运动生理学 骨骼肌
- 格式:docx
- 大小:37.91 KB
- 文档页数:3
运动生理学可出问答题的章节(王瑞元2002年)重点章节1、3、10非重点章节6、8、9、12、13、16(9、12见论述题章节)运动生理学研究任务:在对人体生命活动规律有了基本认识的基础之上,揭示体育运动对人体机能影响的规律及机理、阐明运动训练、体育教学和运动健身过程中的生理学原理、指导不同年龄、性别和训练程度的人群进行科学的运动锻炼、以达到提高运动水平,增强全民体质,延缓衰老,提高工作效率和生活质量的目的。
第一章骨骼肌机能1、神经—肌肉接头的兴奋传递当动作电位延神经纤维传到轴突末梢时,引起轴突末梢处的接头前膜上的钙离子通道开放,在钙离子的作用下,突触小泡将乙酰胆碱释放到接头间隙。
乙酰胆碱通过接头间隙到达接头后膜后和接头后膜上的特异性乙酰胆碱受体结合,因其接头后膜上的钠、钾离子通道开放,使钠离子内流、钾离子外流,结果使接头后膜处的膜电位幅度减小,产生终板电位。
当终板电位达到一定幅度时,可引发肌细胞膜产生动作电位,从而使骨骼肌细胞产生兴奋。
2、肌丝肌丝滑行学说在调节因素的作用下,肌小节中的细肌丝在粗肌丝的带动下向A带中央滑行,相邻的Z线相互靠近,使肌小节长度变短,导致肌原纤维肌纤维以致整块肌肉的收缩。
3肌纤维的兴奋—收缩耦联过程1.兴奋通过横小管系统传到肌细胞内部;横小管是肌细胞膜的延续,动作电位可沿着肌细胞膜传导到横小管,并深入到三联管结构。
2.三联管处钙离子释放并与肌钙蛋白结合引起肌丝滑行;横小管膜上的动作电位可引起与其邻近的终末池膜及肌质网膜上的大量钙离子通道开放,钙离子顺着浓度梯度从肌质网内流入胞浆,肌浆中钙离子浓度升高后,钙离子与肌钙蛋白亚单位C结合时,导致一系列蛋白质的结构发生改变,最终导致肌丝滑行。
3.肌质网对钙再回收:肌质网膜上存在的钙泵,当肌浆中的钙浓度升高时,钙泵将肌浆中的钙逆浓度梯度转运到肌质网中贮存,从而使肌浆钙浓度保持较低水平,由于肌浆中的钙浓度降低,钙与肌钙蛋白亚单位C分离,最终引起肌肉舒张。
运动生理学重点总结第一章骨骼肌的功能一、名词解释1.肌小节:两条Z线之间的结构,是肌纤维基本的结构和功能单位。
2.神经—肌肉接头:兴奋由神经传到肌肉的结构装置。
3.运动单位:一个X运动神经元和受其支配的全部肌纤维所组成的最基本的肌肉收缩单位。
二、简答题1. 简述肌肉兴奋收缩偶联的过程?答:肌细胞膜电变化为特征的兴奋过程和以肌丝滑行为基础的收缩之间的中介过程:(1)肌膜产生AP(动作电位),由横管传到三联管;(2)肌浆网中Ca2+的释放,使终池膜上的钙通道开放,终池内的Ca2+顺浓度梯度进入肌浆,触发肌丝滑行,肌细胞收缩;(3)肌质网对Ca2+的再回收,肌肉舒张。
2.简述骨骼肌收缩舒展的分子结构?答:兴奋——收缩耦联;肌丝滑行;骨骼肌舒张机制。
3.简述骨骼肌的收缩形式及相互间的区别?答:收缩形式:(1)向心收缩——肌肉收缩时,长度缩短的收缩。
(2)等动收缩——在整个关节运动范围内肌肉以恒定的速度,且肌肉收缩时产生的力量始终与阻力相等的肌肉收缩。
(3)离心收缩——肌肉在收缩时,肌力小于阻力,长度变长的收缩。
(4)超等长收缩——骨骼肌工作时光做离心式拉长,继而做向心式收缩的一种复合式收缩形式。
区别:同一块肌肉,在收缩速度相同的情况下,离心收缩可产生最大的肌力。
缩短收缩对机体主要起加速作用,拉长起减速作用,等长收缩起、、固定姿势作用。
4.简述肌纤维的分类及特点?答:(1)按收缩速度分类:快肌纤维、慢肌纤维(2)按肌纤维的颜色:白肌纤维、红肌纤维如果结合收缩速度来分:快缩白、快缩红、慢缩红(3)按肌肉收缩及代谢特点:快缩---糖酵解型、快缩氧化---糖酵解型、慢缩氧化型形态特点:快肌纤维直径较粗,含较多收缩蛋白,肌浆网也较发达。
快肌纤维有较大的神经元支配,神经纤维较粗,且传导速度较快。
慢肌纤维的毛细血管网较丰富。
慢肌纤维有较多的肌红蛋白,所以颜色呈红色。
慢肌纤维有较多的线粒体,且体积较大。
代谢特征:慢肌纤维中氧化酶活性高,有氧代谢能力强。
骨骼肌形态和机能研究方案
一、研究的提出及意义
每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布。
在躯体内,肌肉(骨骼肌)是使骨骼运动的动力器官,全身骨骼肌有600块左右,约占体重的40%左右。
每块肌肉都由肌腹和肌腱组成。
肌腱附着于骨,起固定的作用,无收缩能力,肌腹有收缩能力。
有些肌肉跨过关节附着在组成关节的骨上,肌肉收缩可以促使关节运动。
由于肌肉分布部位的不同(如附着在骨的前面或后面,外侧或内侧等),可以引起关节不同方向的活动。
此外,骨骼肌在体育运动中起到决定性的作用,所以对骨骼肌形态与机能的研究对提高运动成绩和发展体育运动有很大的帮助。
二、研究目的与方法
通过对骨骼肌的解剖和观察了解骨骼肌的基本形态,和运动特点。
通过显微镜下对骨骼肌形态的观察了解肌肉的微观形态和基本结构。
也可在不同的运动状态下,对肌肉进行活体检验,观察不同运动状态下肌肉的机能状态。
1.在解剖实验室里观察解离出的骨骼肌的外观形态。
观察骨骼肌宏观状态下的基本形态和不同骨骼肌的运动特点。
2.将骨骼肌骨骼肌薄片的标本放置在显微镜下观察肌纤维的基本机构。
了解骨骼肌微观状态下的形态。
3.将运动状态下的骨骼肌,安静状态下的骨骼肌,运动后的骨骼肌等不同状态下的骨骼肌进行活检观察,了解骨骼肌在不同状态下的运动特点。
三、预期结果
通过宏观微观的观察我们能了解到骨骼肌的基本形态,观察到不同类型的肌纤维,了解到不同肌肉的工作方式。
在分组观察中能看到肌纤维在不同的运动状态下的变化。
这些观察结果为通过骨骼肌研究提高运动成绩奠定了基础。
第三篇运动生理学绪论(一)运动生理学的研究对象、目的和任务(二)生命的基本特征(三)人体生理机能的调节第一章骨骼肌机能(一)肌肉收缩的原理1 神经肌肉接头的兴奋传递2 肌肉收缩的滑行学说3 肌纤维的兴奋-收缩偶联(二)肌肉收缩的形式1 向心收缩2 等长收缩3 离心收缩(三)骨骼肌不同收缩形式的比较1、力量2、肌肉酸疼(四)肌肉收缩的力学特征1 张力与速度的关系2 肌肉力量与运动速度的关系3 肌肉力量与爆发力1 形态特征2 生理特征3 代谢特征(六)骨骼肌纤维类型与运动的关系1 运动员的肌纤维类型2 运动训练对骨骼肌纤维的影响(七)肌电的研究与应用第二章血液(一)血液概述1 体液2 血液组成3 内环境的概念及生理意义(二)血液的功能1 维持内环境相对稳定的功能2 运输功能3 调节作用4 保护和防御功能(三)渗透压和酸碱度(四)运动对红细胞和血红蛋白的影响1 运动对红细胞的影响2 运动对血红蛋白的影响第三章循环机能(一)心输出量和心脏做功1 心输出量及其影响因素2 心脏泵血功能及其评价(二)血管中的血压和血流1 动脉血压的成因及其影响因素2 静脉回流及其影响因素(三)运动对心血管功能的影响1 肌肉运动时血液循环功能的变化及调节2 运动训练对心血管系统的影响3 脉搏(心率)和血压测定在运动实践中的意义第四章呼吸(一)呼吸运动与肺通气1 呼吸的定义及全过程组成2 呼吸的形式3 肺通气功能的评价4 训练对通气功能的影响(二)气体的交换肺换气和组织换气(三)氧气的血液运输与氧解离曲线的意义1 氧气的血液运输2 氧解离曲线及其生理意义(四)呼吸运动的调节1 化学因素对呼吸的调节2 运动时呼吸的变化和调节(五)运动时的合理呼吸1 减小呼吸道阻力2 提高肺泡通气效率3 呼吸与技术动作相适应4 合理运用憋气第五章物质与能量代谢(一)肌肉活动与物质能量代谢的相关概念1 物质代谢2 能量代谢3 基础代谢率(二)糖代谢与运动能力1 人体的糖储备2 糖的分解供能(无氧酵解和有氧氧化)3 运动与补糖(三)脂肪代谢与运动1 人体的脂肪储备2 脂肪的分解供能3 脂肪代谢与运动减肥(四)蛋白质代谢与运动1 蛋白质在体内的代谢2 关于蛋白质的补充(五)水的代谢运动员脱水及其复水(六)人体运动的能量供应1 与能量代谢有关的几个概念2 人体三个供能系统的特征3 不同运动项目的能量供应4 运动时能耗量的计算及其意义5 体温调节第六章肾脏机能(一)运动性蛋白尿(二)运动性血尿第七章内分泌机能(一)激素及其生理作用1 激素的概念2 激素的生理作用(二)几种主要激素的生物学作用1 糖皮质激素与应激反应2 儿茶酚胺与“应急”反应3 生长激素4 胰岛素5 睾酮(三)兴奋剂及其危害1 兴奋剂与使用兴奋剂2 分类3 危害第八章感觉与神经机能(一)视觉器官1 视调节2 视野(二)听觉与位觉1 前庭器的感受装置与适宜刺激2 前庭反射与前庭机能稳定性(三)本体感觉1 肌梭2 腱梭(四)肌肉运动的神经调控1 牵张反射2 状态反射第九章运动技能(一)运动技能的形成(条件反射学说)1 运动技能的概念和分类2 运动技能的形成过程及其影响因素3 体育教学训练中应注意的问题第十章有氧、无氧工作能力(一)能量代谢有关的几个概念1 需氧量2 摄氧量3 氧亏与运动后过量氧耗(二)有氧工作能力1 最大摄氧量的概念、影响因素、测定方法及在运动实践中的应用2 乳酸阈概念、测定方法及在运动实践中的意义3 提高有氧工作能力的训练方法(二)无氧工作能力1 无氧工作能力的生理基础2 无氧工作能力的测试与评价3 提高无氧工作能力的训练方法第十一章身体素质(一)身体素质概述1 身体素质的概念2 发展身体素质的意义(二)力量素质1 力量素质的概念2 力量素质的生理基础3 功能性肌肉肥大4 力量素质的训练(三)速度素质1 速度素质的概念及分类2 速度素质的生理基础3 速度素质的训练(四)耐力素质1 有氧耐力的生理学基础及其训练方法2 无氧耐力的生理学基础及其训练方法(五)灵敏与柔韧素质1 灵敏素质2 柔韧素质第十二章运动过程中人体机能变化规律(一)赛前状态与准备活动1 赛前状态的概念及对运动能力的影响2 准备活动的生理作用(二)极点与第二次呼吸1 极点2 第二次呼吸3 影响极点与第二次呼吸的因素(三)稳定工作状态1 真稳定工作状态2 假稳定工作状态(四)运动性疲劳1 概念2 产生机制3 判断运动性疲劳的指标及方法(五)恢复过程1 恢复过程的一般规律(超量恢复)2 促进人体功能恢复的措施第十三章特殊环境与运动能力(一)高原环境与运动1 高原环境对运动能力的影响2 高原训练(二)热环境与运动1 预防热危害的原则2 补充体液的原则与方法第十五四章运动机能的生理学评定1 安静状态下运动效果的生理学评定2 定量负荷时运动效果的生理学评定3 极量负荷时运动效果的生理学评定4 运动结束后恢复效果的生理学评定第十五章儿童少年生长发育与体育运动(一)儿童少年的生理特点与运动1 儿童少年生长发育的一般规律1 运动系统2 氧运输系统(二)儿童少年身体素质的发展身体素质的发展规律和发展特点本篇参考书目1 王瑞元主编运动生理学北京:人民体育出版社,20022 邓树勋等主编运动生理学北京:高等教育出版社,20053 王步标等主编运动生理学北京:高等教育出版社,2006(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
运动生理学骨骼肌
运动生理学是研究人体在不同运动条件下的生理变化的学科,而骨骼肌是人体最常见的肌肉类型。
本文将介绍骨骼肌的结构和功能,并探讨骨骼肌在运动过程中的生理变化。
骨骼肌是构成人体肌肉系统的一种类型,在人体有约650个骨骼肌,占据人体总质量的40%左右。
骨骼肌由肌肉组织、筋膜、肌腱和神经组织组成。
骨骼肌负责人体的运动和姿势维持,并为身体提供力量和稳定性。
骨骼肌的主要功能是产生运动力和维持稳定性。
当人体需要进行运动时,神经系统通过神经冲动向骨骼肌发送信号,骨骼肌收缩,产生力量,并推动骨骼实现运动。
例如,当你举起重物时,你的大腿肌肉会收缩,使大腿抬起,并完成这个运动。
骨骼肌还参与到维持姿势的过程中。
例如,当你站立时,骨骼肌通过不断地微小收缩和放松来维持身体的平衡。
此外,骨骼肌还参与到稳定关节和保护内脏器官的过程中。
在运动过程中,骨骼肌会出现一系列生理变化。
首先,当神经系统接收到运动信号时,会向骨骼肌传递神经冲动,骨骼肌会收缩并产生力量。
这个过程被称为神经肌肉传递。
神经肌肉传递的速度和力量输出与运动经验和训练水平有关。
其次,在运动过程中,骨骼肌会经历肌肉纤维的收缩和放松。
肌肉纤维是骨骼肌的基本组成部分,由肌原纤维组成。
当骨骼肌收缩时,肌原纤维中的蛋白质会发生结构改变,使肌纤维变
短,从而产生力量。
当骨骼肌放松时,肌原纤维恢复原始结构,并回到正常长度。
此外,在运动过程中,骨骼肌还会经历能量的转化。
人体能量的主要来源是葡萄糖,当运动强度较低时,骨骼肌可以通过无氧代谢将葡萄糖转化为能量。
然而,当运动强度较高时,骨骼肌会转向有氧代谢,此时葡萄糖将被转化为乳酸、二氧化碳和水,并产生更多的能量。
最后,骨骼肌在运动过程中还会产生乳酸。
乳酸是无氧代谢的副产物,当运动强度较高时,无氧能量系统会被激活,从葡萄糖中产生乳酸。
乳酸的积累会导致肌肉疲劳,并限制骨骼肌的力量输出。
总结起来,骨骼肌是人体最常见的肌肉类型,为人体提供力量和稳定性。
在运动过程中,骨骼肌会出现一系列生理变化,包括神经肌肉传递、肌原纤维的收缩和放松、能量的转化以及乳酸的产生。
这些变化不仅揭示了骨骼肌在运动中的作用,也为运动生理学的研究提供了基础。
另一个值得注意的骨骼肌的生理变化是肌肉生长和适应性。
当骨骼肌经受到负荷或刺激时,它会适应这些刺激,并通过增长肌肉纤维的大小和数量来增强力量和功能。
这个过程称为肌肉肥大。
肌肉肥大是通过两种主要的生理机制实现的:肌原纤维的增长和新的肌原纤维的形成。
当骨骼肌经受到重力、阻力和负荷等刺激时,肌原纤维中的蛋白质会合成,这会导致肌原纤维的增长。
此外,骨骼肌中的干细胞也可以分化为新的肌原纤维,以
增加肌肉的大小和数量。
肌肉肥大的过程是由许多复杂的生物化学反应调节的。
当骨骼肌在负荷下工作时,一系列信号分子会被释放,促使细胞增殖和蛋白质合成。
这些信号分子包括生长因子、激素、细胞因子和核酸,它们可以调节基因的表达和蛋白质合成。
除了肌肉肥大,骨骼肌还会发生其他一些适应性变化。
例如,通过重复性的练习和训练,肌肉可以增加肌原纤维之间的结合和配合,提高肌肉力量和协调性。
此外,骨骼肌还可以增加肌肉耐力,以适应长时间的运动。
然而,如果停止训练或负荷刺激减少,骨骼肌会发生逆转。
肌肉肥大的过程是动态的,如果没有足够的负荷和刺激,肌肉纤维的大小和数量会减小。
这被称为肌肉萎缩。
肌肉萎缩可以是由多种因素引起的,包括年龄、疾病、缺乏运动等。
长时间的床榻休息、长期卧床和失重状态(如太空飞行员)也会导致骨骼肌萎缩。
肌肉萎缩不仅会减少肌肉力量和功能,还会影响整个身体系统的健康。
了解骨骼肌的结构和功能以及运动过程中的生理变化对于运动生理学研究和运动训练有着重要意义。
通过深入了解骨骼肌的生理学知识,我们可以更好地理解人体在运动中的适应性变化,为优化运动训练方法和预防运动伤害提供依据。
此外,骨骼肌的研究也有助于探索肌肉退化和治疗肌肉相关疾病的方法。