三角函数的值域和最值
- 格式:ppt
- 大小:484.04 KB
- 文档页数:14
求三角函数的值域(或最值)的方法三角函数y=sinx及y=cosx是有界函数,即当自变量x在R内取一定的值时,因变量y有最大值y max=1和最小值y min=-1,这是三角函数y=sinx及y=cosx的基本性质之一,利用三角函数的这一基本性质,我们可以使一些比较复杂的三角函数求最值的问题得以简化.虽然这部分内容在教材中出现不多,但是,在我们的日常练习和历年高考试题中却频频出现,学生也往往对这样的问题颇感棘手.笔者根据日常的教学积累,对三角函数求值域或最值的方法,加以归纳总结如下.1 配方分析法如果所给的函数是同名不同次或可化为同名不同次及其他能够进行配方的形式,可采用此方法.例1求函数y=2cos2x+5sinx-4的值域.解原函数可化为当sinx=1时,y max=1;当sinx=-1时,y min=-9,∴原函数的值域是y∈[-9,1].注:此种方法在求三角函数的值域或最值问题中较为常见.但在最后讨论值域时,往往容易忽略自变量(例1中以sinx为自变量)的取值范围而出现错误应该引起注意.“cosx”,再求已知函数的最值例2求下列函数的最值,并求出相应的x值.y=asinx+bcosx或可转化为此种形式的函数,其最大值和最小值分别为y max=3 求反函数法如果函数的表达式中仅含有某一个三角函数名,我们可考虑此种方法,用因变量y表示出该函数,再利用该函数的值域求对应的原函数的值域.∴原函数的值域是4 应用函数的有界性上面的求反函数法实际上就是在应用函数的有界性求最值,在此只不过是为了更加突出一下.解由原式可得(3y-1)sinx+(2y-2)cosx=3-y,则上式即为利用函数的有界性有∴原函数的值域是5 部分分式分析法例5求下列函数的值域:当sinx=-1时,y有极小值,y极小=2;∴原函数的值域是(2)原函数化为部分分式为:∴原函数的值域是6 应用平均值定理求最值例6求函数y=(1+cosx)sinx,x∈[0,π]的最大值.7 换元法例7求函数y=(1+sinx)(1+cosx)的值域.解原函数即为y=1+sinx+cosx+sinxcosx,∴原函数即为8 应用二次函数的判别式求最值9 几何法求函数的最值两点的直线的斜率,在平面直角坐标系中作出点(2,2)和单位圆,则很容易确定y的取值范围.得(k2+1)x2-(4k2-4k)x+4k2-8k+3=0,Δ=(4k2-4k)2-4(k2+1)(4k2-8k+3)=-12k2+32k-12.10 应用函数的单调性。
三角函数的定义域、值域和最值一 知识点精讲:1 三角函数的定义域 (1)r y =αsin 定义域为R. (2)rx =αcos 定义域为R.(3)xy =αtan 定义域为 ⎭⎬⎫⎩⎨⎧∈+≠Z k k ,2|ππαα. (4)y x =αcot 定义域为{}Z k k ∈≠,|παα.2 三角函数的值域① )0(,sin ≠+=a b x a y 型当0>a 时,],[b a b a y ++-∈ ; 当0<a 时 ],[b a b a y +-+∈ ② c x b x a y ++=sin sin2型此类型的三角函数可以转化成关于sinx 的二次函数形式。
通过配方,结合sinx 的取值范围,得到函数的值域。
x sin 换为x cos 也可以。
③ x b x a y cos sin +=型 利用公式ab x b a x b x a =++=+φφtan ),sin(cos sin 22, 可以转化为一个三角函数的情形。
④x x b x x a y cos sin )cos (sin ++=型利用换元法,设x x t cos sin +=, ]2,2[-∈t ,则212cos sin -=t x x ,转化为关于t 的二次函数222122b at t b t bat y -+=-+=.⑤x x c x b x a y cos sin cos sin 22++=型这是关于x x cos ,sin 的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,22sin cos sin ,22cos 1cos,22cos 1sin22x x x xx xx =+=-=,可转化为p x n x m y ++=2cos 2sin 的形式。
⑥ d x c bx a y ++=sin sin 型 可以分离常数,利用正弦函数的有界性。
⑦bx ax y ++=cos sin 型 可以利用反解的思想方法,把分母乘过去,整理得,a by x y x -=-cos sin ,11,1)sin(22≤+-+-=-ya by ya by x φ, 通过解此不等式可得到y的取值范围。
三角函数最大值最小值引言三角函数是数学中常见的一类函数,包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
这些函数在数学、物理、工程等领域中有着广泛的应用。
其中一个重要的问题就是如何确定三角函数的最大值和最小值。
本文将详细介绍三角函数的最大最小值及其求解方法。
正弦函数(sin)的最大最小值正弦函数是一个周期函数,它表达了一个圆的边缘点在坐标系中的y坐标值。
正弦函数的定义域是实数集,值域是[-1, 1]。
正弦函数的最大值为1,最小值为-1。
可以通过以下推导来证明:首先,正弦函数在任意时刻的值都在-1和1之间,即 -1 ≤ sin(x) ≤ 1。
这是因为正弦函数是周期为2π的函数,而在一个周期内,它的值始终在-1和1之间。
其次,为了找到正弦函数的最大值和最小值,我们需要找到函数在一个周期内的关键点。
正弦函数的关键点就是最大值和最小值所对应的点。
在一个周期内,正弦函数的最大值出现在x = π/2 + 2πn 的点,最小值出现在x = -π/2 + 2πn 的点,其中n为整数。
综上所述,正弦函数的最大值为1,最小值为-1。
余弦函数(cos)的最大最小值余弦函数是正弦函数的补函数,它也是一个周期函数,定义域是实数集,值域也是[-1, 1]。
余弦函数的最大值和最小值与正弦函数相同。
可以通过以下推导来证明:余弦函数在任意时刻的值也都在-1和1之间,即 -1 ≤ cos(x) ≤ 1。
这是因为余弦函数也是一个周期为2π的函数,在一个周期内,它的值始终在-1和1之间。
与正弦函数类似,余弦函数的最大值出现在x = 2πn 的点,最小值出现在x = π + 2πn 的点,其中n为整数。
综上所述,余弦函数的最大值为1,最小值为-1。
正切函数(tan)的最大最小值正切函数是一个非周期函数,定义域不包括π/2 + kπ (其中k为整数),值域是全体实数。
正切函数并没有最大值和最小值。
可以通过以下推导来证明:首先,正切函数的定义域是除去一些特殊点的全体实数。
三角函数的值域和最值1.正弦函数y=sinx 定义域是R ,值域是[-1,1],在x=2k π-π/2(k ∈Z)时取最小值-1,在x=2k π+π/2(k ∈Z)时,取最大值1 .2.余弦函数y=cosx 定义域是R ,值域是[-1,1],在x=2k π(k ∈Z)时,取最大值1,在x=2k π+π(k ∈Z)时,取最小值-13.正(余)切函数y=tanx 定义域是(k π-π/2,k π+π/2)(k ∈Z),值域是R ,无最值.4. asinx+bcosx 型函数)sin(cos sin 22ϕ++=+x b a x b x a其中 ab arctan =ϕ,φ角所在象限是由点P(a,b)所在象限确定) 练习题1..若sin x ≥1/2,则x 的范围是____________________________;若√3+2cos x <0,则x 的范围是 ;若tanx ≤1,则x 的范围是________________________;若sin2x >cos2x ,则x 的范围是__________________________( 2k π+π/6≤x ≤2k π+5π/6,k ∈Z ;2k π+5π/6<x<2k π+7π/6,k ∈Z ;k π-π/2<x ≤k π+π/4,k ∈Z ;k π+π/4<x<k π+3π/4,k ∈Z )2.函数y=√3sin x+cos x,x ∈[-π/6,π/6]的值域是( ) D(A)[-√3,3] (B)[-2,2] (C)[0,2] (D)[0,√3]【x 有范围限制时,y 的范围要根据单调性得出】3.函数y=2sinx(sinx+cosx)的最大值为( ) A(A)1+√2 (B)√2-1 (C)2 (D)24.设 0cos sin,cos sin 33<+=+ααααt ,则t 的取值范围是( ) B (A) ()()∞+-,,303 (B) [)02,-(C) ()()3101,, - (D) [)33,- 5.函数f(x)=Msin(ωx+φ)(ω>0)在区间[a,b ]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos(ωx+φ)在[a,b ]上( ) B(A)是增函数 (B)可以取得最大值M(C)是减函数 (D)可以取得最小值-M6.已知△ABC 中, 324tan --=⎪⎭⎫ ⎝⎛+πA ,求使⎪⎭⎫ ⎝⎛++=62sin sin 2y 2πB B 取最大值时∠C 的大小.【形如y=acos2x+bcosxsinx+csin2x+d(a 、b 、c 、d 为常数)的式子,都能仿照上例变形为形如y=Acos(2x+φ)+B 的式子,从而有关问题可在变形式的基础上求解 另外,求最值时不能忽视对定义域的思考】7.试求函数y=sinx+cosx+2sinxcosx+2的最大值和最小值.又若x ∈[0,π/2]呢?【此为sinx+cosx 与sinx·cosx 型.(注意与上例形式的不一样),一般地,含有sinx+cosx,sinx-cosx ,sinx·cosx 的三角函数都可以采用换元法转化为t 的二次函数去解.但必须注意换元的取值范围.】【换元后,要研究定义域的变化,脱离定义域研究函数没有意义】8.求函数1cos 21cos 2-+=x x y 的值域 【此为dx c b x a y ++=sin sin 型三角函数(分子、分母的三角函数同角同名)这类函数,一般用拆分法及三角函数的有界性去解.思考如何求1cos 21sin 2-+=x x y 的值域呢? 】 9.已知函数f(x)=-sin2x-asinx+b+1的最大值为0,最小值为-4,若实数a >0,求a,b 的值【上述两题为y=asin2x+bsinx+c 型的三角函数.此类函数求最值,可转化为二次函数y=at2+bt+c 在闭区间[-1,1]上的最值问题解决.】10..在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上.(1)设AB=a,∠ABC=θ,求△ABC 的面积P 与正方形面积Q(2)当θ变化时求P /Q 的最小值.【此题为 xa x sin sin +型三角函数.当sin x >0且a >1时,不能用均值不等式求最值,往往用函数单调性求解】。
三角函数的定义域、值域和最值一知识点精讲:1 三角函数的定义域(1)sinα=yryxxr定义域为R. (2)cosα=⎧⎩定义域为R.(3)tanα=定义域为⎨α|α≠πx⎫定义域为+kπ,k∈Z⎬. (4)cotα=2y⎭{α|α≠kπ,k∈Z}.2 三角函数的值域① y=asinx+b,(a≠0) 型当a>0时,y∈[-a+b,a+b] ;当a<0时 y∈[a+b,-a+b] ② y=asin2x+bsinx+c型此类型的三角函数可以转化成关于sinx的二次函数形式。
通过配方,结合sinx的取值范围,得到函数的值域。
sinx换为cosx也可以。
③ y=asinx+bcosx型利用公式asinx+bcosx=的情形。
④y=a(sinx+cosx)+bsinxcosx型利用换元法,设t=sinx+cosx, t∈[-2,2],则sinxcosx=t-122a+bsin(x+φ),tanφ=22ba,可以转化为一个三角函数22,转化为关于t 的二次函数y=at+b22=b2t+at-2b2.⑤y=asinx+bcosx+csinxcosx型这是关于sinx,cosx的二次齐次式,通过正余弦的降幂公式以及正弦的倍角公式,sin2x=1-cos2x2,cos2x=1+cos2x2,sinxcosx=sin2x2,可转化为y=msin2x+ncos2x+p的形式。
⑥ y=⑦y=asinx+bcsinx+dsinx+a型可以分离常数,利用正弦函数的有界性。
cosx+b型可以利用反解的思想方法,把分母乘过去,整理得,sinx-ycosx=by-a,sin(x-φ)=by-a+y,by-a+y≤1, 通过解此不等式可得到y的取值范围。
或者转化成两点连线的斜率。
以上七种类型是从表达的形式上进行分类的,如果x有具体的角度范围,则再进行限制。
二典例解析:例1.求下列函数的定义域(1)y=3-3sinx-2cos2x;(2)y例2.求下列函数的值域(1) y=-2sinx+3 (2)y=2cos2x+5sinx-4;(3)y=5sin2x-4sinxcosx+2cos2x; (4)y=sinx+cosx+sinxcosx (5)yπ6=3sinx+13sinx+2=logsinx(cosx+12). (3) y=25-x+lgcosx;;(6)y=sinx+2cosx+21-tan()cosx.π4-x)(7)y=sin(x-(8)y=1+tan(π4-x)(9)求函数y=sin2x1-sinx-cosx+sin2x的值域.三课堂练习:1.若cosα⋅cscαsec2α-1=-1,则α所在的象限是A.第二象限限2.不解等式:(1)sinx<-3.已知f(x)的定义域为(-4.求下列函数的定义域(1)y=1tanx-112 () B.第四象限 C.第二象限或第四象限 D.第一或第三象(2)cosx>12 12,32),则f(cosx)的定义域为____________. (2)y=sinx+125-x2.5.求下列函数的值域(1)y=2cosx-1(3)y=1+sinx+cosx+(5)y=12+sinx12sin2xx∈[-π,π]. (4)y=-cos3 (2)y=2sinxcos1+sinx2x. xsinx. (6)y=tan2x+4cot+1 26.有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都半径或弧在扇形的上,求这个内接矩形的最大面积.。
课题:三角函数的值域与最值学习目标:1(知识目标)掌握几种常见类型三角函数值域的求法2(能力目标)灵活掌握三角函数值域的各种求法3(情感目标)培养学生的应变能力教学重点:几种常见类型三角函数值域的求法教学难点:灵活运用三角函数值域的各种求法教学过程:一 简单三角函数的值域例1 求下列三角函数的值域(1)x y sin =(2)⎥⎦⎤⎢⎣⎡∈=32,6,sin ππx x y小结:求基本三角函数值域,一定要结合三角函数的图像,故切记正、余弦函数的图像。
二 与三角函数有关的复合函数的值域1 )cos(),sin(ϕωϕω+=+=x A y x A y 型函数的值域例2 ⎥⎦⎤⎢⎣⎡∈+=4,0),42sin(2ππx x y例3 求函数],0[,cos sin π∈-=x x x y 的值域小结:对于h x A y ++=)s i n (ϕω的最大值为h A +,最小值为h A +-,若h x A y ++=)sin(ϕω,],[b a x ∈,先由],[b a x ∈求出ϕω+x 的范围,然后结合图像求出,即由内而外逐层求值域2 二次型函数的值域例4.求函数x x y sin 22cos +=在区间⎥⎦⎤⎢⎣⎡-4,4ππ上的值域例5.求函数x x x x y cos sin cos sin ⋅++=的值域练习:求函数)2)(cos 2(sin --=x x y 的值域小结:对于二次型函数,都可通过换元构造二次函数c bt at y ++=2,进而转化为二次函数在某个区间上的值域问题,但一定要注意新元的范围 3 形如d x c bx a y ++=sin sin 或d x c bx a y ++=cos cos 的值域例6 求函数1cos 2cos +=x x y 的值域形如d x c b x a y ++=sin sin 的值域,可解出x sin ,利用正弦函数的有界性求得,也可用分离常数法来求4 形如d x c bx a y ++=cos sin 的值域例7 求函数xx y cos 3sin 1++=的值域小结:形如d x c bx a y ++=cos sin 的函数求值域可转化为x x cos ,sin 的方程c x b x a =+c o s s i n 形式,然后该类方程有界条件122≤+b a c求出y 范围 5 对勾型函数的值域如x cx a y sin sin += 例8 求函数x x y sin 2sin +=。
求三角函数值域及最值的常用方法(一)一次函数型或利用:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512y x π=--+,x x y cos sin =(3)函数x x y cos 3sin +=在区间[0,]2π上的最小值为 1 .(4)函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是 (,1][1,)-∞-⋃+∞(二)二次函数型利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。
(2)函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于43.(3).当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 4 .(4).已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 1 .(5).若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为____2____.(三)借助直线的斜率的关系,用数形结合求解型如dx c bx a x f ++=cos sin )(型。
此类型最值问题可考虑如下几种解法:①转化为c x b x a =+cos sin 再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。
例1:求函数sin cos 2xy x =-的值域。
解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。
作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2xy x =-得最值,由几何知识,易求得过Q 的两切线得斜率分别为33-、33。
结合图形可知,此函数的值域是33[,]33-。
三角函数的值域与最值【知识回顾】1. 辅助角公式的应用:y=()sin cos a x b x x θ+=+(其中θ角所在的象限由a, b 的符号确定,θ角的值由tan baθ=确定)在求最值、化简时起着重要作用。
2. 化二次或高次函数,如y=x x 2cos 2sin - 【基础练习】1.函数x x y cos 3sin +=在区间[0,]2π上的最小值为 .2.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 ______.3.函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________.4.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 _____ .5.已知k <-4,则函数y =cos2x +k(cosx -1)的最小值是 _____ .6.若2αβπ+=,则cos 6sin y βα=-的最大值与最小值之和为________. 【范例解析】例1.(1)已知1sin sin 3x y +=,求2sin cos y x -的最大值与最小值.(2)求函数sin cos sin cos y x x x x =⋅++的最大值.例2.求函数2cos (0)sin xy x xπ-=<<的最小值.例3. 已知函数f(x)=Asin(ωx +ϕ),x∈R (其中A>0,ω>0,0<ϕ<π2)的周期为π,且图象上一个最低点为M(2π3,-2). (1)求f(x)的解析式;(2)当x∈[0,π12]时,求f(x)的最值.例4.扇形AOB 的半径为1,中心角为60︒,PQRS 是扇形的内接矩形,问P 在怎样的位置时,矩形PQRS 的面积最大,并求出最大值. ,ABORS PQ【反馈演练】1.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于___________.2.已知函数()3s i n f x x =,3()sin()2g x x π=-,直线m x =和它们分别交于M ,N ,则=m a x MN _________.3.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是_____________.4.函数sin cos 2xy x =+的最大值为_______,最小值为________.5.函数cos tan y x x =⋅的值域为 .6.已知函数11()(sin cos )|sin cos |22f x x x x x =+--,则()f x 的值域是 .7.已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于_________.8.(1)已知(0,)θπ∈,函数y =的最大值是_______. (2)已知(0,)x π∈,函数2sin sin y x x=+的最小值是____________. 9.在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ_____________ . 10.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.11.若函数)4sin(sin )2sin(22cos 1)(2ππ+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.12.已知函数2()2sin sin 2f x x x =+.(1)若[0,2]x π∈.求使()f x 为正值的x 的集合;(2)若关于x 的方程2[()]()0f x f x a ++=在[0,]4π内有实根,求实数a 的取值范围.专题十二: 三角函数的值域与最值【知识回顾】3. 辅助角公式的应用:y=()sin cos a x b x x θ+=+(其中θ角所在的象限由a, b 的符号确定,θ角的值由tan baθ=确定)在求最值、化简时起着重要作用。
师说新语332019年第25期求三角函数最值及值域常用的策略◎ 任彩霞/平遥现代工程技术学校三角函数的最值问题是三角函数中重要的一个知识点,题型较多、方法较碎,是同学们学习的一个难点,由于题型灵活,容易考查思维能力,因而也是高考中热点题型,现对三角函数最值求法中常见的策略加以归类,常用方法加以总结,以达快速正确求解。
一、利用三角函数的有界性求最值1、形如y=asinx+bcosx+c 型,引入辅助角公式化为22b a +sin(x+φ)+c ,再求值域。
例1、求函数f(x)=2sinx+cos(x+3π)的值域解:f(x)=2sinx+21cosx -23sinx=(2-23)sinx+21cosx=)sin()21()232(22φ++−x ,故f(x)∈[]2、形如y=asin 2x+bsinxcosx+ccos 2x 型,通过降幂转化为Asinx+Bcosx ,再求值域。
例2、f(x)=23asinx·cosx-2asin 2x+1(a>0)的值域解:f(x)= 3asin2x+acos2x-a+1=2asin(2x+6π)-a+1∵a>0,sin(2x+6π)-a+1∴f(x)∈[-3a-1,a+1]二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型,令sinx=t 转化为二次函数再求值域。
例3、k<-4,求y=cos 2x+k(cosx-1)的值域解:y=2cos 2x-1+kcosx-k y=2cos 2x+kcosx-k-1,设t=cosx ,t ∈[-1,1]则y=2t2+kt-k-1,对称轴x=-4k,由于k<-4,则-4k >1,故当t=1时,ymin=1,当t=-1时,ymax=1-2k ,即y ∈[1,1-2k]2、形如y=asinx·cosx+b (sinx ±cosx )+c 型,令sinx ±cosx=t转化为二次函数在]2,2[−上的值域问题例4、求函数y=sinx·cosx+sinx+cosx 的值域。
三角函数的值域与最值一、主要方法及注意点:1.求值域或最值的常用方法有:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)将函数式化成一个角的同名三角函数的一元二次式,利用配方法或图象法求解;(3)借助直线斜率的关系用数形结合法求解;(4)换元法。
2.要注意的问题有:(1)注意题设给定的区间;(2)注意代数代换或三角变换的等价性;(3)含参数的三角函数式,要重视参数的作用,很可能要进行讨论。
二、基本练习:1.求下列函数的最大、最小值:(1)x x y cos sin 32⋅= (2)x y sin 41-=解:1sin 23y x =∴y ∈[13-,13]解:50,4y ⎡⎤∈⎢⎥⎣⎦(3)1)21(sin 22++-=x y (4)1615)45(sin 2+-=x y解:7[,1]2y ∈- 解:y ∈[1,6]2.若|x|≤4π,则f(x)=cos 2x+sinx 的最小值是( D ) A .212- B .221+- C .-1 D .221- 3.求函数的值域:(1)y=3sin x -4cosx (2)f(x)=sinx+3cosx (2π-≤x ≤2π) 解:y ∈[-5,5]解:()2sin()3f x x π=+又2π-≤x ≤2π ∴y ∈[-1,2]4.(1)求函数xxy sin cos 2-=(0<x<π)最小值。
(2)求函数2sin 1sin 3)(+-=x x x f 的最大值和最小值。
解:(1)设点A (0,2),B (-sinx ,cosx ) 又0<x<π,则点B 的轨迹如图而y 的值就是经过AB 两点的斜率,所以y.(2)21sin3yxy+=-,而sinx∈[-1,1]于是-1≤213yy+-≤1所以-4≤y≤23即y的最大值为23,最小值为-4.三、典例精析:例1.求函数y=sin x ·c osx+sinx+cosx 的最大值。