量子力学之狄拉克符系统与表象
- 格式:docx
- 大小:303.84 KB
- 文档页数:16
厄米共轭算符与狄拉克算符引言在量子力学中,厄米共轭算符和狄拉克算符是两个重要的概念。
它们在量子力学的数学表达中起着关键的作用,可以用来描述粒子的性质和状态。
本文将介绍厄米共轭算符和狄拉克算符的定义、性质以及在量子力学中的应用。
厄米共轭算符在量子力学中,厄米共轭算符是一个重要的概念。
给定一个线性算符A,如果存在另一个算符A^†满足下列条件:1. 对于任意的态矢量|Ψ⟩,有⟨Ψ|A^†|=⟨AΨ|。
2. 该算符的厄米共轭定义为:A^†=A,即A的厄米共轭等于本身。
可以证明,当A是一个厄米算符时,其本征值一定为实数,并且对应着正交归一化的本征态。
厄米共轭算符在量子力学中有广泛的应用,例如描述系统的能量、位置和动量等物理量。
狄拉克算符狄拉克算符是由英国物理学家狄拉克于20世纪提出的。
它是一种特殊的线性算符,可以用来描述粒子的运动和相对论效应。
狄拉克算符一般表示为γμ,其中μ代表一个指标。
狄拉克算符具有以下性质: 1. 狄拉克算符是一个厄米算符,即γμ^†=γμ。
2.狄拉克算符满足反对易关系:{γμ, γν}=2gμν,其中gμν是闵可夫斯基度规张量。
3. 狄拉克算符的平方等于单位算符:γμγμ=I。
由于狄拉克算符的性质,它在相对论性量子力学中起着重要的作用。
例如,狄拉克方程就是通过引入狄拉克算符来描述自旋1/2的费米子。
厄米共轭算符和狄拉克算符的应用厄米共轭算符和狄拉克算符在量子力学中有广泛的应用。
在量子力学中,我们通常用厄米共轭算符来描述系统的物理量。
例如,位置算符和动量算符都是厄米共轭算符。
通过定义厄米共轭算符,我们可以获得这些算符的本征值和本征态,从而得到对应的物理量和量子态。
狄拉克算符在相对论性量子力学中起着重要的作用。
例如,在狄拉克方程中,狄拉克算符描述了自旋1/2的费米子的运动和相对论效应。
通过求解狄拉克方程,我们可以得到费米子的能量、波函数和自旋等信息。
此外,厄米共轭算符和狄拉克算符还与量子力学中的对易关系和反对易关系密切相关。
物理中狄拉克符号
狄拉克符号(Dirac Notation)是用来描述量子力学中的态的一种数学表示方法。
它是由英国物理学家保罗·狄拉克(Paul Dirac)引入的。
在狄拉克符号表示法中,一个量子态被表示成一个矢量,通常用“|”和“>”符号包围,如:
|ψ⟩
这个矢量表示一个态矢量,它是一个复数列向量,在量子力学中它代表一个物理系统的状态。
这个矢量可以被视为向量空间中的一个点或向量,因此它也被称为“态矢量”。
狄拉克符号有很多特性,其中最重要的是内积和外积。
内积是两个矢量之间的一种运算,它把两个矢量映射到一个标量上。
内积表示为:
⟩ψ1|ψ2⟩
其中,“⟩”、“|”和“⟩”符号表示一个叫做“bra-ket”的记号。
内积可以用来计算两个态矢量之间的相似度,也可以用来计算一个态矢量在另一个态矢量方向上的投影。
外积是两个矢量之间的一种运算,它把两个矢量映射到一个新的矢量上。
外积表示为:
|ψ1⟩⟩ψ2|
外积可以用来构造一个算符,它可以作用于一个态矢量上,将它转换成另一个态矢量。
狄拉克符号的使用简化了量子力学的数学表达式,使得物理学家们可以更方便地描述和计算量子系统中各种量的性质和变化。
量子力学的表象变换量子力学是描述微观粒子行为的理论,它具有许多奇特的特性和规律。
其中一个重要的概念就是表象变换,它是一个数学工具,用于描述在不同的观测角度下,量子系统的性质和行为。
量子力学的表象变换可以理解为从一个视角切换到另一个视角,就像在观察一幅画时,可以从不同的角度看到不同的景象一样。
这种变换的目的是为了更好地理解和描述量子系统的行为。
在量子力学中,存在多种不同的表象,如波函数表象(也称为薛定谔表象)和狄拉克表象(也称为自由度表象)。
在波函数表象中,系统的状态由波函数描述,而在狄拉克表象中,系统的状态由态矢量描述。
表象变换的基本原理是变换矩阵的应用。
这个变换矩阵是一个数学工具,用于在不同的表象之间建立联系。
它可以将一个态矢量或波函数从一个表象变换到另一个表象,从而描述量子系统在不同观测角度下的行为。
在量子力学中,表象变换有两种基本形式,即基态表象变换和幺正变换。
基态表象变换是将系统的基矢量从一个表象变换到另一个表象,通过变换矩阵的作用,得到新的基矢量。
幺正变换则是将整个系统的态矢量或波函数进行变换,通过变换矩阵的作用,得到新的态矢量或波函数。
通过表象变换,我们可以更好地理解和描述量子系统的性质和行为。
例如,在不同的表象下,量子系统的能量、动量和位置等物理量的表达式可以有所不同。
通过表象变换,我们可以在不同的表象下计算这些物理量,从而得到更全面的量子力学描述。
除了基本的表象变换之外,量子力学还涉及到更复杂的变换,如相互作用表象变换和相互作用绘景变换。
这些变换是为了更好地描述量子系统在相互作用下的行为和演化。
表象变换在量子力学中发挥着重要的作用。
它不仅为我们提供了一种理解和描述量子系统行为的数学工具,也为实际应用提供了基础。
例如,在量子计算和量子通信中,表象变换可以用于描述和控制量子态的演化和传输,从而实现更高效和安全的量子信息处理。
最后,需要注意的是,量子力学的表象变换本质上是一种数学工具,它并不涉及具体的实验操作。
量子力学知识:量子力学与狄拉克符号这篇文章并不是关于费恩曼讲义书中任何一章的笔记,只是单独的一篇讲狄拉克符号含义和用法的文章。
我在看书的过程中对狄拉克这个简洁又多功能的符号产生过很多疑惑,今天就尝试将这些疑惑和自己找到的答案写出来,希望对其他同学有些许帮助。
如果大家有发现错误也希望可以进行批评指正。
狄拉克符号在量子力学中是一个很神奇的符号,它的外观非常的简洁、洋气,在量子力学中的作用就像路标对开车的作用一样重要,所以受到大量学习量子力学的人的喜爱。
其含义非常简单,最基本的狄拉克符号如下所示<状态2|状态1>狄拉克符号是从右往左看的,<状态2|状态1>表示的是从状态1到状态2的概率幅(关于概率幅的含义可以看我之前的推送量子力学笔记——电子在晶格中的传播)。
状态(state)在量子力学可以用来表示很多信息,比如一个粒子它处于某一位置可以称为处于某一状态,相应的它的特定的动量、角动量等信息都可以描述为状态(因为更多人直接称之为“态”,所以下文会直接简写为态)。
值得注意的是,态是矢量,具有方向性,<态2|为左矢量,|态1>为右矢量。
狄拉克符号还可以有各种“拆卸组装转换”的方法:1、狄拉克符号可以拆分成局部,比如:<态2|,或者|态1>拆分好处一来可以减少字数,二来空缺的那一部分要补充时可以填入任何态,增加使用的灵活性。
2、狄拉克符号还可以连着使用,比如:<态3|态2><态2|态1>表示为态1到态2,然后从态2再到态3的概率幅。
3、狄拉克符号转换前后位置时需要取复数共轭:<态2|态1> = <态1|态2>*(变换的原理会在下文讲到)4、狄拉克符号还可以量化两个状态跳转的过程:<态2|Q|态1>Q的含义为一个算符(operator),意思是态1经过算符变换到态2,这个算符可以是施加外力、旋转、使粒子穿过一个特殊设备、甚至静置一段时间,等等……对比一下同样表示概率幅的波函数,狄拉克符号没有像指数、复数这些复杂的东西,而且可以任意“拆分组装”,所以显得非常友好。
Dirac 符号系统与表象一、Dirac 符号1. 引言我们知道任一力学量在不同表象中有不同形式,它们都是取定了某一具体的 力学量空间,即某一具体的力学量表象。
量子描述除了使用具体表象外,也可以不取定表象,正如几何学和经典力学中也可用矢量形式 A 来表示一个矢量,而不用具体坐标系中的分量(A x , A y , A z )表示一样。
量子力学可以不涉及具体表象来讨论粒子的状态和运动规律。
这种抽象的描 述方法是由 Dirac 首先引用的,本质是一个线性泛函空间,所以该方法所使用的符号称为 Dirac 符号。
2. 态矢量(1). 右矢空间力学量本征态构成完备系,所以本征函数所对应的右矢空间中的右矢也组成该空间的完备右矢(或基组),即右矢空间中的完备的基本矢量(简称基矢)。
右矢空间的任一矢量 |ψ> 可按该空间的某一完备基矢展开。
例如:=n na n ψ∑(2). 左矢空间右矢空间中的每一个右矢量在左矢空间都有一个相对应的左矢量,记为 < |。
右矢空间和左矢空间称为伴空间或对偶空间,<ψ | 和 |ψ> 称为伴矢量。
<p ’ |, <x’ |, <Q n | 组成左矢空间的完备基组,任一左矢量可按其展开,即左矢空间的任一矢量可按左矢空间的完备基矢展开。
(3). 伴矢量<ψ | 和 |ψ>的关系 |ψ >按 Q 的左基矢 |Q n > 展开:|ψ > = a 1 |Q 1> + a 2 |Q 2> + ... + a 3 |Q 3 > + ...展开系数即相当于 Q 表象中的表示:12n a a a ψ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M M<ψ| 按 Q 的左基矢 <Q n | 展开:<ψ| = a*1 <Q 1 | + a*2 <Q 2 | + ... + a*n <Q n | + ...展开系数即相当于 Q 表象中的表示:ψ+= (a*1, a*2, ..., a*n , ... )同理 某一左矢量 <φ| 亦可按 Q 的左基矢展开:<φ| = b*1 <Q 1 | + b*2 <Q 2 | +... + b*n <Q n | + ...定义|ψ>和 <φ|的标积为:*n n nb a ϕψ=∑。
显然<φ|ψ>* = <ψ|φ>。
对于满足归一化条件的内积有:*1n n na a ψψ==∑。
这样,本征态的归一化条件可以写为:由此可以看出:<ψ | 和 |ψ> 满足:a )在同一确定表象中,各分量互为复共轭;b )由于二者属于不同空间所以它们不能相加,只有同一空间的矢量才能相加;c )右矢空间任一右矢可以和左矢空间中任一左矢进行标积运算,其结果为一复数。
(4). 本征函数的封闭性 a )分立谱 展开式:=n nna Q ψ⇒∑|()|()()m n m n n mn n nnQ a t Q Q a t a t ψδ<>=<>==∑∑可得:|||n n nQ Q ψψ>=><>∑因为 |ψ> 是任意态矢量,所以:||1n n nQ Q ><=∑b )连续谱对于连续谱 |q > ,q 取连续值,任一状态 |ψ >展开式为:|()|q a t q dqψ>=>⇒⎰ 因为 |ψ> 是任意态矢量,所以:||1q dq q ><=⎰这就是连续本征值的本征矢的封闭性。
c )投影算符|Q n ><Q n |或|q><q| 的作用相当一个算符,它作用在任一态矢|ψ >上,相当于把 |ψ> 投影到左基矢 |Q n > 或 |q> 上,即作用的结果只是留下了该态矢在 |Q n > 上的分量 <Q n |ψ> 或 <q|ψ>。
故称 |Q n ><Q n | 和 |q><q| 为投影算符。
因为|ψ> 在 X 表象的表示是ψ(x, t),所以显然有:在分立谱下:||1n n nQ Q ><=∑||'|'n n nx Q Q x x x <><>=<>∑所以*(')()(')n n nu x u x x x δ=-∑。
在连续谱下:||1q dq q ><=⎰|||x q dq q x x x ''<><>=<>⎰'|''(''')'|''(''')|n m nm p p p p x x x x Q Q δδδ<>=-<>=-<>=连续谱连续谱分立谱|||q dq q ψψ>=><>⎰|(,)||**(,)x x t x x x t ψψψψψ<>=⎧⎨<>=<>=⎩所以*(')()(')q q u x u x dq x x δ=-⎰。
上述讨论即本征矢的封闭性,其与完备性的区别如下:正交归一性的表示式是对坐标的积分,封闭性的表示式是对本征值的求和或积分。
所以,我们也可以把封闭性解释为本征函数对于本征值的求和或积分是正 交归一的。
它来自于本征函数的完备性,也是本征函数完备性的表示。
3. 算符(1). 右矢空间 X 表象下:在一般Dirac 表象下:利用分立谱下的完备性可以得到: 写成矩阵形式为:即Q 表象下ψ = F φ。
平均值公式:ˆ||F Fψψ=<>。
利用利用分立谱下的完备性可以得到: *ˆ||||m m n nmnmmn nmnF Q Q F Q Q a F a ψψ=<><><>=∑∑(2). 共轭式(右矢空间)*ˆ||*|||*|*|()|ˆˆ|||||m m m n n n mn n nm n nm nn n n nnmmnQ Q Q F Q Q F Q F Q F Q Q Q FQ F Q ψψϕϕϕϕϕϕ+++⎛⎫<>=<>=<><> ⎪⎝⎭⎛⎫=<>=<>=<> ⎪⎝⎭=<><>=<>∑∑∑∑∑% 从而可以得到:ˆ||Fψϕ+<=<。
如果ˆF +为厄米算符,则有ˆ||F ψϕ<=<。
)'()()'(*)'()()'(*x x dq x u x u x x x u x u q q n n n -=-=⎰∑δδ)'()()(*)()(*'q q dx x u x u dx x u x u q q nmm n -==⎰⎰δδˆˆ(,)(,)(,)x t F x p x t ψϕ=>>=<<φψ|ˆ||FQ Q m m >><<=∑φ||ˆ|nn m n Q Q F Q >>=φψ|ˆ|F ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><><><=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛><><><M M ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛM M φφφψψψ||||ˆ|,|ˆ|,|ˆ|,|ˆ|,|ˆ||||2112212211121n n n Q Q Q Q F Q Q F Q Q F Q Q F Q Q F Q Q Q Q表明量子力学中的力学量既可以向右作用到右矢量上,也可以向左作用到左矢量上。
例:力学量算符 x 在动量中的形式ˆ||xψϕ>=> ˆˆ||||||p p x p x p dp p ψϕϕ'''<>=<>=<><>⎰ˆˆ||||||||||()|1||21122()i i px p x i i i i px p x px p x p xp p x dx x x x dx x p p x dxx x x dx x p p x dxx x x dx x p p x xdx x p exedxi e e dx i e e dx p p i p p p δπππδ'-''--'''''<>=<><><>'''''=<><><>'''''=<>-<>'=<><>=∂∂==∂∂∂'=-∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰hhh h h hh h h h h h即有:故坐标算符 x 在动量表象中取如下形式:ˆxi p∂=∂h4. 总结>'<'>'<>=>=<<⎰φφψ||ˆ||ˆ||p p d p x p x p p ><∂∂>='<''-∂∂=⎰φφδ||)(p p i p p d p p p i ηη(1)X表象描述与狄拉克符号1)(|)(|1),(),()()(ˆ),(ˆ)(|),(**>=ψψ<>=<=ψψ=∇->ψψ⎰⎰ttQQdxtxtxdxxuxuFirFttxmnnmmnnmδδ本征函数归一化算符波函数ηρDirac 符号项目X 表象⎰⎰∑⎰=<>=><-'='-'='''-'>='''<''-'='''1||1||)()()()()()()(|)()()(***qdqqQQxxdqxuxuxxxuxuqqqqqqdxxuxunnqqnnnqqδδδδ封闭性本征函数归一性正交>=<=>>==>Φ>=ψΦ=ψ⎰ψψψψψλψλψψ|ˆ|ˆ||ˆ)()()ˆ,(ˆ)(|ˆ)(|),()ˆ,(ˆ),(*FFdxFFFrrprFtFttxpxFtxx平均值本征方程公式ρρρρ>ψ>=ψψ∇-=ψ∂∂->=<=⎰)(|ˆ)(|),(),(ˆ),(|ˆ|ˆ*tHtdtditrirHtrtiSnFmFdxFFmnnmmnηρηρρη方程矩阵元ψψ(2)左右矢空间的对应关系左矢空间右矢空间><ψψ||FFˆˆ+>>==<<+φψφψ|ˆ|ˆ||FF(3)厄密共轭规则由常量C、左矢、右矢和算符组成的表示式,求其厄密共轭式的表示规则1)把全部次序整个颠倒2)作如下代换:常量 C C*< | 左矢右矢| >| > < |+FFˆˆ*|]||ˆ|ψφ><><vFuC*|ˆ|||CuFv><><+φψ二、态的表象到目前为止,体系的状态都用坐标(x,y,z)的函数表示,也就是说描写状态的波函数是坐标的函数。