes the fault response capability, carrier frequency utilization, construction cost and other aspects, compares various GSM-R digital relay equipment redundancy networking schemes in high-speed railway tunnels, and proposes the application scope and performance advantages and disadvantages of various schemes.Keywords: GSM-R; networking; high speed railway; tunnel; wireless communicationDOI: 10.3969/j.issn.1673-4440.2024.01.007收稿日期:2022-11-15;修回日期:2023-12-20第一作者:袁廷瑞(1994—),男,工程师,硕士,主要研究方向:铁路无线通信,邮箱:********************。
浅析高速铁路GSM-R覆盖与切换【摘要】本文介绍了高速铁路GSM-R的覆盖方式,分析了GSM-R越区切换的优化方法。
【关键词】高速铁路GSM-R 覆盖方式越区切换前言:近年来随着铁路运输的发展,高速铁路的运营,大大提升了铁路的运行速度。
高速铁路运行过程中,采用专用的移动通信GSM-R,以GSM Phanse2+为协议标准,承担调度、指挥任务,目的在于保证列车安全运行。
一、高速铁路GSM-R覆盖方式1.1单基站覆盖GSM-R系统中,包含多种覆盖方式,其中最为基本的即为单基站覆盖,在铁路沿线设置基站,安装定向天线时,与铁路线方向相同,沿着铁路线,形成椭圆形小区,实际的使用需求应能够满足无线场强充分覆盖,一个GSM-R小区包含一个基站,每个基站上安装的定向天线数量为2根,经功率合成器,合成2根定向天线,之后与基站内部的收发信机相连接,保证列控通信业务的顺利开展[1]。
1.2冗余覆盖冗余覆盖也是GSM-R无线覆盖中常用的方式,分为两种:一种为同站址冗余覆盖。
在同一站点上并列设置两个基站,这两个基站完全相同,覆盖的地理区域也相同,形成两个一模一样的GSM-R无线网络。
设置单个基站时,方法相同于单基站覆盖。
对于同站址冗余覆盖来说,互为冗余形成的两个GSM-R无线网络,当其中一个网络出现故障导致通信无法进行时,移动台即可开展网络切换操作,启用另一个相同的网络,保证通话及数据传输的正常进行[2];另一种为交织站址冗余覆盖,在同站址冗余覆盖方式中,容灾问题并未考虑,?榱私饩稣庖晃侍猓?组建出交织站址形式,设置冗余基站时,以原有相邻基站为基础,在其中间部位设置,相当于交织的无线网络设计了两套,而且两套相互独立,业务可由双层网络同时分担,执行通信时,可在一层网络中锁定,避免GSM-R 停止通信的问题。
1.3频率分配冗余覆盖中,方案不同,频率分配也存在差异。
频率分配效果良好,能提升网络质量。
GSM-R网络中,工作频段为900MHz,上行频段为885~889MHz,下行频段为930~934MH,频率带宽4MHz。
国家铁路局发布《铁路数字移动系统(GSM-R)设计规范》佚名
【期刊名称】《轨道交通》
【年(卷),期】2015(000)012
【摘要】近日,国家铁路局发布《铁路数字移动系统(GSM-R)设计规范》(TB10088-2015),自2016年3月1日起实施。
GSM—R数字移动通信系统自2006年在我国青藏线、大秦线、胶济线开通后,相继在京津城际、武广高铁、京沪高铁、哈大高铁等多条铁路线上开通运营,为运输调度指挥、列车控制及运营管理信息等提供了安全稳定的通信网络平台。
【总页数】1页(P21-21)
【正文语种】中文
【中图分类】U29-39
【相关文献】
1.国家铁路局关于发布《铁路机务设备设计规范》等35项铁路工程建设标准英文译本的公告 [J], 国家铁路局
2.国家铁路局发布《铁路数字移动系统(GSM-R)设计规范》 [J], 国家铁路局网站
3.国家铁路局发布城际铁路设计规范和2项高速铁路验收技术规范英文译本 [J], ;
4.国家铁路局发布《铁路数字移动系统(GSM-R)设计规范》 [J],
5.国家铁路局发布《高速铁路设计规范》《城际铁路设计规范》信号条款局部修订[J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。