能够重合的两个圆叫做等圆,等圆的半径相等. 在同圆或者等圆中,能够互相重合的弧叫做等弧.
例题分析:
例1 已知:如图24-17,AB,CD为⊙O的直径. 求证:AD//CB. 证明: 连接AC,DB.
∵ AB,CD为⊙O的直径
∴ OA=OB, OC=OD ∴ 四边形ABCD为平行四边形.
图 24-17
同圆或等圆中, 两个圆心角、 两条弧、两条 弦中有一组量 相等,它们所 对应的其余各 组量也相等.
性质
n°弧
∵把圆心角等分成360份,则每一份的
圆心角是1º.同时整个圆也被分成了360
n°
份. 则每一份这样的弧叫做1º的弧. 这样,1º的圆心角对着1º的弧,
1°
1°弧
1º的弧对着1º的圆心角.
n º的圆心角对着nº的弧,
n º的弧对着nº的圆心角. 性质:弧的度数和它所对圆心角的度数相等.
例4 如图,在⊙O中,AB = AC ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC.
A
证明:∵ AB = AC
∴ AB=AC, △ABC 等腰三角形.
O
又∠ACB=60°,
B
C
∴ △ABC是等边三角形,AB=BC=CA.
(2)圆是由圆心和半径确定的,圆心确定圆的位置,半径 确定圆的大小).
交流:
点与圆的位置关系
平面上有一个圆,这个平面上的点,除了在圆上外, 与圆还有几种位置关系,这些关系根据什么来确定?
(1)若点A在⊙O上 (2)若点A在⊙O 内 (3)若点A在⊙O外
OA r
OA r
OA r
符号 读作等价于.它表示从符号的 左边可以推出右边;同时从符号的右 边也可以推出左边.