凸轮廓线设计方法的基本原理.
- 格式:ppt
- 大小:1.03 MB
- 文档页数:12
第三节 盘形凸轮廓线的设计当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。
凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。
本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。
一、凸轮廓线设计的基本原理图4-13 反转法设计凸轮廓线基本原理图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。
当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。
从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。
若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。
而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。
由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。
设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。
由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。
对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。
二、图解法设计凸轮廓线1. 移动从动件盘形凸轮廓线的设计(1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。
设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。
从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。
图4-14 尖端从动件盘形凸轮廓线设计依据反转法原理,具体设计步骤如下。
凸轮轮廓曲线设计的基本原理一、引言凸轮作为机械传动中的一种重要元件,其设计对于机械传动的性能具有重要影响。
凸轮轮廓曲线设计是凸轮设计中的一个关键环节,其目的是使得凸轮在运动过程中能够满足特定的运动要求。
本文将介绍凸轮轮廓曲线设计的基本原理。
二、凸轮运动学基础在介绍凸轮轮廓曲线设计之前,我们需要先了解一些凸轮运动学基础知识。
1. 凸轮类型根据不同的应用场景和工作要求,凸轮可以分为以下三种类型:(1)往复式凸轮:用于转换旋转运动为往复直线运动。
(2)回转式凸轮:用于转换旋转运动为旋转或者往复曲线运动。
(3)摆线式凸轮:用于将旋转运动转换为直线往复运动。
2. 凸轮参数在进行凸轮设计时,需要确定一些关键参数,包括:(1)基圆半径:即未加工前的圆形母体半径。
(2)偏心距:即摇杆中心线与凸轮中心线的距离。
(3)凸轮高度:即凸轮曲线顶点到基圆半径的距离。
(4)凸轮半径:即凸轮曲线顶点到凸轮中心线的距离。
3. 凸轮运动在运动学分析中,我们通常将凸轮视为一个旋转体,其运动可以分为两个方向:径向和周向。
根据不同的工作要求,我们可以通过调整凸轮参数来实现不同的运动方式。
三、凸轮轮廓曲线设计基本原理在进行凸轮设计时,我们需要根据具体的工作要求来确定其运动方式,并且通过合理的曲线设计来实现这种运动方式。
下面将介绍一些常用的凸轮曲线设计方法。
1. 圆弧法圆弧法是一种简单直观的凸轮曲线设计方法。
该方法将整个曲线分为多段圆弧,并且通过调整圆弧半径和连接处角度来控制曲线形状。
该方法适用于一些简单的往复或者回转式凸轮设计。
2. 三角函数法三角函数法是一种常用的摆线式凸轮设计方法。
该方法将凸轮曲线表示为三角函数的形式,通过调整函数参数来控制曲线形状。
该方法适用于一些要求高精度和高速度的摆线式凸轮设计。
3. 贝塞尔曲线法贝塞尔曲线法是一种基于数学模型的凸轮曲线设计方法。
该方法通过定义一些控制点,并且通过调整这些控制点来实现凸轮曲线的设计。
第六讲凸轮机构及其设计(一)凸机构的用和分一、凸机构1.成:凸,推杆,机架。
2.点:只要合适地出凸的廓曲,就可以使推杆获取各种期的运律,而且机构凑。
缺点:凸廓与推杆之点、接触,易磨,所以凸机构多用在力不大的合。
二、凸机构的分1.按凸的形状分:形凸柱凸2.按推杆的形状分尖推杆:构,能与复的凸廓保持接触,任意期运。
易遭磨,只适用于作用力不大和速度低的合子推杆:摩擦力小,承力大,可用于大的力。
不能够与凹槽的凸廓保持接触。
平底推杆:不考摩擦,凸推杆的作用力与从件平底垂直,受力平;易形成油膜,滑好;效率高。
不能够与凹槽的凸廓保持接触。
3.按从件的运形式分(1)往来直运:直推杆,又有心和独爱式两种。
( 2)往来运:推杆,也有心和独爱式两种。
4.依照凸与推杆接触方法不同样分:(1)力封的凸机构:通其他外力(如重力,性力)使推杆始与凸保持接触,( 2)几何形状封的凸机构:利用凸或推杆的特别几何构使凸与推杆始保持接触。
①等凸机构②等径凸机构③共凸(二)推杆的运动规律一、基本名:以凸的回心O 心,以凸的最小半径r0半径所作的称凸的基,r 0称基半径。
推程:当凸以角速度,推杆被推到距凸中心最的地址的程称推程。
推杆上升的最大距离称推杆的行程,相的凸角称推程运角。
回程:推杆由最位置回到初步地址的程称回程,的凸角称回程运角。
休止:推杆于静止不的段。
推杆在最静止不,的凸角称休止角;推杆在近来静止不,的凸角称近休止角二、推杆常用的运律1.性冲:推杆在运开始和止,速度突,加速度在理大将出瞬的无大,致使推杆生特别大的性力,所以使凸碰到极大冲,种冲叫性冲。
2.柔性冲:加速度有突,所以推杆的性力也将有突,不一突有限,所以引起有限冲,叫柔性冲。
3.掌握等速运律和等加速等减速运律的推程的速度、位移、加速度的方程:推杆运律——推杆在推程或回程,其位移s、速度 v 和加速度 a 随t 化的律。
3.1 多式运律:一般表示:s = C0+ C1δ+ C2δ2+⋯ + C nδn( 1)一次多式运律(等速运律)δδν推程:s=hδ/ δ0v = hω/δ0δa =0δ/ωh+∞δ-∞图7-7回程: s=h(1- δ / δˊ )v=- hδ ˊ0ω/图示为其推程运动线图。