一道高考数学试题的解法探究及教学思考
- 格式:doc
- 大小:234.50 KB
- 文档页数:6
2024年1月上半月㊀试题研究㊀㊀㊀㊀一道高考圆锥曲线题的解法探究与反思◉安微省芜湖市无为县第二中学㊀高玉立㊀㊀高考数学真题是众多优秀命题专家精心设计出来的.其中解析几何压轴题,紧扣教材,立足考查学生的能力.1试题呈现试题㊀(2020全国I 卷理科20题,文科21题)已知A ,B 分别为椭圆E :x 2a2+y 2=1(a >1)的左㊁右顶点,G 为E 的上顶点,A G ң G B ң=8,P 为直线x =6上的动点,P A 与E 的另一个交点为C ,P B 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线C D 过定点.2解法探究第(1)问常规解法,过程略.答案为x 29+y 2=1.下面只对第(2)问的解法作多角度探索.图1思路一:如图1,注意到k P B =3k P A ,以及A ,B 是椭圆的左㊁右顶点,从而可以借助椭圆第三定义,利用k A C 与k A D 关系进行求解.解法1:利用椭圆的第三定义将非对称式转化为对称式问题.设P (6,t ),C (x 1,y 1),D (x 2,y 2).(ⅰ)若t ʂ0,设直线C D :x =m y +n (-3<n <3),则有k A C =k P A =t 9,k B D =k P B =t 3,ìîíïïïï可得k B D =3k A C .又由椭圆的第三定义,知k A D k B D =-19,所以k A C k A D =-127,即㊀㊀㊀㊀y 1x 1+3 y 2x 2+3=-127.①将x =m y +n 代入x 29+y 2=1,得(m 2+9)y 2+2m n y +n 2-9=0.所以y 1+y 2=-2m n m 2+9,y 1y 2=n 2-9m 2+9,ìîíïïïï可得x 1+x 2=m y 1+n +m y 2+n =18n m 2+9,x 1x 2=(m y 1+n )(m y 2+n )=9n 2-9m 2m 2+9,ìîíïïïï代入①,化简可得2n 2+3n -9=0.解得n =32或n =-3(舍去).所以直线C D 的方程为x =m y +32,即直线C D 过定点(32,0).(ⅱ)若t =0,则直线C D 的方程为y =0,过点(32,0).综上,直线C D 过定点(32,0).评注:本解法通过椭圆的第三定义巧妙得到直线A C 和A D 的斜率之积为常数,从而转化为我们熟悉的斜率之积问题.图2思路二:如图2,注意到k P B =3k P A ,利用椭圆的方程实现斜率的转换,建立k A C 与k A D 的关系进行求解.解法2:利用椭圆的方程将非对称式转化为对称式问题.设P (6,t ),C (x 1,y 1),D (x 2,y 2).(ⅰ)若t ʂ0,设直线C D :x =m y +n (-3<n <3),则㊀㊀㊀k A C =k P A =t 9=y 1x 1+3,k B D =k P B =t 3=y 2x 2-3.ìîíïïïï②由点C 在椭圆E 上,得x 219+y 21=1,则有y 21=-(x 21-9)9=-(x 1+3)(x 1-3)9,36试题研究2024年1月上半月㊀㊀㊀即y 1x 1+3=-x 1-39y 1,代入②,得㊀㊀㊀3y 1y 2=-(x 1-3)(x 2-3).③将x =m y +n 代入x 29+y 2=1,得(m 2+9)y 2+2m n y +n 2-9=0.所以y 1+y 2=-2m n m 2+9,y 1y 2=n 2-9m 2+9,ìîíïïïï可得x 1+x 2=m y 1+n +m y 2+n =18n m 2+9,x 1x 2=(m y 1+n )(m y 2+n )=9n 2-9m 2m 2+9,ìîíïïïï代入③,化简可得2n 2+3n -9=0.解得n =32或n =-3(舍去).所以直线C D 的方程为x =m y +32,即直线C D 过定点(32,0).(ⅱ)若t =0,则直线C D 的方程为y =0,过点(32,0).综上,直线C D 过定点(32,0).评注:本解法通过椭圆的方程,将非对称性韦达定理转化成传统的对称性韦达定理,从而通过基础联立使问题得到解决.思路三:注意到k A C =13k B D ,两次利用斜率建立对偶式,从而实现不联立方程使问题得到解决.解法3:利用椭圆的方程构造对偶式.设P (6,t ),C (x 1,y 1),D (x 2,y 2).(ⅰ)若t ʂ0,设直线C D :x =m y +n (-3<n <3),则㊀㊀㊀㊀k A C =k P A =t 9=y 1x 1+3,k B D =k P B =t 3=y 2x 2-3,ìîíïïïï④从而有3 y 1x 1+3=y 2x 2-3,即㊀㊀㊀x 1y 2+3y 2=3x 2y 1-9y 1.⑤由点C 在椭圆E 上,得x 219+y 21=1,从而有y 21=-(x 21-9)9=-(x 1+3)(x 1-3)9,即y 1x 1+3=-x 1-39y 1.同理,有y 2x 2-3=-x 2+39y 2.所以3 x 1-39y 1=x 2+39y 2,即㊀㊀㊀3x 1y 2-9y 2=x 2y 1+3y 1.⑥由对偶式⑤⑥,解得n =x 1y 2-x 2y 1y 2-y 1=32,即直线C D 过定点(32,0).(ⅱ)若t =0,则直线C D 的方程为y =0,过点(32,0).综上,直线C D 过定点(32,0).评注:本解法通过两次使用椭圆方程得到斜率的两个对称式,真正实现了设而不求,大大简化了计算.思路四:从题干中的构图顺序,按图索骥,逐个计算出各个点的坐标,从而使问题得到解决.解法4:从构图顺序逐点计算.设P (6,t ),C (x 1,y 1),D (x 2,y 2).(ⅰ)若t ʂ0,设直线C D :x =m y +n (-3<n <3).易知直线P A 的方程为y =t 9x +t3.联立y =t 9x +t 3,x 29+y 2=1,ìîíïïïï消去y ,得(t 2+9)x 2+6t 2x +9t 2-81=0,从而有-3+x 1=-6t 2t 2+9,-3x 1=9t 2-81t 2+9,ìîíïïïï解得x 1=-3t 2+27t 2+9,y 1=6t t 2+9,即点C 的坐标为(-3t 2+27t 2+9,6tt 2+9).同理,可得点D 的坐标为(3t 2-3t 2+1,-2tt 2+1).解得n =x 1y 2-x 2y 1y 2-y 1=32.所以直线C D 过定点(32,0).(ⅱ)若t =0,则直线C D 的方程为y =0,过点(32,0).综上,直线C D 过定点(32,0).462024年1月上半月㊀试题研究㊀㊀㊀㊀评注:本解法依据题干中图形的形成顺序,从直线P A 与椭圆方程联立求出点C 坐标,再从直线P B 与椭圆方程联立求出点D 坐标,进而求出直线C D 的方程,这种思路更加自然,不足之处是运算量比较大,因此需要学生平常反复训练计算.3思路总结对于上述四种思路,前三种思路都是直接从直线C D :x =m y +n 出发.思路一利用了椭圆的第三定义k D A k B D =e 2-1将非对称式x 1y 2+3y 2=3x 2y 1-9y 1转化成了对称式.思路二利用了椭圆方程x 219+y 21=1的变形形式y 1x 1+3=-x 1-39y 1将非对称式x 1y 2+3y 2=3x 2y 1-9y 1转化成了对称式.思路三两次利用了椭圆方程x 219+y 21=1,x 229+y 22=1的变形形式得到两个非对称式x 1y 2+3y 2=3x 2y 1-9y 1,3x 1y 2-9y 2=x 2y 1+3y 1构成的对偶式,从而确定定点.思路四是基于图形的形成顺序,依次算出C ,D 两点的坐标,然后求出C D 的方程,最后算出定点坐标.四种思路的关联如图3所示:直线C D 过定点㊀㊀设出C D :x =m y +n 思路一:通过第三定义实现非对称式化对称式思路二:通过椭圆方程将非对称式化为对称式思路三:通过椭圆方程得到两个非对称式构成的对偶式ìîíïïïïïïï思路四:分别通过直线PA ,PB 求出C ,D 的坐标 写出直线C D的方程得到定点ìîíïïïïïï图3韦达定理是解决直线与圆锥曲线相交问题的常见工具,可以有效解决x 1+x 2,x 21+x 22,1x 1+1x 2之类的式子,而像本题中出现的3 y 1x 1+3=y 2x 2-3,由于对应的变量前的系数是不相等的非对称结构,就可以采用本文中的思路进行非对称转化.下面提供的一道练习题,就可以采用本文中的思路去解决.练习㊀已知F 为椭圆E :x 24+y23=1的右焦点,A ,B 分别为其左㊁右顶点,过点F 作直线l 与椭圆交于M ,N 两点(不与A ,B 重合),记直线AM 与B N 的斜率分别为k 1,k 2,证明:k 1k 2为定值.4解后反思4.1注意条件的转化很多学生之所以认为解析几何问题较难,是因为不会使用题中的条件.因此,教师需要引导学生加强用代数运算的方式解决几何曲线问题这一思想的渗透,用合理的代数方式转化条件中的几何表述,在注重积累的基础上提高条件转化的合理性.比如,本题中通过椭圆定义的使用,将非对称的韦达定理问题转化成对称性的韦达这理问题,从而简化了计算.4.2注重计算能力的训练数学运算是指在明晰运算对象的基础上,依据法则解决数学问题的素养[1].高考试题是为了选拔适合高校并为将来社会服务的人才,因此对计算能力的要求很高.在平常的教学中,要加强学生计算能力的培养,让学生在遇到复杂运算时不畏惧并保持高度的细心,这也是今后从事科研工作所不可或缺的品质.4.3注重微专题的变式精讲这类非对称的定点与定值问题,其实并不是全新的问题,这就要求我们在日常教学中对于一些典型性问题要精编精整理,以微专题的形式实现知识方法的串联㊁整合,由易到难,层次分明,循序渐进,力求贴近学生的知识经验和能力基础,贴近学生的情感态度与思维水平,使得学生的技能水平自然而然得到提高.4.4注重学生思维能力的培养,适应新高考要求高考是选拔性考试,是为了给高等学校尤其是高水平大学挑选合适的人才.我们的数学教学也要培养学生的思维能力,能够创新性地解决问题.通过对一道题的多角度㊁多方法的思考,不断提升数学学科素养,以适应时代发展的要求.当然,本题也涉及到极点㊁极线的背景,对于一些学有余力的学生,在日常教学中也不妨给他们适当补充点课外知识,激发他们的兴趣.教师要让学生尽可能完成 跳一跳 可以完成的任务[2].总之,这道高考题内容丰富,解法多样,立足基础,又能充分发挥学生的创新性,让人回味无穷,实在是一道好题!参考文献:[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[S ].北京:人民教育出版社,2018.[2]波利亚.怎样解题[M ].北京:科学出版社,1982.Z 56。
一道高考题的多种解法评析及其教学反思高考是中国学生们备受关注的重要考试,它在学生们的学业生涯中扮演着至关重要的角色。
高考题是学生们检验知识掌握和思维能力的重要工具,让我们来评析一道高考题的多种解法,并思考如何在教学中提供更好的辅导与指导。
下面,我们将分析一道数学高考题:已知某数列的通项公式为an = n^3 - 2n,求数列的前n项和Sn。
这道题要求求解数列的前n项和,对于学生来说,有多种解法可以得到正确答案。
下面我将列举几种常见的解法,并对这些解法进行评析。
解法一:逐项计算法这种解法是最直观的方式,即从第一项开始逐个计算直到第n项,并将它们求和。
例如,当n=4时,数列的前4项分别为1,6,15,28,将它们求和可得50。
这种解法的优点是容易理解和操作,对于初学者来说较为友好。
然而,当n较大时,手工计算将变得极为繁琐和耗时,容易出错。
解法二:数学归纳法数学归纳法是一种常用的数学证明方法,也可以用来解决这道题。
首先,我们可以通过观察数列的前几项,猜测出数列的前n项和的通项公式为Sn = (n^2)(n-1)^2/4。
接下来,我们可以通过数学归纳法来证明这个猜测。
首先,当n=1时,显然数列的前1项和为1;其次,假设当n=k时,数列的前k项和的通项公式成立。
那么我们只需要证明当n=k+1时,数列的前k+1项和的通项公式也成立。
通过展开数列的前k+1项,并利用归纳假设,我们可以得到Sn+1 = (k^2)(k-1)^2/4 + (k+1)^3 - 2(k+1) = [(k^2)(k-1)^2 + 4(k+1)^3 - 8(k+1)]/4 = [(k-1)^2(k^2 + 4k + 4) + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k-1)^2(k+2)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) -8(k+1)]/4 = [(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1) - 8(k+1)(k+1)]/4 =[(k+2)^2(k-1)^2 + 4(k+1)(k+1)(k+1 - 2(k+1))]/4 = [(k+2)^2(k-1)^2 +4(k+1)(k+1)(k-1)]/4 = (k+2)^2(k-1)^2/4 + (k+1)(k+1)(k-1) =[(k+1)^2(k+2)^2 - (k+1)(k-1) + (k+1)(k-1)]/4 = [(k+1)^2(k+2)^2 - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2) - (k+1)(k-1)]/4 = [(k+1)(k+2)(k+1)(k+2 -k+1)]/4 = [(k+1)(k+2)(k+2)(k+1)]/4 = (k+1)^2(k+2)^2/4 = (k+1)^2((k+1)-1)^2/4。
一道试题的解法探究与教学反思广西南宁市第三十六中学(530001) 庞 毅[摘 要]通过对一道高三摸底试题进行考情分析、解法探究和问题拓展,揭示试题的本质,并从注重解题经验积累培养数学运算素养、注重信息技术应用培养学生数字素养两个方面提出教学反思。
[关键词]解法探究;教学反思;圆锥曲线;信息技术[中图分类号] G 633.6 [文献标识码] A [文章编号] 1674-6058(2024)05-0025-03解析几何是高考加强“综合性”考查的重要载体。
广西南宁市2024届高中毕业班摸底测试第21题将直线与椭圆的位置关系以及长度计算相结合,问题设计紧扣高考评价体系的“基础性、综合性、应用性、创新性”考查要求,既基础又开放,对高三数学复习备考具有重要的参考意义。
一、试题呈现与考情分析(一)试题呈现已知平面上动点E 到点A (1,0)与到圆B :x 2+y 2+2x -15=0的圆心B 的距离之和等于该圆半径。
记Ε的轨迹为曲线Γ。
(1)说明Γ是什么曲线,并求Γ的方程;(2)设C 、D 是Γ上关于x 轴对称的不同两点,点M 在Γ上,且M 异于C 、D 两点,O 为原点,直线CM 交x 轴于点P ,直线DM 交x 轴于点Q ,试问||OP ·||OQ 是否为定值?若为定值,求出这个定值;若不是定值,请说明理由。
评析:本题主要考查椭圆的定义、标准方程、几何性质和直线方程等主干知识,考查通过代数运算结果判断几何性质的坐标法和函数与方程、转化与化归以及数形结合等数学思想,考查逻辑推理、数学运算等核心素养。
第(2)问是开放性问题,重点考查学生的创新能力和探索精神。
(二)考情分析本题的考试情况如表1所示。
表1 考情分析题目第21题实考人数54110满分12平均分1.15标准差1.77难度0.15区分度0.21满分率0.16零分率29.52从统计的结果来看,本题总体平均分1.15,难度0.15,这个结果出乎命题组的预料。
2020年高考数学江苏卷第18题属于中档题,主要考查的知识点是椭圆定义、向量数量积运算、点到直线的距离公式和直线与椭圆的位置关系,运用的思想方法是数形结合、转化与化归和坐标法.该题满分16分,但平均分只有10分左右,不少学生由于不能理解问题的本质,在第(2)小题中选择了烦琐或错误的途径导致“失分”.针对此类状况,教师应该深入反思平时的教学过程,及时作出调整与改进.一、试题再现及常见解法题目在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求 OP ·QP 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别是S 1,S 2,若S 2=3S 1,求点M 的坐标.第(1)小题和第(3)小题解法略.对于第(2)小题有以下四种解法.解法1:椭圆E :x 24+y23=1的右准线为x =4.设P ()x ,0,Q ()4,y ,则 OP =()x ,0,QP =()x -4,-y .所以 OP · QP =x ()x -4=()x -22-4.所以当x =2时, OP ·QP 取到最小值,最小值为-4.解法2:椭圆E :x 24+y 23=1的右准线为x =4.设点P ()t ,0.又因为A æèöø1,32,所以直线AP 的方程为y =32()1-t ()x -t .令x =4,得y Q =12-3t 2()1-t ,即Q æèçöø÷4,12-3t 2()1-t .所以 QP =æèçöø÷t -4,-12-3t 2()1-t .所以 OP ·QP =t ()t -4.所以当t =2时, OP ·QP 取到最小值,最小值为-4.解法3:因为直线AP 与椭圆E 的右准线相交于点Q ,点P 在x 轴上,A æèöø1,32,如下图所示.收稿日期:2020-12-17作者简介:王波凤(1978—),女,中学高级教师,主要从事高中数学教学研究.由一道高考试题的“失分”解法引起的教学思考王波凤摘要:对2020年高考数学江苏卷第18题的几种解法进行比较,分析学生在考场上的“失分”原因,并给出应对策略及教学思考.关键词:高考试题;失分解法;应对策略;教学思考··70所以设直线AP 的方程为y =k ()x -1+32.令x =4,得y Q =3k +32,即Q æèöø4,3k +32.令y =0,得x p =1-32k ,即P æèöø1-32k ,0.则 OP =æèöø1-32k ,0,QP =æèöø-32k-3,-3k -32.则 OP · QP =æèöø32k +12-4.所以当k =-32时, OP ·QP 取到最小值,最小值为-4.解法4:根据平面向量数量积的定义和几何意义,设椭圆右准线与x 轴的交点为R ,则 OP · QP =-|| OP |PR .而|| OP +|| PR =||OR =4,由基本不等式,得OP · QP =-|| OP |PR ≥-æèççöø÷÷|| OP +|| PR 22=-4.当且仅当|| OP =||PR =2时等号成立,即点P 的坐标为()2,0时, OP ·QP 取到最小值,最小值为-4.二、解法比较及“失分”原因1.解法比较解法1透过直线与椭圆这一载体,抓住向量数量积运算的本质,关注到OP 的纵坐标为0,直接设出点P 和点Q 的坐标,过程简洁明了.经抽样调查,考场上用解法1的学生占了四分之一左右.解法2比解法1绕了一步,先设出点P 的坐标,再用点P 的坐标表示出直线AP 的方程,然后与准线方程联立算出点Q 的坐标,从而得出所求数量积的目标函数表达式(与解法1的形式一样).实际上,由于OP 的纵坐标为0, OP ·QP 的值与点Q 的纵坐标无关,所以这种解法联立直线方程求出点Q 的纵坐标实则多余.解法3把直线AP 的斜率k 作为参数,表示出直线AP 的方程,再用k 表示出点P 与点Q 的坐标,最后得出向量数量积的函数表达式.这种解法也没有关注到OP 的纵坐标为0,目标函数的表达式在形式上也比解法1和解法2的目标函数表达式复杂得多,既浪费了时间又容易算错.从运算的角度来看,没有解法1和解法2简便.解法4对平面向量数量积的概念有深刻的理解,利用向量数量积的几何意义,把向量数量积的运算转化为线段长的乘积的运算,最后利用基本不等式求解最值,解法巧妙,运算简单.虽然思维要求高,但运算量小,考场上用解法4的学生寥寥无几.正所谓“想得多而算得少,想得少而算得多”,那么解法4是如何想到的呢?其实只要回到数量积定义 OP · QP =|| OP | QP cos OP ,QP就能发现|| QP cos OP , QP =-||PR ,即两个向量的数量积等于其中一个向量的模与其在另一个向量方向上的投影的乘积.2.“失分”原因学生答题时为什么会“失分”?其原因在哪里?第一个原因是审题时不加思考就动笔做,运算能力欠缺.用解法2或解法3的学生人数很多,即使运算过程全对,在考场上多用时间就是“隐性失分”.而且用解法3的学生在用斜率k 表示数量积的函数表达式时出错的很多,即使表达式正确,换元配方后求最值结果正确的也不多,还有部分学生用导数方法求最值(解法2和解法3相关分式的分母中有字母,还需要进一步分类讨论),做得麻烦又表述不清,相关步骤一分未得,真是令人痛心!第二个原因是对于数学概念理解不够深刻,没有掌握问题的本质.例如,本文高考题第(2)小题,点A是定点,影响 OP ·QP 的关键要素就是动点P 的位置,而且只与横坐标有关,抓住这一点就能够寻找到合理的解题途径.从本文高考题的多种解法中可以看出,选择解法2和解法3的学生被问题中的“直线AP 与椭圆E 的右准线相交于点Q ”蒙蔽了双眼,看到“直线”两字就马上设出直线方程联立方程组求解.事实上,无论以哪种图形为背景,向量数量积的坐标运算中有时往往只涉及某个坐标.解法4就是在深刻理解向量数量积的概念和几何意义的基础上抓住问题本质的好方法.··71三、应对策略1.教概念本质,重理解能力为什么多数学生想不到解法4?这与教师教学中“轻概念,重解题”有关.波利亚在《怎样解题》一书中指出,你把题目中所有关键的概念都考虑到了吗?你是怎样应用这些概念的?你用到它的意义、它的定义了吗?回到定义上去是一项重要的思维活动,教师在概念课的教学中要杜绝“一滑而过”的现象,千万不要重记忆、轻理解,不仅要让学生理解概念产生的必要性,还要让学生抓住概念的本质,深刻理解概念,灵活运用概念解题.2.重视解题方法的选择和归纳教学中,有时我们觉得学生就某一知识和方法应该掌握了,也就不再深入分析了,解题方法没有总结到位,学生虽然表面会了,但是一考就错.所以教师在平时的课堂教学中一定要重视解题方法的总结和归纳,指导学生解题前一定要有预判,要有选择和比较,这样就可减少不必要的运算,从而提高解题速度,避免“失分”.3.注重知识间的联系,创造性地改编练习题教材是试题之源,教学中要用好教材,重视教材中知识的联系.例如,本文高考题考查的是解析几何和向量的综合知识,教学中一味孤立地教某个知识和某个方法就僵化了学生的思维.虽然教材是按章节安排内容的,每章内容后的习题也是与相关知识对应的,但是教师在平时的教学中要创造性地改编练习题,综合各种背景知识灵活运用.例如,以下两道题就可以作为本文高考题的变式.变式1:在平面直角坐标系xOy 中,若椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上并满足AF 2⊥F 1F 2,若点P 是椭圆E 上的动点, F 1P ·F 2A的最大值是.该题可以用坐标法得出向量的数量积,与点P 的横坐标无关,由点P 的纵坐标的范围得出最大值.变式2:在直角梯形ABCD 中,AB =4,CD =2,AB ∥CD ,AB ⊥AD ,E 是BC 的中点,则 AB ·()AC +AE的值为.该题可以通过建系用坐标法得出向量的数量积,与线段AD 的长度无关.学生在平时多练练类似的题目,到考场上就减少“失分”了.四、几点思考在平时的教学中,以下几点“功夫”教师必须做到位.1.培养学生的审题能力不少学生由于平时作业多、时间紧,往往省去了认真审题这一重要环节,养成了拿到题目就做的习惯,结果一做就错.想好了才做,是选择正确方法的前提.平时教学中要指导学生如何审题,布置作业时要精而少,这样学生才有时间养成良好的审题习惯.2.训练学生规范表达的能力培养学生会用数学语言准确、简洁、严谨地表达和书写,卷面字迹清楚,逻辑推理严密.例如,本文中高考题的解法,求点A 的坐标前要说明点A 的位置(第一象限),写直线方程时要交代斜率是否存在,等等.只有规范、严谨地表达,才能避免“会而不对”“对而不全”导致的失分.3.加强学生的运算能力为何选择同样方法的学生运算时所用时间和运算结果不一样?还是运算能力有差异.要提升运算素养,平时的作业练习尽量要求学生不用计算器,对遇到的烦琐的运算要细心、耐心和有信心.要让学生学会感受和比较不同的解法,在教学过程中教师要适时地介绍一些常规和简化的运算方法,培养学生的运算技能,让学生珍惜每一次运算机会.总之,教师应该做到“在埋头拉车的同时还要抬头看路”,多反思平时的教学,多了解学生的学习情况,把以上几点“功夫”做扎实了,学生在考场上就不会“无谓失分”了.参考文献:[1]徐永忠.重视基础查素质,关注创新考能力:2017年高考数学江苏卷评析及启示[J ].中小学课堂教学研究,2017(10):49-54.··72。
试题研究2023年6月上半月㊀㊀㊀由考题定考向,探方法成策略以2021年新高考全国I卷解三角形问题为例◉江苏省连云港市城头高级中学㊀程玲强㊀㊀1真题呈现,问题解析考题㊀(2021年新高考全国Ⅰ卷第19题)记әA B C的内角A,B,C的对边分别为a,b,c.已知b2=a c,点D在A C边长,B D s i nøA B C=a s i n C.(1)证明:B D=b;(2)若A D=2D C,求c o søA B C .图1解析:本题为解三角形问题,可先绘制辅助图形,如图1所示.(1)根据题设可知,B D=a s i n Cs i nøA B C.由正弦定理得cs i n C=bs i nøA B C,即s i n Cs i nøA B C=cb.所以B D=a cb,又知b2=a c,则推出B D=b,得证.(2)由A C=b,A D=2D C,可得A D=2b3,D C=b3.所以,在әA B D中,c o søA D B=13b29-c24b23.同理可得c o søC D B=10b29-a22b23.因为øA D B=π-øC D B,所以13b29-c24b23=a2-10b292b23,整理得2a2+c2=11b23.又b2=a c,所以2a2+b4a2=11b23,整理得6a4-11a2b2+3b4=0,解得a2b2=13或a2b2=32.在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c=43-a22b2.当a2b2=13时,c o søA B C=76>1,不符合题意;当a2b2=32时,c o søA B C=712.综上可知,c o søA B C=712.另解:对于第(2)问,还可以从向量视角来解析.已知A D=2D C,则D是三角形边A C的三等分点,则有B Dң=13B Aң+23B Cң,两边平方,可得|B Dң|2=19|B Aң|2+49|B Aң||B Cң|c o søA B C+49|B C|2.①在әA B C中,由余弦定理,可得c o søA B C=a2+c2-b22a c.结合题目条件有b2=9D C2=a c,B D=b=3D C.将上述式子代入①式,消去B D,c o søA B C和b,可初步得到6a2-11a c+3c2=0,则c=23a或c=3a.当c=3a时,b2=a c=3a2,由余弦定理,得c o søA B C=76>1,不符合题意;当c=23a时,b2=a c=23a2,可得c o søA B C=712.2命题揭秘,技巧探究上述考题为高考常见的解三角形问题,主要考查三角函数的核心知识,如正弦定理㊁余弦定理,以及利用定理度量三角形,对学生计算分析㊁利用知识解决实际问题的能力有较高的要求.下面深入解读考题的06Copyright©博看网. All Rights Reserved.2023年6月上半月㊀试题研究㊀㊀㊀㊀命题规律,以及常用的解题技巧.2.1命题规律探究正弦定理㊁余弦定理是高考的热点知识,也是解三角形的核心知识,它们常用来求解三角形的相关问题,如已知边求其他角,判断三角形的形状,求三角形的面积,等等.同时,考题中也常将两个定理与和差公式㊁倍角公式以及三角形的面积公式相结合,转化的技巧性极强.问题解答需要灵活运用正弦定理㊁余弦定理,并有效结合函数与方程思想㊁化归转化思想等.2.2解题技巧探究正弦定理㊁余弦定理是解三角形的核心知识,对应变形式的应用也极为广泛,也是需要重点掌握的知识;另外需要掌握以下几个解析技巧.(1)正弦定理的推广:a s i n A=b s i n B=c s i n C=2R,其中R为әA B C外接圆的半径.求解әA B C外接圆的面积或周长时,可利用正弦定理的推广式来求外接圆的半径.(2)三角形面积公式:S=12a b s i n C=12b c s i n A=12c a s i n B.对于上式,可从三角形内角与边来解读,即三角形的面积可表示为任意两边及其夹角正弦值乘积的一半.(3)正弦知识与三角形个数:利用正弦定理的变形式可判断满足条件的三角形个数.由正弦定理可变形出s i n B=b s i n A a.当s i n B=b s i n A a>1,则满足条件的三角形为0个,即无解;当s i n B=b s i n A a=1,则满足条件的三角形为1个;当s i n B=b s i n A a<1,则满足条件的三角形为1个或2个.(4)正弦定理的适用问题:已知两角和任意一边,求其他边和角;已知两边和其中一边的对角,求其他边和角.(5)利用正㊁余弦定理解题常用策略:利用两个定理解题常结合转化思想,即将边转化为角,或将角转化为边,最终目标是实现角或边的统一.对于三角形中的不等式问题,可利用两个定理来适当 放缩 .对于三角形的取值范围问题,若以余弦定理为切入点,则可将问题转化为不等式;若以正弦定理为切入点,则可将问题转化为三角函数.3关联探究,解题分析解三角形问题的类型十分多样,所涉知识考点也较为众多,结合图形理解条件把握三角形特征,活用定理是解题的关键.下面结合具体问题进行关联探究.3.1倍角公式转化,破解三角函数值问题涉及倍角的三角函数问题较为特殊,需用倍角公式构建倍角与三角形内角的关系,然后利用正弦定理㊁余弦定理加以运算突破.图2例1㊀如图2所示,用三个全等的әA B F,әB C D,әC A E拼成了一个等边三角形A B C,әD E F为等边三角形,且E F=2A E,设øA C E=θ,则s i n2θ的值为.解析:设A E=k(k>0),则E F=2k.由øA C E=θ,әA B F,әB C D,әC A E全等,可得øF A B=θ, C D=k,D E=2k.又әA B C为等边三角形,所以øC A E=π3-θ.在әC A E中,由正弦定理,可得A Es i nøA C E=C Es i nøC A E,即3s i nθ=32c o sθ-12s i nθ.整理得t a nθ=37,则s i n2θ=2t a nθt a n2θ+1=2ˑ37349+1=7326.评析:例1是关于倍角的三角函数问题,问题涉及了全等三角形和等边三角形,利用正弦定理来求解所涉内角的正弦值是解题的基础,而利用倍角公式构建三角形内角和倍角之间的关系则是解题的关键.3.2正弦定理转化,破解面积取值问题三角形面积取值问题十分常见,从三角函数视角分析,可灵活运用正弦定理来求解,对于其中取值范围的分析,则可结合角度和边长的大小关系.例2㊀在锐角三角形A B C中,内角A,B,C的对边分别为a,b,c.已知b s i n B+C2=a s i n B,且c=2,则锐角三角形A B C面积的取值范围为.解析:由b s i n B+C2=a s i n B,可得b c o s A2=a s i n B.由正弦定理,可得s i n B c o s A2=s i n A s i n B.由0<B<π2,可得s i n B>0,故c o s A2=s i n A,即c o s A2=2s i n A2c o s A2.又0<A<π2,所以0<A2<π4,则c o sA2>0.故s i nA2=12,进而可得A=π3.16Copyright©博看网. All Rights Reserved.试题研究2023年6月上半月㊀㊀㊀图3如图3所示,在әA B C中B C1ʅA C,B C2ʅA B,可知A C1=A Bc o sπ3=1,A C2=A Bc o sπ3=4.因为әA B C为锐角三角形,所以点C在线段C1C2上运动,但不包括端点,于是有A C1<b<A C2,即1<b<4.而әA B C的面积可表示为SәA B C=12b c s i n A=32b,结合b的取值可得32bɪ(32,23).故әA B C面积的取值范围为(32,23).评析:例2是求三角形面积的取值范围问题,解题的关键是构建三角形模型㊁确定b的取值范围.上述解题分两阶段突破.第一阶段,结合余弦定理确定内角A的大小;第二阶段,结合图形求解b的取值范围,进而由三角形面积公式求面积的取值范围.3.3两角和差转化,破解三角函数最值问题对于与两角相关的三角函数值问题,突破的核心是两角和与差的公式,即完成两角的统一化,构建单一变量,将问题转化为简单的函数问题,然后利用函数性质求最值.例3㊀在әA B C中,内角A,B,C的对边分别为a,b,c,其面积S可表示为S=b2+c2-a24,试回答下列问题.(1)如果a=6,b=2,求c o s B的值;(2)试求s i n(A+B)+s i n B c o s B+c o s(B-A)的最大值.解析:(1)简答.利用面积公式可得A=π4,结合正弦定理可得s i n B=b s i n A a=66,分析可知B为锐角,故c o s B=306.(2)由(1)可知A=π4,所以s i n(A+B)+s i n B c o s B+c o s(B-A)=22s i n B+22c o s B+s i n B c o s B+22s i n B+22c o s B=2(s i n B+c o s B)+s i n B c o s B.令t=s i n B+c o s B=2s i n(B+π4),由Bɪ(0,3π4),得B+π4ɪ(π4,π),则s i n(B+π4)ɪ(0,1],所以tɪ(0,2].故s i n(A+B)+s i n B c o s B+c o s(B-A)=2t+t2-12=12(t+2)2-32,tɪ(0,2].分析可知,当t=2,B=π4时,原式取得最大值,且最大值为52.评析:上述第(2)问可视为是两角和差的三角函数最值问题,突破的核心策略是角的转化,即通过内角的变换将问题转化为单一内角的三角函数问题.上述解析过程充分利用了两角和与差的公式㊁内角的三角函数基本关系等,问题的转化思想和运算技巧体现得极为充分.4解后反思,教学建议解三角形问题是高考数学的重要题型,探究命题规律,总结解题技巧是教学探究的重点,下面进一步进行反思教学.4.1理解定理内涵,正确认识定理正弦定理㊁余弦定理是破解 解三角形 问题的核心定理,充分理解定理内涵㊁正确认识定理是探究学习的关键.实际上两大定理揭示了三角形边角关系.如余弦定理体现了三角形三边长与一个角余弦值的关系,是对勾股定理的推广;而正弦定理则体现了三角形各边和所对角正弦值之比的关系.教学中要帮助学生理解该知识内涵,同时引导学生体验定理的探究过程,掌握定理的证明方法,强化学生的思辨思维,以从根本上掌握解三角形问题的知识核心.4.2开展思维训练,总结通性通法边化角 和 角化边 是解三角形问题常用的两种思路,总体而言就是为了实现问题条件的 边 或角 的统一.在教学中要重视学生的思维训练,促使学生充分掌握该类问题的通性通法,正确判断解决问题应选用的方法.4.3关注类型问题,总结破题技巧解三角形问题的类型十分多样,问题的综合性㊁拓展性极强,因此关注问题的多种类型,总结破题技巧十分关键[1].实际教学中,教师要帮助学生构建解三角形问题的体系,引导学生合理变式,灵活运用定理㊁公式来转化突破.同时注意拓展解法,提升学生的思维水平.参考文献:[1]景君.不畏浮云遮望眼 一道江苏联赛解三角形题的剖析[J].中学数学,2021(7):19G20.Z26Copyright©博看网. All Rights Reserved.。
一道高考数学试题的解法探究及教学思考马兴奎(云南省昭通市实验中学)题目:双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为l 1、l 2,经过右焦点F 垂直于l 1的直线分别交l 1、l 2于A 、B 两点. 已知||、||、||成等差数列,且与同向.(1)求双曲线的离心率;(2)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.一、试题分析本题是2008年高考数学全国卷I 文科第22题(理科第21题),是主要考查解析的几何基本思想和基本方法的压轴题,看似平凡,其实是一道可以用来归纳求解离心率的常用方法和技巧的好题,对启迪学生的发散性思维,拓宽学生的解题思路很有帮助。
其命题意图是考查学生数形结合、化归与转化的数学思想和方程的思想。
考生初读题目,感觉常规,下笔却困难重重。
原因是试题的第(1)问对考生的思维能力要求较高,许多考生草读一遍题意,便下笔求解A 、B 两点的坐标,虽然一些考生能够正确求出A 、B 两点的坐标为2,a ab A c c ⎛⎫ ⎪⎝⎭,22222,a c abc B a ba b ⎛⎫- ⎪--⎝⎭,接下来计算||和||还较容易,但计算||由于计算量大,陷入解题困境,部分考生算出了一个相当复杂的结果;部分考生甚至算了半天也计算不出结果,最后心慌,放弃此题。
本文以此题为载体,引导学生一题多解,发散思维,并引发了几点思考,旨在与同行交流。
二、第(1)问解法探究分析:如图1所示,设双曲线方程为2222x y a b -=1(a >0,b >0),右焦点为F(c,0)(c >0),则c 2=a 2+b 2.不妨设l 1:bx-ay=0,l 2:bx+ay=0,依题意||FA==b ,||==a ,由221ab ac e +==知,只需求出a b 的值即可,可用多种思维建立a 与b 的关系。
图1解法1(坐标法):由已知知直线AB 的方程为)(c x b a y --=,联立0,(),bx ay a y x c b -=⎧⎪⎨=--⎪⎩解得),(2c ab c a A ,联立⎪⎩⎪⎨⎧--==+)(0c x b a y ay bx 解得),(22222b a abc b a c a B ---。
因为与同向,所以a >b,所以a =||,222||ac OB a b =-,2222||a b AB a b =-。
又因为||、||、||成等差数列,所以||||||2+=,可得a=2b ,所以25122=+==ab ac e 。
【点评】联立消元和坐标运算是解决解析几何问题的核心,也是常规解题思想和方法,但往往由于涉及字母较多,计算量大,运算技巧强,使得许多学生“易想难算”,望而生畏,产生恐惧心里,因此,对学生而言是一项艰巨的考验。
解法2(勾股定理): 因为a =||,又由已知知222||||||=+,||||||2+=,联立可得||3||5=,所以||43||AB OA == tan ∠AOB ,因为BF 与同向,所以∠AOB=2∠AOF ,即34tan 1tan 22=∠-∠AOF AOF ,解得tan ∠AOF =12或tan ∠AOF =-2(舍去),因此21=a b 。
以下略。
【点评】事实上,由221ab ac e +==知,只需求出a b 的值即可,进而寻找a 与b 之间的关系,而a b 恰为渐近线l 1 的斜率,由斜率的定义得b a=tan ∠AOF ,再往下思考,会自然想到∠AOB=2∠AOF ,通过求出tan ∠AOB =||||AB OA 的值再计算,这样思路自然,迅速解答。
解法3(方程思想):由已知得222||||||,2||||||,OA AB OB AB OA OB ⎧+=⎪⎨=+⎪⎩解得||:||:||=3:4:5。
设||OA =3k ,||AB =4k ,||OB =5k ,k >0,则可求得tan ∠AOB =||43||AB OA =,进而tan ∠AOF =12,即21=a b 。
以下略。
【点评】在解法2的思维的启发下,利用已知建立三元方程组,从而可以得到||OA 、||、||中的任何两个或三个的比值关系,这个解法较为简捷,也激发了学生思维智慧的火花。
解法4(三角法): 设∠AOF=θ,则∠AOB =2θ,由||||||2+=得||||2||||OA OB AB AB +=,在R t △AOB 中,||1tan 2||OA AB θ=,||1sin 2||OB AB θ=,即22sin 12tan 1=+θθ,由万能公式解得21tan =θ,即21=a b 。
以下略。
【点评】此解法充分利用直角三角形中的三角函数,把边长的比值问题转化为三角函数的运算,使学生思路开阔,熟练掌握知识的内在联系,从而培养思维的灵活性。
解法5(角平分线定理):依题意可知∠AOF=∠BOF 。
由三角形角平分线定理得||||||||OA OB AF FB =,再利用比例性质及||||||2+=得||||||2||2||||||||OA OA OB AB AF AF FB AB +===+,即21=a b 。
以下略。
【点评】此解法用到了初中数学中的知识,显示了初中、高中数学知识的连贯性,利用两条渐近线关于实轴对称的特点和三角形角平分线定理建立简洁的比例关系进行求解。
解法6(设而不求):不妨设l 1:x a b y =,l 2:x ab y -=,直线AB 的方程为)(c x b a y --=,又设),(11x a b x A ,),(22x a b x B -,则x 2>x 1,1||1OA x =+,2221||x a b OB ⋅+=,所以22||||||1AB OB OA =-=。
由||||||2+=得12214x x x x +=-①。
直线AB 的斜率1212()b x x a a b x x +-=-②,联立①②得21=a b 。
以下略。
【点评】利用点在曲线上的性质,对点的坐标进行相关设法,设而不求和整体消元是解析法的重要思想和方法,可以简化很多繁琐的运算。
解法7(几何法):如图2所示,过点B 作x 轴的平行线交渐近线l 1于点H ,根据两条渐近线关于y 轴对称的性质,由||||OH OB =得||||||2||AH OA OB AB =+=,且∠AOF=∠AHB 。
在R t △BAH 中,tan ∠AHB=||12||AB AH =,即tan ∠AOF =12b a =。
以下略。
【点评】此解法充分利用几何图形的性质及特点,巧妙地进行转化,从而简化运算。
这种解决问题的思想凸显解析几何的核心问题之一——几何问题。
三、第(2)问解法探究分析:由(1)知a=2b ,双曲线的方程可化为x 2-4y 2=4b 2①。
由l 1的斜率为21,b c 5=知,直线AB 的方程为)5(2b x y --=,代入①并化简得0845321522=+-b bx x . 由已知08084154)532(222>=⨯⨯--=∆b b b 。
设直线AB 与双曲线交于C(x 1,y 1),D(x 2,y 2)两点,则1553221b x x =+,2128415b x x =,下面可用3种解法计算。
解法1:AB 被双曲线所截得的线段的长为4l ==,解之得b=3,从而a=6,所以双曲线的方程为22369x y -=1。
解法2:AB 被双曲线所截得的线段的长可以利用△直接计算(简化运算量,提高算对的概率),由弦长公式||l a =(其中a 为消元后得到的一元二次方程的二项式系数),由此可得4||)2(12=∆⋅-+=a l ,解之得b=3,从而a=6。
以下略。
解法3:由双曲线的第二定义得1||CF ex a =-,2||FD ex a =-,则12||||||()24CD CF FD e x x a =+=+-=。
将1553221b x x =+代入即可得b=3,从而a=6。
图2以下略。
【点评】联立方程,利用根与系数的关系和弦长公式解题是解决直线与圆锥曲线问题的基本方法。
基本模式为:联立消元⇒计算△值⇒设出点的坐标⇒韦达定理⇒代入化简运算求解问题。
四、教学思考1. 在高考数学中学生在解析几何部分的主要问题(1)不能做到正确地读题、审题,不能正确地理解数学的内在联系。
(2)不能准确运用概念理解诠释题意。
(3)在科学合理的运算与逻辑推理的实际能力上的欠缺。
2. 回归课本,狠抓基础,重视挖掘教材的本质与内涵既要立足于对基础知识的强化复习,比如圆锥曲线的定义、圆锥曲线方程、圆锥曲线的几何性质、直线与圆锥曲线的位置关系等;又要立足对基本方法的强化训练,比如用定义法、直接法、转移代入法、向量法、消参法、交轨法求轨迹方程,用焦半径公式求弦长等的复习。
深化对基本概念、性质和基本方法的理解和掌握,重视知识间的内在联系,特别是知识交会点要重点掌握。
同时要指导学生回归课本,重视课本的例题和习题。
近几年圆锥曲线的部分高考试题都源于教材又高于教材,这是高考的一个命题趋势,教师在复习中可对每个章节的典型例题作出要求,让学生人人过关。
对解决某一问题的基本方法,比如用圆锥曲线定义解决与焦点有关的问题;用违达定理解决直线与圆锥曲线位置关系等,常见的变形思路方法以及这部分的知识可能与哪些知识有联系,要总结归纳上升为结论印成讲义发给学生。
以达到巩固双基的目的。
3、重视知识间的内在联系,总结常考题型,提升数学思想方法综观近几年高考数学试卷中的圆锥曲线试题,题型新颖别致、自然流畅,内容综合,解法灵活。
圆锥曲线的试题涉及到函数、方程、导数、不等式、三角、向量、数列等各章节的知识,常把代数、三角、向量、数列、导数等知识交会在一起成为典型题。
而求曲线方程、弦长、角、面积、最值、轨迹、参数的值或取值范围,证明某种关系、证明定值、探索型、存在性讨论等问题是常考的题型,具有一定的综合性和灵活性,计算也较复杂,需要有较强的综合能力。
函数与方程思想、分类讨论思想、数形结合思想、转化与化归思想是解析几何的灵魂。
考查学生对数学思想方法的掌握程度,在近年的高考数学中尤显突出,在复习中教师可以以专题的形式给学生在这些数学思想方法上进行渗透。
4、立足高考热点,一题多解,重视学生运算能力的培养对近几年的高考数学试题,教师要进行深入、全面的探究。
总结归纳高考中主要出现的热点题型,然后精选一些高考试题讲解,最好一题多解,帮助学生从多个切入口,较广泛地联系不同的数学知识和思想方法。
丰富多彩的解题方法既给学生带来惊喜,又给学生带来美妙的感觉。
这样,学生思维一旦打开,智慧的火花必将灿烂夺目。
同时还要强调,当题目的解法较多时,要注意择优。
解完题后应对题目认真反思:思考题型有何特征,解法有何规律;题目有哪些解法,其中哪些方法最简便;题目的几种解法中,运算有何规律;在题目的解决过程中,解题的关键何在;涉及哪些基础知识;在题目的解决过程中,有哪些地方容易发生错误;应注意什么问题。