第一章 概率论与数理统计1
- 格式:doc
- 大小:282.77 KB
- 文档页数:5
概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算⊂(事件B包含事件A )事件A 发生必然导致事件B 发生.∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) . ,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) ~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) ~ b (n,p) (0<p<1) n p n p (1- p) ~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P~ U(a,b) (a+b)/2 (b-a) 2/12 服从参数为?的指数分布 ? ?2 ~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。
第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
第一章 随机事件与概率(一)随机事件知识点1、称试验E 的样本空间的子集为随机事件,用A 、B 、C …表示。
事件A 的元素是样本点,它在一次试验中,可能出现,也可能不出现。
A 中的某个样本点出现了,事件A 发生,否则,A 不发生。
因此,在一次试验中,可能发生也可能不发生的事情,就是随机事件。
样本空间S 有两个特殊的子集;S 自身和空集φ。
S 含所有的样本点,每次试验,必然发生;φ不含样本点,每次试验一定不发生。
在一定条件下,每次试验一定发生的事情,称为必然事件。
每次试验一定不发生的事情,称为不可能事件。
必然事件S ,不可能事件φ是事先就能明确是否会发生,属于确定性现象,但在概率统计中,为了研究问题的需要,仍将其作为特殊的随机事件处理,使得事件间有着完整的关系,S A ⊂⊂φ。
此外,在样本空间的子集中,只含一个样本点的事件,称为基本事件。
样本点的个数超过一个的事件,称为复合事件。
2、事件之间的关系和运算由于事件是样本点的集合,因此,事件之间的关系和运算可借助集合之间的关系与运算来定义。
其运算规律也同集合间的运算规律。
(1)事件的包含与相等若事件A 发生必然导致事件B 发生,则称A 包含于B (或B 包含A ),记B A ⊂(或A B ⊃)。
若B A ⊂且A B ⊃,则称事件A 与事件B 相等,记B A =。
(2)事件的和事件A 与事件B 至少有一个发生的事件,记作B A ,称为A 与B 的和事件,有{}B e A e e B A ∈∈=或 。
同样地有限个事件n A A A ,,,21 至少有一个发生的事件,记作 ni i A 1=,称为有限个事件的和事件。
可列多个事件 ,,,,21i A A A 至少有一个发生的事件,记作 ∞=1i i A ,称为可列多个事件的和事件。
(3)事件的积事件A 与事件B 同时发生的事件,记作B A (或AB ),称为A 与B 的积事件,{}B e A e e AB ∈∈=且 类似地,有限个多个事件n A A A ,,,21 同时发生的事件,记作 ni i A 1=。
概 率 论第一章 随机事件与概率例1 设B A ,为随机事件,已知()4.0,6.0)(,5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P +例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球例3 袋中有两个5分的,三个贰分的,五个1分的钱币。
任取其中5个,求钱额总数超过壹角的概率。
例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少?例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。
现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。
试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。
例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。
例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(======BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。
例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。
例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。
例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。
现该厂生产了)2n(n ≥台仪器(假设各台仪器的生产过程相互独立),求:1) 全部能出厂的概率; 2)其中恰好有两件不能出厂的概率; 3)其中至少有两件不能出厂的概率。
例12 某型号的高炮,每门炮发射一发击中飞机的概率是0.6。
现若干门炮各发射一发,问欲以99%的把握击中来犯的一架敌机至少需配置几门炮?习 题一 填空题1 设B A ,为随机事件,,3.0)(,7.0)(=-=B A P A P 则()______=B A P2 设事件B A ,相互独立,已知,8.0)(,5.0)(==B A P A P 则()______=B A P ()______=B A P3 设B A ,是两个任意不相容的事件,则________)(=-B A P4 设B A ,是两个随机事件,已知()7.0,4.0)(,3.0)(===B A P A B P B A P ,则 _______)(=+B A P5 设41)()()(===C P B P A P ,81)()()(===BC P AC P AB P ,161)(=ABC P ,则 _______)(=C B A P ________)(=C B A P P(C B A ,,恰好发生一个)=________ P(C B A ,,至多出现一个)= ________ ()_______=C B A A P6 一射手对同一目标射击4次,假设每次是否命中目标是相互独立的,已知至少命中一次的一射手对同一目标射击4次,假设每次是否命中目标是相互独立的,已知至少命中一次的概率是8180,则该射手的命中概率是________ 7 设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,则另一件也是不合格品的概率是________8 通信渠道传递15个信号,假设每个信号在传递过程中失真的概率为P ,若C B A ,,分别表示A :无一信号失真;B :恰有一信号失真;C :两个以上信号失真,则____)(=A P ____)(=B P ____)(=C P9 两封信随机地投入已标号为1,2,3,4,5的五个信筒内,则第3号信筒刚好只投入一封信的概率为________10 有k 个袋子,每个袋内均有n 张卡片,分别编有号码1,2,n , 。
现在从每个袋中各取1张卡片,则取到卡片上的最大编号不超过2+m ,且不小于m 的概率为________11 在一张打上方格的纸上投一枚直径为1的硬币,方格边长为________时,才能使硬币不与线相交的概率不小于1%12 甲、乙两射手对同一目标进行射击,甲射手的命中率为1P ,乙射手的命中率为2P ,)1,0(21<<P P 。
规定甲先开始每人一次轮流进行,直到目标被击中为止,要使甲先命中,则1P ,2P 应满足关系________二 选择题1 设B A ,为任意两个事件,且0)(,>⊂B P B A ,则下列成立的是( )A ))()(B A P A P < B ))()(B A P A P ≤C ))()(B A P A P >D ))()(B A P A P ≥ 2 设B A ,满足1)(=A B P ,则( )A )A 是必然条件B )0)(=A B PC )B A ⊃D ))()(B P A P ≤3 对事件B A ,,下列命题正确的是( )A) 事件B A ,互不相容,则事件B A ,也互不相容。
B) 如果B A ,相容,则B A ,也相容。
C) 如果B A ,互不相容,且,0)(,0)(>>B P A P 则B A ,相互独立。
D)若B A ,相互独立,则B A ,也独立。
4 设B A ,C 是两两独立且不能同时发生的随机事件,且,)()()(x C P B P A P ===则x 的最大值为( )A) 21 B ) 1 C) 31 D) 41 5 已知B A ,C 为任意三个随机事件,则[]))((C A B A P -+等于( )A) )()()()(ABC P AB P AC P A P -+- B) )()()()(ABC P AB P AC P A P --+C) )()()(ABC P AC P A P +- D) )()(AC P A P -6 10张奖券中有3张中奖的奖券,每人购买一张,则前三个购买者中恰有一个中奖的概率为( )A) 3.07.02310⨯⨯C B) 3.0 C) 407 D) 4021三、解答题1 袋中有8蓝2白共10个球,从中无放回地任取2次 ,每次任取一球。
求下列事件的概率1) 两次都是蓝球 2)两次中恰有一次取得蓝球 3)至少一次取得白球4)第2次取到白球2 现有编号为1,2,3的3个盒子,1号盒中有1红一黑2个球,2号盒中有4白4蓝共8个球,3号盒中有6白2蓝共8个球;先从1号盒中任取一球,如取得红球,则再从2号盒中任取一球;如取得黑球,则再从3号盒中任取一球,求:1)取得白球的概率 2)从3号盒中取得白球的概率。
3)若取得的是白球,求它是从3号盒中取出的概率。
3 一个自动报警装置由雷达和计算机两部分构成,两部分有任何一个失灵,这个报警装置就失灵,若使用100个小时后,雷达部分失灵的概率为1.0,计算机部分失灵的概率为3.0。
若两部分失灵与否相互独立,求这个报警装置使用100个小时而不失灵的概率。
4 从n 双不同的鞋子中任取)2(2n r r <只,求下列事件的概率 1)没有成对的鞋子 2)只有一对鞋子 3) 恰有两对鞋子 4)有r 对鞋子5 有朋友从远方来,他乘火车,轮船,汽车,飞机的概率依次为3.0,2.0,1.0,4.0,如乘火车,轮船,汽车来的话,迟到的概率分别为121,31,41,而乘飞机则不迟到,求 1)他迟到的概率 2)已知他迟到了,他是乘火车来的概率有多大?6 设每一个飞机引擎在飞行中出故障的概率为1P -,且各引擎是否出故障是相互独立的,如果至少有50%的引擎能正常运行,飞机就能成功地飞行,问对多大的P 而言,4引擎比2引擎更为可取?7 某商场有灯管若干箱,每箱内20只灯管,其中有0,1,2只残次品的概率分别为 ,70. 2.0,1.0。
一顾客从其所购的一箱中任取4只察看,有残次品则退货,否则买下,求下列事件的概率: 1)买下; 2)在该顾客买下的这一箱中,恰有1只残次品; 3)在该顾客退货的这箱中,恰有2只残次品。
8 两人约定上午9点到10点在公园会面,试求一人要等另一人h 21以上的概率。
9 若已知0=t 时,某分子与另一分子碰撞,又知任何0≥t 和0>∆t ,若不管该分子在时刻t 以前是否遭受碰撞,在),(t t t ∆+中遭受碰撞的概率等于)(t O t ∆+∆λ,试求该分子在时刻t 还没有再受碰撞的概率。
10 若每蚕产n 个卵的概率为),0(,2,1,0,!>==-λλλ n e n P nn ,而每个卵变为成虫的概率为P ,且各卵是否变成成虫彼此间没有关系。
1)求每蚕养出k 只小蚕的概率 2)若某蚕养出了k 只小蚕,求它产了n 个卵的概率。
四、证明题1 证明下列等式 1)()()()A C AB P AC B B P P -=; 2))A B )P(C A P(B A)C ( =B P ;2 若C B A ,,互相独立,证明C B A ,,也相互独立。
3 假设A ,21,B B 互相独立,证明:A 与21B B +,,21B B -21B B 都相互独立。
4 证明下列等式1))()()()()()(1B P A P B A P AB P B P A P +≤≤≤--2))()()()(A P BC P AC P AB P ≤-+答 案一、11242k k 1k 793341) 0.6; 2) 0.2 , 0.7; 3) P(A); 4) 0.58; 5) ;;;;16161647C C 2186) 7) ; 8) 0.94; 0.68; 9) ;35525(m 2)-(m-1)110) 11) a 1 12) P n 9=+<22P1P >+二、1 B 2 D 3 D 4 A 5 D 6D 三、1({}62.097108)()1)2,1.i A 21i ≈⋅===A A P i 次取得蓝色球第)()22121A A A A P +=36.09210898102≈⋅+⋅ 38.0)()321=A A P2.0)()42121=+A A A A P 21);53)3;83)2;85 30.63; 4 1).)4;2)3;2)2422224222422222122222r n rnr n r n n r r n r n r r n rn r C C C C C C C n C C ------⋅⋅ 3151);2);2026 271)0.923;2)0.173;3)0.478;3P ≥ 18;49 λττ-=e P )( 10 P ke k P λλ-!)(。