催化裂化装置长周期运行-炼化装备处
- 格式:pdf
- 大小:8.49 MB
- 文档页数:56
锦西石化催化装置长周期运行情况总结一、锦西石化催化装置运行情况锦西石化分公司催化装置由北京石油设计院设计,公称能力为年处理裂化原料80万吨,1987年10月建成投产。
2003年9月,由华东勘察设计研究院设计,对装置进行了扩能改造。
此次改造采用两段提升管催化裂化技术,处理量为100万吨/年。
2005年3月,由上海鲁齐公司设计,采用MSR技术,对两段提升管进行了技术改造。
2007年8月1日催化装置计划停工检修,到2010年8月1日进行再次计划停工检修时,装置运行3年,期间出现4次非计划停工检修。
1、2008年5月11日因一再滑阀填料漏严重停工。
2008年5月14日因上一次非计划停工未打开两器检查,因此造成沉降器两组旋风堵塞。
2、2008年7月11日因锅炉入口水封罐挡板漏,致使余热锅炉管束漏无法修理,装置停工。
3、2009年7月23日沉降器旋风料腿堵,被迫停工。
4、2009年8月7日再生器旋风衬里脱落,催化剂大量跑损,停工。
另外,2007年8月27日1:48分因系统停电,造成装置投自保停工,于12:30分喷油开工。
近年,锦西石化催化二套装置完成任务情况还比较好。
2008年实现加工量1060274吨,烟机运行331天、锅炉运行319天。
2009年,实现加工量1036824吨,烟机运行331天、锅炉运行327.4天。
2010年,实现加工量802231吨,烟机运行257.5天、锅炉运行255.3天。
二、存在的问题分析影响我装置长周期运行的问题主要有如下几个方面:1、再生器腐蚀裂纹问题,到2010年8月检修前,我装置发现再生器二密、烟道膨胀节、三旋器壁、一段再生斜管下料口、一二段再生斜管膨胀节处和烟机入口烟道膨胀节处均发现有不同程度裂纹和热点。
再生器二密段有大面积衬里离鼓现象,再生器腐蚀严重。
2、设备问题。
滑阀或节能设备故障造成非计划停工。
滑阀卡塞或阀杆断裂及填料漏等。
余热锅炉管束漏等。
3、检修质量问题。
由于旋风内径很小,需要极其瘦小的人才能进入内部检查衬里和清焦情况,因此这部分检查通常是通过进行贯通试压来进行。
DCC装置长周期运行工艺核算及技术分析
万涛
【期刊名称】《石油炼制与化工》
【年(卷),期】2024(55)3
【摘要】中海油东方石化有限责任公司(简称东方石化)增强型催化裂解(DCC-plus)装置的第二个生产运行周期内,装置原料性质变化频繁、操作工况调整较大,基于原料性质和催化剂性质,通过定期开展工艺核算及技术分析,调控原料预热温度、蒸汽注入量、反应苛刻度、重点部位线速,稳定油浆系统操作参数,优化设备管理等,确保该装置在第二运行周期内未发生非计划停工情况,并成功实现了DCC-plus装置检修周期由3年延长至4年的突破。
【总页数】7页(P43-49)
【作者】万涛
【作者单位】中海油东方石化有限责任公司
【正文语种】中文
【中图分类】F42
【相关文献】
1.DCC装置长周期运行的影响因素及对策分析
2.常减压蒸馏装置长周期运行技术分析与应用
3.对炼油催化裂化装置长周期运行的技术分析
4.炼油催化裂化装置长周期运行的技术分析
5.丙烯腈装置长周期运行的技术分析与对策
因版权原因,仅展示原文概要,查看原文内容请购买。
催化裂化装置长周期运行策略摘要:在石化工业中,为确保催化裂化装置长期稳定运转,必须采用必要的技术措施,提高生产效率,降低生产事故发生率,只有这样,才能实现我们所期望的生产目标,提高我们的产品收率,从而满足我们对石化行业的技术需求。
因此,必须对石化行业中的催化裂化装置进行长期稳定的操作模式的研究,以达到持续提高炼油效率的目的。
关键词:石油化工;催化裂化装置;长周期运行引言催化裂化是石油炼制过程中一项将重质原料转化为高附加值产品的重要工艺技术。
不仅要把便宜的、重质的原料变成质量好、价格高、市场需要的产品,而催化裂化装置的特点是:原料范围广,结构简单,由于其运行周期长,操作灵活等优点,在石油化工行业得到了广泛的应用。
1长周期运行中的常见问题在重油催化裂化装置长期运转过程中,普遍存在着一些不利于其正常运转的技术问题。
重油催化裂化二次旋分机的料脚脱落严重影响了催化裂化的长期运转,将料腿去掉后,该装置的催化剂每吨单消耗的原材料达到了1.65公斤,三个旋口的粉尘质量浓度不小于2000 mg/m3,在卷烟机进料量达到300-500毫克/立方米时,二次卷烟机的运转周期明显减少。
装置在运行结束时,在气提过程中易发生穿孔。
穿孔后干气收率提高较为显著,含氮量上升到15%-30%。
为保证设备的安全,必须制定特别的操作计划。
另外,由于待生剂中有部分油等物质,直接进入到反复稀相中,导致卷烟机结垢速率增加,缩短卷烟机使用寿命。
在第一、第二个周期的操作过程中,出现了较为严重的脱衬现象,对催化剂的流化和输送造成了较大的影响,在设备运转过程中,三元热源已成为一大隐患。
第二个循环是因为沉降机过渡段的内衬掉了,导致塞阀装置的堵塞,导致了设备的停运和维修。
在首次循环和第二次循环过程中,扬升管易出现结焦的问题。
主要是在提升管进料口上方1.5米处形成的焦炭比较严重。
由于其在提升管段中所占的比例为35%左右,造成了设备的降载。
在改造后的第一、第三个循环操作过程中,沉淀器上部出现了少量的积焦现象,且积焦现象主要集中在防焦蒸汽环下方1 m处的炉壁上,以及旋分离器上部。
炼化企业主要生产装置长周期运行考核规定第一条为提高公司(以下简称集团公司)、股份有限公司(以下简称股份公司)炼化企业主要生产装置长周期安全运行水平,加强对主要生产装置长周期安全运行管理,实现企业经济效益最大化,制定本规定。
第二条集团公司、股份公司主管部门负责对所属企业主要生产装置长周期运行的管理和考核。
第三条各企业主要负责人应将本企业的主要生产装置长周期运行列入年度经济责任制考核目标。
第四条企业的计划、生产、设备、动力、安全、技术等相关管理部门,按照各自的管理职能制定措施,为装置长周期运行创造条件。
第五条本规定适用范围:集团公司、股份公司所属炼油、化工企业的主要生产装置。
(一)炼油主要生产装置:常减压蒸馏、催化裂化(催化裂解)、制氢、加氢裂化(渣油加氢)、延迟焦化、催化重整、加氢精制。
(二)化工主要生产装置:乙烯、聚乙烯、聚丙烯(4万吨/年及以上)、苯乙烯、合成橡胶(4万吨/年及以上)、甲醇、芳烃、PX、醋酸。
(三)化纤主要生产装置:PTA、乙二醇、聚酯、丙烯腈、己内酰胺、涤纶、腈纶。
(四)化肥主要生产装置:合成氨、尿素。
第六条主要生产装置长周期运行的考核分为单套主要生产装置的运行周期考核和企业所有主要生产装置运行周期总体达标率的考核。
主要生产装置已达标数总体达标率= *100%主要生产装置应达标数第七条主要生产装置在运行过程中,其产品中断时间超过24小时,则视为非计划停工。
第八条装置运行周期考核时间要求:(一)“二年一修”为连续运行24个月,期间允许有累计不超过7天的消缺时间。
(二)“三年一修”为连续运行36个月,期间允许有累计不超过10天的消缺时间。
(三)“四年一修”为连续运行48个月,期间允许有累计不超过15天的消缺时间。
第九条装置运行可靠度要求:(一)“二年一修”应不小于99%。
(二)“三年一修”应不小于98%。
(三)“四年一修”应不小于97%。
(四)可靠度的计算:运行周期日-非计划停工日可靠度= *100%运行周期日运行周期日:运行周期内日历天数-允许累计消缺时间非计划停工日:非计划停工日第十条经集团公司、股份公司主管部门确认的特殊原因造成的停工,如:原料不足、销售不畅、运输困难、催化剂设计寿命到期或上级指令停工等外界原因,可以从停工时间中扣除,其停工时间也应从装置运行周期日中扣除。
催化裂化装置分馏系统工艺分析摘要:分馏系统的任务是将反应油和气体分割成富气、粗汽,轻柴、重柴、回炼油、油浆。
确保每个熘分的质量符合法律要求。
本文件描述了催化裂化装置分馏管理的过程和控制方案。
关键词:催化裂化;分馏系统;工艺石油炼化中催化裂化是重要设备,占有重要地位,其长期运行能力与炼化企业的整体发展密切相关。
分馏过程包括原油,回炼油处理系统,顶循、一中段、二中段、油浆循环和许多其他系统。
只有反应系统制约,富气压缩机,吸收稳定系统。
因此,分馏系统在设备中的作用至关重要。
一、催化裂化装置长周期运行的不利因素1.结焦。
设备的长期运行,沉降器结焦是影响设备稳定运行的关键因素。
结焦形状是影响滴状、丝状、颗粒状结焦的主要因素。
这表现在很多方面。
原材料的质量导致了结焦问题,一些原料较重,并且涂有大量沥青,稠环芳烃化合物和胶质物,突出了催化剂的低汽化率和湿度。
当油温和气温度低于重组组分油气压力时,重组分油气逐渐稀释,沉降器的表面结构结焦问题出现。
低进料汽化率导致结焦。
高汽化率主要表现出良好的汽化性特性,表明催化剂中含有少量湿催化剂和液相油。
当催化剂与原料接触或长时间停留时,液相完全固定在催化剂表面,从而产生结焦。
长时间滞留可能会结焦,一般来说,油气和沉降器油气滞留时间和油接触时间紧密相连,如果停留时间过长,催化剂和液相油浆完全依赖于沉积物的表面结构,结焦升高。
引起结焦的强烈反应。
在反应过程中,在一些影响且波动的情况下,反应问题主要是不均匀的,这增加了原油进入沉降器没有有效经过裂化,从而导致内壁和死角出现结焦问题。
2.外取热器管泄漏。
其原因通常反映在热器管表面,由于人员操作的较大幅度,受到高温催化加热的强烈影响,催化剂在冲刷阶段或多或少地磨损,壁厚逐渐减小,甚至出现穿孔。
此外,长期使用可能会导致外取热器管处理设备的疲劳破坏问题。
一般来说,相对较低端口流速,管段出现汽水分层,蒸汽完全集中在管上方,气泡逐渐上升并从被水带走。