概率论与数理统计第一章概率论的基本概念
- 格式:docx
- 大小:435.85 KB
- 文档页数:27
第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2 (n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
第一章概率论的基本概念在现实世界中发生的现象千姿百态,概括起来无非是两类现象:确定性的和随机性的.例如:水在通常条件下温度达到100℃时必然沸腾,温度为0℃时必然结冰;同性电荷相互排斥,异性电荷相互吸引等等,这类现象称为确定性现象,它们在一定的条件下一定会发生.另有一类现象,在一定条件下,试验有多种可能的结果,但事先又不能预测是哪一种结果,此类现象称为随机现象.例如:测量一个物体的长度,其测量误差的大小;从一批电视机中随便取一台,电视机的寿命长短等都是随机现象.概率论与数理统计,就是研究和揭示随机现象统计规律性的一门基础学科.这里我们注意到,随机现象是与一定的条件密切联系的.例如:在城市交通的某一路口,指定的一小时内,汽车的流量多少就是一个随机现象,而“指定的一小时内”就是条件,若换成2小时内,5小时内,流量就会不同.如将汽车的流量换成自行车流量,差别就会更大,故随机现象与一定的条件是有密切联系的.概率论与数理统计的应用是很广泛的,几乎渗透到所有科学技术领域,如工业、农业、国防与国民经济的各个部门.例如,工业生产中,可以应用概率统计方法进行质量控制,工业试验设计,产品的抽样检查等.还可使用概率统计方法进行气象预报、水文预报和地震预报等等.另外,概率统计的理论与方法正在向各基础学科、工程学科、经济学科渗透,产生了各种边缘性的应用学科,如排队论、计量经济学、信息论、控制论、时间序列分析等.第一节样本空间、随机事件1. 随机试验人们是通过试验去研究随机现象的,为对随机现象加以研究所进行的观察或实验,称为试验.若一个试验具有下列三个特点:1°可以在相同的条件下重复地进行;2°每次试验的可能结果不止一个,并且事先可以明确试验所有可能出现的结果;3°进行一次试验之前不能确定哪一个结果会出现.则称这一试验为随机试验(Random trial),记为E.下面举一些随机试验的例子.E1:抛一枚硬币,观察正面H和反面T出现的情况.E2:掷两颗骰子,观察出现的点数.E3:在一批电视机中任意抽取一台,测试它的寿命.E4:城市某一交通路口,指定一小时内的汽车流量.E5:记录某一地区一昼夜的最高温度和最低温度.2.样本空间与随机事件在一个试验中,不论可能的结果有多少,总可以从中找出一组基本结果,满足:1°每进行一次试验,必然出现且只能出现其中的一个基本结果.2°任何结果,都是由其中的一些基本结果所组成.随机试验E的所有基本结果组成的集合称为样本空间(Sample space),记为Ω.样本空间的元素,即E的每个基本结果,称为样本点.下面写出前面提到的试验E k(k=1,2,3,4,5)的样本空间Ωk:Ω1:{H,T};Ω2:{(i,j)|i,j=1,2,3,4,5,6};Ω3:{t|t≥0};Ω4:{0,1,2,3,…};Ω5:{(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y表示最高温度,并设这一地区温度不会小于T0也不会大于T1.随机试验E的样本空间Ω的子集称为E的随机事件(Random event),简称事件①,通常用大写字母A,B,C,…表示.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.例如,在掷骰子的试验中,可以用A表示“出现点数为偶数”这个事件,若试验结果是“出现6点”,就称事件A发生.特别地,由一个样本点组成的单点集,称为基本事件.例如,试验E1有两个基本事件{H}、{T};试验E2有36个基本事件{(1,1)}、{(1,2)}、…、{(6,6)}.每次试验中都必然发生的事件,称为必然事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,每次试验中都必然发生,故它就是一个必然事件.因而必然事件我们也用Ω表示.在每次试验中不可能发生的事件称为不可能事件.空集∅不包含任何样本点,它作为样本空间的子集,在每次试验中都不可能发生,故它就是一个不可能事件.因而不可能事件我们也用∅表示.3.事件之间的关系及其运算事件是一个集合,因而事件间的关系与事件的运算可以用集合之间的关系与集合的运算来处理.下面我们讨论事件之间的关系及运算.1°如果事件A发生必然导致事件B发生,则称事件A包含于事件B(或称事件B包含事件A),记作A⊂B(或B⊃A).A⊂B的一个等价说法是,如果事件B不发生,则事件A必然不发生.若A⊂B且B⊂A,则称事件A与B相等(或等价),记为A=B.为了方便起见,规定对于任一事件A,有∅⊂A.显然,对于任一事件A,有A⊂Ω.2°“事件A与B中至少有一个发生”的事件称为A与B的并(和),记为A∪B.由事件并的定义,立即得到:对任一事件A,有A∪Ω=Ω;Α∪∅=A.A= nii A1=表示“A1,A2,…,A n中至少有一个事件发生”这一事件.A= ∞=1iiA表示“可列无穷多个事件A i中至少有一个发生”这一事件.3°“事件A与B同时发生”的事件称为A与B的交(积),记为A∩B或(AB).由事件交的定义,立即得到:对任一事件A,有A∩Ω=A;A∩∅=∅.①严格地说,事件是指Ω中满足某些条件的子集.当Ω是由有限个元素或由无穷可列个元素组成时,每个子集都可作为一个事件.若Ω是由不可列无限个元素组成时,某些子集必须排除在外.幸而这种不可容许的子集在实际应用中几乎不会遇到.今后,我们讲的事件都是指它是容许考虑的那种子集.B= nii B1=表示“B1,…,B n n个事件同时发生”这一事件.B= ∞=1iiB表示“可列无穷多个事件B i同时发生”这一事件.4°“事件A发生而B不发生”的事件称为A与B的差,记为A-B.由事件差的定义,立即得到:对任一事件A,有A-A=∅;A-∅=A;A-Ω=∅.5°如果两个事件A与B不可能同时发生,则称事件A与B为互不相容(互斥),记作A∩B=∅.基本事件是两两互不相容的.6°若A∪B=Ω且A∩B=∅,则称事件A与事件B互为逆事件(对立事件).A的对立事件记为A,A是由所有不属于A的样本点组成的事件,它表示“A不发生”这样一个事件.显然A=Ω-A.在一次试验中,若A发生,则A必不发生(反之亦然),即在一次试验中,A与A二者只能发生其中之一,并且也必然发生其中之一.显然有A=A.对立事件必为互不相容事件,反之,互不相容事件未必为对立事件.以上事件之间的关系及运算可以用文氏(V enn)图来直观地描述.若用平面上一个矩形表示样本空间Ω,矩形内的点表示样本点,圆A与圆B分别表示事件A与事件B,则A与B的各种关系及运算如下列各图所示(见图1-1~图1-6).图1-1 图1-2 图1-3图1-4 图1-5 图1-6 可以验证一般事件的运算满足如下关系:1°交换律A∪B=B∪A,A∩B=B∩A;2°结合律A∪(B∪C)=(A∪B)∪C,A∩(B∩C)=(A∩B)∩C;3°分配律A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);分配律可以推广到有穷或可列无穷的情形,即A ∩( n i i A 1=)=)(1 n i i A A =, A ∪(1ni i A =)= ni i A A 1)(=; A ∩( ∞=1i i A )=)(1 ∞=i i A A , A ∪(1i i A ∞=)= ∞=1)(i i A A . 4°A -B =A B =A -AB ; 5°对有穷个或可列无穷个A i ,恒有 ;,1111n i i n i i n i in i i A A A A ====== ;,1111 ∞=∞=∞=∞===i i i i i ii i A A A A例1.1 设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件:(1) A 发生而B 与C 都不发生:A C B 或A -B -C 或A -(B ∪C ).(2) A ,B 都发生而C 不发生:AB C 或AB -C .(3) A ,B ,C 至少有一个事件发生:A ∪B ∪C .(4) A ,B ,C 至少有两个事件发生:(AB )∪(AC )∪(BC ).(5) A ,B ,C 恰好有两个事件发生:(AB C )∪(AC B )∪(BC A ).(6) A ,B ,C 恰好有一个事件发生:(A C B )∪(B C A )∪(C B A ).(7) A ,B 至少有一个发生而C 不发生:(A ∪B )C .(8) A ,B ,C 都不发生:C B A 或C B A .例1.2 在数学系的学生中任选一名学生.若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该生是运动员.(1) 叙述AB C 的意义.(2) 在什么条件下ABC =C 成立?(3) 在什么条件下B A ⊂成立?解 (1) 该生是三年级男生,但不是运动员.(2) 全系运动员都是三年级男生.(3) 全系女生都在三年级.例1.3 设事件A 表示“甲种产品畅销,乙种产品滞销”,求其对立事件A .解 设B=“甲种产品畅销”,C =“乙种产品滞销”,则A =BC ,故C B BC A ===“甲种产品滞销或乙种产品畅销”.第二节 概率、古典概型除必然事件与不可能事件外,任一随机事件在一次试验中都有可能发生,也有可能不发生.人们常常希望了解某些事件在一次试验中发生的可能性的大小.为此,我们首先引入频率的概念,它描述了事件发生的频繁程度,进而我们再引出表示事件在一次试验中发生的可能性大小的数——概率.1.频率定义1.1 设在相同的条件下,进行了n 次试验.若随机事件A 在n 次试验中发生了k 次,则比值k /n 称为事件A 在这n 次试验中发生的频率(Frequency ),记为f n (A )= k /n . 由定义1.1容易推知,频率具有以下性质:1° 对任一事件A ,有0≤f n (A )≤1;2° 对必然事件Ω,有f n (Ω)=1;3° 若事件A ,B 互不相容,则f n (A ∪B )=f n (A )+f n (B )一般地,若事件A 1,A 2,…,A m 两两互不相容,则∑===mi i n m i i n A f A f 11)()( .事件A 发生的频率f n (A )表示A 发生的频繁程度,频率大,事件A 发生就频繁,在一次试验中,A 发生的可能性也就大.反之亦然.因而,直观的想法是用f n (A )表示A 在一次试验中发生可能性的大小.但是,由于试验的随机性,即使同样是进行n 次试验,f n (A )的值也不一定相同.但大量实验证实,随着重复试验次数n 的增加,频率f n (A )会逐渐稳定于某个常数附近,而偏离的可能性很小.频率具有“稳定性”这一事实,说明了刻画事件A 发生可能性大小的数——概率具有一定的客观存在性.(严格说来,这是一个理想的模型,因为我们在实际上并不能绝对保证在每次试验时,条件都保持完全一样,这只是一个理想的假设). 历史上有一些著名的试验,德·摩根(De Morgan )蒲丰(Buffon)和皮尔逊(Pearson)曾进行过大量掷硬币试验,所得结果如表1-1所示.表1-1 试验者掷硬币次数 出现正面次数 出现正面的频率 德·摩根2048 1061 0.5181 蒲丰4040 2048 0.5069 皮尔逊12000 6019 0.5016 皮尔逊 24000 12012 0.5005可见出现正面的频率总在0.5附近摆动,随着试验次数增加,它逐渐稳定于0.5.这个0.5就反映正面出现的可能性的大小.每个事件都存在一个这样的常数与之对应,因而可将频率f n (A )在n 无限增大时逐渐趋向稳定的这个常数定义为事件A 发生的概率.这就是概率的统计定义.定义1.2 设事件A 在n 次重复试验中发生的次数为k ,当n 很大时,频率k /n 在某一数值p 的附近摆动,而随着试验次数n 的增加,发生较大摆动的可能性越来越小,则称数p 为事件A 发生的概率,记为P (A )=p .要注意的是,上述定义并没有提供确切计算概率的方法,因为我们永远不可能依据它确切地定出任何一个事件的概率.在实际中,我们不可能对每一个事件都做大量的试验,况且我们不知道n 取多大才行;如果n 取很大,不一定能保证每次试验的条件都完全相同.而且也没有理由认为,取试验次数为n +1来计算频率,总会比取试验次数为n 来计算频率将会更准确、更逼近所求的概率.为了理论研究的需要,我们从频率的稳定性和频率的性质得到启发,给出概率的公理化定义.2.概率的公理化定义定义1.3 设Ω为样本空间,A 为事件,对于每一个事件A 赋予一个实数,记作P (A ),如果P (A )满足以下条件:1°非负性:P (A )≥0;2°规范性:P (Ω)=1;3°可列可加性:对于两两互不相容的可列无穷多个事件A 1,A 2,…,A n ,…,有∑∞=∞==11)()(n n n n A P A P则称实数P (A )为事件A 的概率(Probability ).在第五章中将证明,当n →∞时频率f n (A )在一定意义下接近于概率P (A ).基于这一事实,我们就有理由用概率P (A )来表示事件A 在一次试验中发生的可能性的大小. 由概率公理化定义,可以推出概率的一些性质.性质1 P (∅)=0证 令 A n =∅ (n =1,2,…),则∞=1n n A=∅,且A i A j =∅(i ≠j ,i ,j =1,2,…). 由概率的可列可加性得P (∅)=∑∑∞=∞=∞===111)()(n n nn n P A P A P (∅), 而P (∅)≥0及上式知P (∅)=0.这个性质说明:不可能事件的概率为0.但逆命题不一定成立,我们将在第二章加以说明. 性质2 (有限可加性) 若A 1,A 2,…,A n 为两两互不相容事件,则有.)()(11∑===nk k n k k A P A P证 令A n +1=A n +2=…=∅,则A i A j =∅.当i ≠j ,i ,j =1,2,…时,由可列可加性,得.)()()()(1111∑∑=∞======nk k k k n k k n k k A P A P A P A P性质3 设A ,B 是两个事件,若A ⊂B ,则有);()()(A P B P A B P -=- 或 ()()P A P B ≤.证 由A ⊂B ,知B =A ∪(B -A )且A ∩(B -A )=∅.再由概率的有限可加性有P (B )=P (A ∪(B -A ))=P (A )+P (B -A ),即 P (B -A )=P (B )-P (A );又由P (B -A )≥0,得P (A )≤P (B )性质4 对任一事件A ,P (A )≤1证 因为A ⊂Ω,由性质3得P (A )≤P (Ω)=1性质5 对于任一事件A ,有 )(A P =1-P (A )证 因为A ∪A =Ω,A ∩A=∅,由有限可加性,得1=P (Ω)=P (A ∪A )=P (A )+P (A ),即 P (A )=1-P (A )性质6(加法公式) 对于任意两个事件A ,B 有P (A ∪B )=P (A )+P (B )-P (AB )证 因为A ∪B =A ∪(B -AB )且A ∩(B -AB )=∅.由性质2,3得P (A ∪B ) =P (A ∪(B -AB )) =P (A )+P (B -AB )=P (A )+P (B )-P (AB )性质6还可推广到三个事件的情形.例如,设A 1,A 2,A 3为任意三个事件,则有P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3)-P (A 1A 2)-P (A 1A 3)-P (A 2A 3)+P (A 1A 2A 3)一般地,设A 1,A 2,…,A n 为任意n 个事件,可由归纳法证得P (A 1∪…∪A n ) =).()1()()()(211111n n n k j i kj i n i n j i j i i A A A P A A A P A A P A P ⋅⋅⋅-+⋅⋅⋅-+--≤<<≤=≤<≤∑∑∑例1.4 设A ,B 为两事件,P (A )=0.5,P (B )=0.3,P (AB )=0.1,求:(1) A 发生但B 不发生的概率;(2) A 不发生但B 发生的概率;(3) 至少有一个事件发生的概率;(4) A ,B 都不发生的概率;(5) 至少有一个事件不发生的概率.解(1) P (A B )=P (A -B )=P (A -AB )=P (A )-P (AB )=0.4;(2) P (A B )=P (B -AB )=P (B )-P (AB )=0.2;(3) P (A ∪B )=0.5+0.3-0.1=0.7;(4) P (B A )=P (B A )=1-P (A ∪B )=1-0.7=0.3;(5) P (A ∪B )=P (AB )=1-P (AB )=1-0.1=0.9.3. 古典概型定义1.4 若随机试验E 满足以下条件:1°试验的样本空间Ω只有有限个样本点,即Ω={ω1,ω2,…,ωn };2°试验中每个基本事件的发生是等可能的,即P ({ω1})=P ({ω2})=…=P ({ωn }),则称此试验为古典概型,或称为等可能概型.由定义可知{ω1},{ω2},…,{ωn }是两两互不相容的,故有1=P (Ω)=P ({ω1}∪…∪{ωn })=P ({ω1})+…+P ({ωn }),又每个基本事件发生的可能性相同,即P ({ω1})=P ({ω2})=…=P ({ωn }),故 1=nP ({ωi }),从而 P ({ωi })=1/n ,i=1,2,…,n设事件A 包含k 个基本事件即 A ={ωi 1}∪{ωi 2}∪…∪{ωik },则有P (A )=P ({ωi 1}∪{ωi 2}∪…∪{ωik })=P ({ωi 1})+P ({ωi 2})+…+P ({ωik })=个k n n n /1/1/1+++=k /n 由此,得到古典概型中事件A 的概率计算公式为P (A )=k /n =A 所包含的样本点数/Ω中样本点总数 (1.1)称古典概型中事件A 的概率为古典概率.一般地,可利用排列、组合及乘法原理、加法原理的知识计算k 和n ,进而求得相应的概率.例1.5 将一枚硬币抛掷三次,求:(1) 恰有一次出现正面的概率;(2) 至少有一次出现正面的概率.解 将一枚硬币抛掷三次的样本空间Ω={HHH ,HHT ,HTH ,THH ,HTT ,THT ,TTH ,TTT }Ω中包含有限个元素,且由对称性知每个基本事件发生的可能性相同.(1) 设A 表示“恰有一次出现正面”,则 A ={HTT ,THT ,TTH },故有 P (A )=3/8.(2) 设B 表示“至少有一次出现正面”,由B ={TTT },得P (B )=1-P (B )=1-1/8=7/8当样本空间的元素较多时,我们一般不再将Ω中的元素一一列出,而只需分别求出Ω中与A 中包含的元素的个数(即基本事件的个数),再由(1.1)式求出A 的概率.例1.6 一口袋装有6只球,其中4只白球,2只红球.从袋中取球两次,每次随机地取一只.考虑两种取球方式:(a ) 第一次取一只球,观察其颜色后放回袋中,搅匀后再任取一球.这种取球方式叫做有放回抽取.(b ) 第一次取一球后不放回袋中,第二次从剩余的球中再取一球.这种取球方式叫做不放回抽取. 试分别就上面两种情形求:(1) 取到的两只球都是白球的概率;(2) 取到的两只球颜色相同的概率;(3) 取到的两只球中至少有一只是白球的概率.解 (a )有放回抽取的情形:设A 表示事件“取到的两只球都是白球”,B 表示事件“取到的两只球都是红球”,C 表示事件“取到的两只球中至少有一只是白球”.则A ∪B 表示事件“取到的两只球颜色相同”,而C =B .在袋中依次取两只球,每一种取法为一个基本事件,显然此时样本空间中仅包含有限个元素,且由对称性知每个基本事件发生的可能性相同,因而可利用(1.1)式来计算事件的概率.第一次从袋中取球有6只球可供抽取,第二次也有6只球可供抽取.由乘法原理知共有6×6种取法,即基本事件总数为6×6.对于事件A 而言,由于第一次有4只白球可供抽取,第二次也有4只白球可供抽取,由乘法原理知共有4×4种取法,即A 中包含4×4个元素.同理,B 中包含2×2个元素,于是P (A )= (4×4)/(6×6)=4/9,P (B )= (2×2)/(6×6)=1/9由于AB =Φ,故P (A ∪B )=P (A )+P (B )=5/9,P (C )=P (B )=1-P (B )=8/9.(b)不放回抽取的情形:第一次从6只球中抽取,第二次只能从剩下的5只球中抽取,故共有6×5种取法,即样本点总数为6×5.对于事件A 而言,第一次从4只白球中抽取,第二次从剩下的3只白球中抽取,故共有4×3种取法,即A 中包含4×3个元素,同理B 中包含2×1个元素,于是P (A )= (4×3)/(6×5) =2624P P =2/5, P (B )=(2×1)/(6×5) =2622P P =1/15. 由于AB=Φ,故P (A ∪B )=P (A )+P (B )=7/15,P (C )=1-P (B )=14/15.在不放回抽取中,一次取一个,一共取m 次也可看作一次取出m 个,故本例中也可用组合的方法,得P (A )=2624C C =2/5,P (B )=2624C C =1/15. 例1.7 箱中装有a 只白球,b 只黑球,现作不放回抽取,每次一只.(1) 任取m +n 只,恰有m 只白球,n 只黑球的概率(m ≤a ,n ≤b );(2) 第k 次才取到白球的概率(k ≤b +1);(3) 第k 次恰取到白球的概率.解 (1)可看作一次取出m +n 只球,与次序无关,是组合问题.从a +b 只球中任取m +n 只,所有可能的取法共有n m b a ++C 种,每一种取法为一基本事件且由于对称性知每个基本事件发生的可能性相同.从a 只白球中取m 只,共有m a C 种不同的取法,从b 只黑球中取n 只,共有n b C 种不同的取法.由乘法原理知,取到m 只白球,n 只黑球的取法共有m a C n b C 种,于是所求概率为p 1=n m ba nb m a++C C C . (2) 抽取与次序有关.每次取一只,取后不放回,一共取k 次,每种取法即是从a+b 个不同元素中任取k 个不同元素的一个排列,每种取法是一个基本事件,共有k b a +P 个基本事件,且由于对称性知每个基本事件发生的可能性相同.前k -1次都取到黑球,从b 只黑球中任取k -1只的排法种数,有1P -k b 种,第k 次抽取的白球可为a 只白球中任一只,有1P a 种不同的取法.由乘法原理,前k -1次都取到黑球,第k 次取到白球的取法共有11P P a k b -种,于是所求概率为p 2=k ba a kb +-P P P 11. (3) 基本事件总数仍为kb a +P .第k 次必取到白球,可为a 只白球中任一只,有1P a 种不同的取法,其余被取的k -1只球可以是其余a+b -1只球中的任意k -1只,共有11P --+k b a 种不同的取法,由乘法原理,第k 次恰取到白球的取法有111k a a b P P -+-种,故所求概率为 p 3=111k a a b k a b P P a P a b-+-+=+. 例1.7(3)中值得注意的是p 3与k 无关,也就是说其中任一次抽球,抽到白球的概率都跟第一次抽到白球的概率相同,为ba a +,而跟抽球的先后次序无关(例如购买福利彩票时,尽管购买的先后次序不同,但各人得奖的机会是一样的).例1.8 有n 个人,每个人都以同样的概率1/N 被分配在N (n<N )间房中的任一间中,求恰好有n 个房间,其中各住一人的概率.解 每个人都有N 种分法,这是可重复排列问题,n 个人共有N n 种不同分法.因为没有指定是哪几间房,所以首先选出n 间房,有nN C 种选法.对于其中每一种选法,每间房各住一人共有n !种分法,故所求概率为 p =n n N N n !C . 许多直观背景很不相同的实际问题,都和本例具有相同的数学模型.比如生日问题:假设每人的生日在一年365天中的任一天是等可能的,那么随机选取n (n ≤365)个人,他们的生日各不相同的概率为p 1=n n n 365!C 365, 因而n 个人中至少有两个人生日相同的概率为p 2=1-nn n 365!C 365. 例如n =64时p 2=0.997,这表示在仅有64人的班级里,“至少有两人生日相同”的概率与1相差无几,因此几乎总是会出现的.这个结果也许会让大多数人惊奇,因为“一个班级中至少有两人生日相同”的概率并不如人们直觉中想象的那样小,而是相当大.这也告诉我们,“直觉”并不很可靠,说明研究随机现象统计规律是非常重要的.例1.9 12名新生中有3名优秀生,将他们随机地平均分配到三个班中去,试求:(1) 每班各分配到一名优秀生的概率;(2) 3名优秀生分配到同一个班的概率.解 12名新生平均分配到三个班的可能分法总数为34448412)!4(!12C C C = (1) 设A 表示“每班各分配到一名优秀生”3名优秀生每一个班分配一名共有3!种分法,而其他9名学生平均分配到3个班共有3)!3(!9种分法,由乘法原理,A 包含基本事件数为 3!·3)!3(!9=2)!3(!9 故有P (A )=2)!3(!9/3)!4(!12=16/55 (2) 设B 表示“3名优秀生分到同一班”,故3名优秀生分到同一班共有3种分法,其他9名学生分法总数为!4!4!1!9C C C 444819=,故由乘法原理,B 包含样本总数为3·!4!4!1!9.故有 P (B )=()2!4!9·3/()3!4!12=3/55 4.几何概型上述古典概型的计算,只适用于具有等可能性的有限样本空间,若试验结果无穷多,它显然已不适合.为了克服有限的局限性,可将古典概型的计算加以推广.设试验具有以下特点:(1) 样本空间Ω是一个几何区域,这个区域大小可以度量(如长度、面积、体积等),并把Ω的度量记作m (Ω).(2) 向区域Ω内任意投掷一个点,落在区域内任一个点处都是“等可能的”.或者设落在Ω中的区域A 内的可能性与A 的度量m (A )成正比,与A 的位置和形状无关.不防也用A 表示“掷点落在区域A 内”的事件,那么事件A 的概率可用下列公式计算:P (A )=m (A )/m (Ω),称它为几何概率.例1.10 在区间(0,1)内任取两个数,求这两个数的乘积小于1/4的概率. 解 设在(0,1)内任取两个数为x ,y ,则0<x <1,0<y <1图1-7即样本空间是由点(x ,y )构成的边长为1的正方形Ω,其面积为1.令A 表示“两个数乘积小于1/4”,则A ={(x ,y )|0<xy <1/4,0<x <1,0<y <1}事件A 所围成的区域见图1-7,则所求概率P (A ) =2ln 2141d 414311d )411(11d d 114/114/111/411/4+=+-=--=-⎰⎰⎰⎰x x x x y x x图1-8例1.11 两人相约在某天下午2∶00~3∶00在预定地方见面,先到者要等候20分钟,过时则离去.如果每人在这指定的一小时内任一时刻到达是等可能的,求约会的两人能会到面的概率.解 设x ,y 为两人到达预定地点的时刻,那么,两人到达时间的一切可能结果落在边长为60的正方形内,这个正方形就是样本空间Ω,而两人能会面的充要条件是|x -y |≤20,即x-y ≤20且y-x ≤20.令事件A 表示“两人能会到面”,这区域如图1-8中的A .则P (A ) =.95604060)()(222=-=Ωm A m第三节 条件概率、全概率公式1. 条件概率的定义定义1.5 设A ,B 为两个事件,且P (B )>0,则称P (AB )/P (B )为事件B 已发生的条件下事件A 发生的条件概率,记为P (A |B ),即P (A |B )= P (AB )/P (B )易验证,P (A |B )符合概率定义的三条公理,即:1° 对于任一事件A ,有P (A |B )≥0;2° P (Ω|B )=1;3°,)()(11∑∞=∞==i i iB A P B A P 其中A 1,A 2,…,A n ,…为两两互不相容事件.这说明条件概率符合定义1.3中概率应满足的三个条件,故对概率已证明的结果都适用于条件概率.例如,对于任意事件A 1,A 2,有P (A 1∪A 2|B )=P (A 1|B )+P (A 2|B )-P (A 1A 2|B )又如,对于任意事件A ,有P (A |B )=1-P (A |B ).例1.12 某电子元件厂有职工180人,男职工有100人,女职工有80人,男女职工中非熟练工人分别有20人与5人.现从该厂中任选一名职工,求:(1) 该职工为非熟练工人的概率是多少?(2) 若已知被选出的是女职工,她是非熟练工人的概率又是多少?解 题(1)的求解我们已很熟悉,设A 表示“任选一名职工为非熟练工人”的事件,则P (A )=25/180=5/36而题(2)的条件有所不同,它增加了一个附加的条件,已知被选出的是女职工,记“选出女职工”为事件B ,则题(2)就是要求出“在已知B 事件发生的条件下A 事件发生的概率”,这就要用到条件概率公式,有P (A |B ) =P (AB )/P (B )/=(5/180)/(80/180)= 1/16此题也可考虑用缩小样本空间的方法来做,既然已知选出的是女职工,那么男职工就可排除在考虑范围之外,因此“B 已发生条件下的事件A ”就相当于在全部女职工中任选一人,并选出了非熟练工人.从而ΩB 样本点总数不是原样本空间Ω的180人,而是全体女职工人数80人,而上述事件中包含的样本点总数就是女职工中的非熟练工人数5人,因此所求概率为P (A |B )=5/80=1/16例1.13 某科动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的动物活到25岁的概率.解 设A 表示“活到20岁以上”的事件,B 表示“活到25岁以上”的事件,则有 P (A )=0.7,P (B )=0.56且B ⊂A.得 P (B |A )=P (AB )/P (A ) =P (B )/P (A ) =0.56/0.7=0.8.例1.14 一盒中装有5只产品,其中有3只正品,2只次品,从中取产品两次,每次取一只,作不放回抽样,求在第一次取到正品条件下,第二次取到的也是正品的概率.解 设A 表示“第一次取到正品”的事件,B 表示“第二次取到正品”的事件 由条件得P (A )=(3×4)/(5×4)= 3/5,P (AB )= (3×2)/(5×4)= 3/10,故有 P (B |A )=P (AB )/P (A )=(3/10)/( 3/5)= 1/2.此题也可按产品编号来做,设1,2,3号为正品,4,5号为次品,则样本空间为Ω={1,2,3,4,5},若A 已发生,即在1,2,3中抽走一个,于是第二次抽取所有可能结果的集合中共有4只产品,其中有2只正品,故得P (B |A )=2/4=1/2.2.乘法定理由条件概率定义P (B |A )=P (AB )/P (A ),P (A )>0,两边同乘以P (A )可得P (AB )=P (A )P (B |A ),由此可得定理1.1(乘法定理) 设P (A )>0,则有P (AB )=P (A )P (B |A )易知,若P (B )>0,则有P (AB )=P (B )P (A |B )乘法定理也可推广到三个事件的情况,例如,设A ,B ,C 为三个事件,且P (AB )>0,则有P (ABC )=P (C |AB )P (AB )=P (C |AB )P (B |A )P (A )一般地,设n 个事件为A 1,A 2,…,A n ,若P (A 1A 2…A n -1)>0,则有P (A 1A 2…A n )=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1A 2…A n -1).事实上,由A 1⊃A 1A 2⊃…⊃A 1A 2…A n -1,有P (A 1)≥P (A 1A 2)≥…≥P (A 1A 2…A n -1)>0故公式右边的条件概率每一个都有意义,由条件概率定义可知P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1A 2…A n -1)=P (A 1))()()()()()(1212121321121-⋅⋅⋅n n A A A P A A A P A A P A A A P A P A A P =P (A 1A 2…A n ) 例1.15 一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率.解 设A i (i =1,2,3)为第i 次抽到合格品的事件,则有)(321A A A P =)()()(21312A A A P A A P A P =10/100·9/99·90/98≈0.0083.例1.16 设盒中有m 只红球,n 只白球,每次从盒中任取一只球,看后放回,再放入k只与所取颜色相同的球.若在盒中连取四次,试求第一次,第二次取到红球,第三次,第四次取到白球的概率.解 设R i (i =1,2,3,4)表示第i 次取到红球的事件,i R (i =1,2,3,4)表示第i 次取到白球的事件.则有 .32)()()()()(32142131214321kn m k n k n m n k n m k m n m m R R R R P R R R P R R P R P R R R R P +++⋅++⋅+++⋅+== 例1.17 袋中有n 个球,其中n -1个红球,1个白球.n 个人依次从袋中各取一球,每人取一球后不再放回袋中,求第i (i =1,2,…,n )人取到白球的概率.解 设A i 表示“第i 人取到白球”(i=1,2,…,n )的事件,显然P (A 1)=1/n.由21A A ⊃,故A 2=1A A 2,于是P (A 2)=P (1A A 2)=P (1A P (A 2|1A )=111-⋅-n n n =1/n. 类似有P (A 3)=P (1A 2A A 3)=P (1A )P (2A |1A )P (A 3|1A 2A ) =n n 1-·12--n n ·21-n =1/n. P (A n ) =P (1A 2A …1-n A A n )=n n 1-·12--n n ·…·21·1=1/n 因此,第i 个人(i =1,2,…,n )取到白球的概率与i 无关,都是1/n .这个例题与例1.7(3)实际上是同一个概率模型.3.全概率公式和贝叶斯公式为建立两个用来计算概率的重要公式,我们先引入样本空间Ω的划分的定义.定义1.6 设Ω为样本空间,A 1,A 2,…,A n 为Ω的一组事件,若满足1°A i A j =Φ, i ≠j ,i ,j =1,2,…,n ,2° ni iA 1= =Ω, 则称A 1,A 2,…,A n 为样本空间Ω的一个划分.例如:A ,A 就是Ω的一个划分.若A 1,A 2,…,A n 是Ω的一个划分,那么,对每次试验,事件A 1,A 2,…,A n 中必有一个且仅有一个发生.定理1.2(全概率公式) 设B 为样本空间Ω中的任一事件,A 1,A 2,…,A n 为Ω的一个划分,且P (A i )>0 (i =1,2,…,n ),则有P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+…+P (A n )P (B |A n )=.)()(1∑=ni i i A B P A P 称上述公式为全概率公式.。