有理数单元练习试卷(建湖县高作中学七年级上)
- 格式:doc
- 大小:105.50 KB
- 文档页数:2
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
七年级数学上册《第一章有理数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.-2022的绝对值是( )A .12022-B .12022C .2022D .-20222.将5041精确到百位的结果是( )A .5000B .5.0×103C .50D .5.04×1033.下列各组数中,不是..互为相反数的是( ) A .(3)-- 与 (3)+-B .23- 与 2(3)-C .3-- 与 3+D .3(3)-- 与 33 4.若a 是有理数,那么在①1a + ,②1a + ,③1a + ,④21a + 中,一定是正数的 ( )A .1个B .2个C .3个D .4个5.山西省某地某天的最低温度为﹣7℃,且昼夜温差为12℃,则最高温度为( )A .5℃B .7℃C .﹣12℃D .﹣5℃6.如图,数轴的单位长度为1,如果点A 和点C 表示的有理数互为相反数,那么点B 表示的有理数是( )A .-3B .-1C .1D .37.若|a |=5,|b |=19,且|a +b |=﹣(a +b ),则a ﹣b 的值为( )A .24B .14C .24或14D .以上都不对8.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( )A .12B .1118C .76D .59二、填空题9.绝对值不大于4的所有正整数的和为 .10.若数轴上表示互为相反数的两点之间的距离是14,则这两个数是 .11.把时针从钟面数字“12”开始,按顺时针方向拨到“6”,记做拨了 12+周,那么把时针从钟面数字“12”开始拨了 14- 周,则该时针所指的钟面数字为 . 12.地球与太阳的距离约为1.5×108 km,光的速度是3×105 km/s,则太阳光照射到地球上约需 s.13.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润是 元.三、计算题14.计算: 42112(2)63⎡⎤--÷⨯--⎣⎦15.计算: (1)(16 - 34 + 512)× 12 (2)()()148121649-÷⨯÷-16.计算:(1)11623⎛⎫-⨯- ⎪⎝⎭(2)22434292⎛⎫÷-⨯- ⎪⎝⎭.17.下列各数都是由四舍五入法得到的近似数,它们分别精确到哪一位?各有几个有效数字?(1)小红的体重为45.0千克;(2)小明的妈妈的年薪约为5万元;(3)月球轨道呈椭圆形,远地点平均距离为4.055×105千米.18.某中学抽查了某次月考中某班10名同学的成绩,以100分为基准,超过的记为正数,不足的记为负数,记录的结果如下: 8,2,20,9,32,12,14,1,7,0+-+-++--+ .(1)这10名同学中最高分是多少?最低分是多少?最高分与最低分相差多少?(2)小明在这次考试中考了116分,按这种计分方法,应记作什么?19.国庆放假时,小明一家三口准备驾驶小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,先向东走了6千米到超市买东西,然后再向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)问超市A和外公家C相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家...所经历路程小车的耗油量.参考答案:1.C 2.B 3.D 4.B 5.A 6.B 7.C 8.D9.1010.±711.912.5×102(或500)13.16014.解:原式 ()1232=--⨯⨯-112=-+11=15.(1)解:原式=16×12-34×12+512×12 =2-9+5=-(9-2-5)=-2(2)解:原式=(-81)×49×49×(-116) =116.(1)解:原式=-3+2=-1(2)解原式=16÷2-4994⨯=8-1=7 17.解:(1)精确到十分位,有3个有效数字;(2)精确到万位,有1个有效数字;(3)精确到百位,有4个有效数字.18.(1)解:由题意,这10名同学中最高分为 10032132+= (分)最低分为 ()1001486+-= (分)则 1328646-= (分)答:这10名同学中最高分是132分,最低分是86分,最高分与最低分相差46分;(2)解: 11610016-=答:按这种计分方法,应记作 16+ .19.(1)解:点A 、B 、C 如图所示:(2)解:AC=|6-(-4.5)|=10.5(千米).故超市A 和外公家C 相距10.5千米(3)解:6+1.5+12+4.5=24(千米)24×0.08=1.92(升).答:小明一家从出发到返回家所经历路程小车的耗油量约为1.92升。
人教版七年级上册数学《第一章 有理数》单元检测试卷《第一章 有理数》单元检测(一) 时间:60分钟 总分:100分 得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.下列说法中不正确的是( ). A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数 C .-2 000既是负数,也是整数,但不是有理数 D .0是正数和负数的分界 2.-2的相反数的倒数是( ). A .2B .C .D .-23.比-7.1大,而比1小的整数的个数是( ). A .6B .7C .8D .94.如果一个数的平方与这个数的差等于0,那么这个数只能是( ). A .0B .-1C .1D .0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为( ). A .63×102千米 B .6.3×102千米 C .6.3×104千米D .6.3×103千米6.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b7.下列各组数中,相等的是( ). A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)312128.在-5,,-3.5,-0.01,-2,-212各数中,最大的数是( ). A .-12B .C .-0.01D .-59.如果a +b <0,并且ab >0,那么( ). A .a <0,b <0 B .a >0,b >0 C .a <0,b >0D .a >0,b <010.若a 表示有理数,则|a |-a 的值是( ). A .0B .非负数C .非正数D .正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.的倒数是________,的相反数是______,的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________. 13.计算:-|-5|+3=__________. 所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,,,…,第2 013个数是________.15.比大而比小的所有整数的和为________.16.若|x -2|与(y +3)2互为相反数,则x +y =__________. 17.近似数2.35万精确到__________位. 18.对于任意非零有理数a ,b ,定义运算如下:a b =(a -b )÷(a +b ),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分) 19.计算:(每小题4分,共20分) (1)-20+(-14)-(-18)-13;(2)×÷(-9+19);110-110-123-123-123-12-1314-132-123172314(3)-24×;(4)(-81)÷+÷(-16);(5)(-1)3-÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,,0,,-3.14,2 006,-(+5),+1.88(1)正数集合:{ …}; (2)负数集合:{ …}; (3)整数集合:{ …}; (4)分数集合{ …}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人).(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人? 22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16. (1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远? (2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C 点拨:A 中-3.14不是-π,是负分数,C 选项中-2 000是负整数,更是有理数,所以说法错误.故选C.131243⎛⎫-+- ⎪⎝⎭12449112⎛⎫- ⎪⎝⎭43--2272答案:B3答案:C 点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D 点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D 点拨:A 中科学记数法表示为2位数错,B 、C 中10的指数错,只有D 正确,故选D.6答案:D 点拨:a 在原点左侧为负数,b 在原点右侧为正数,所以A 、B 、C 均错,只有D 正确.7答案:D 点拨:32=9,23=8,故A 错;-22=-4,(-2)2=4,所以B 错,-|-3|=-3,|-3|=3,所以C 错;-23=-8,(-2)3=-8,相等,故选D. 8答案:C 点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A 点拨:a +b <0,所以a ,b 中一定至少有一个负数,且负数的绝对值较大.又因为ab >0,所以a ,b 同号,且同为负号.10答案:B 点拨:可以用特殊值法求解,当a =2时,|a |-a =|2|-2=0;当a =0时,|a |-a =|0|-0=0;当a =-2时,|a |-a =|2|-(-2)=4,故选B.11答案: 点拨:根据概念分别写出.12答案:-9或-1 点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1. 13答案:-2 点拨:-|-5|=-5, 14答案:点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是. 15答案:-3 点拨:比大而比小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1 点拨:|x -2|与(y +3)2互为相反数, 所以|x -2|+(y +3)2=0,37-1231231201312013132-123所以x -2=0,y +3=0,所以x =2,y =-3,所以x +y =-1. 17答案:百18答案:-4 点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4. 19解:(1)―20+(―14)―(―18)―13 =-20-14+18-13 =-20-14-13+18 =-47+18=-29;(2)×÷(-9+19)=; (3)-24×=12-18+8=2;(4)(-81)÷+÷(-16)=(-81)×+× =-36-=;(5)(-1)3-÷3×[3―(―3)2]=-1-÷3×(3―9) =-1-××(-6) =-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:;1723141571571211024241016⨯÷=⨯⨯=131243⎛⎫-+- ⎪⎝⎭124494949116⎛⎫- ⎪⎝⎭13613636-112⎛⎫- ⎪⎝⎭12121322,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭(2)负数集合:;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏. 21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a 人,它们相差:(a +1.6+0.8+0.4)-(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a +1.6+0.8+0.4-a -1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人), 所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a 人,所以到3日时的人数是(a +1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16 =+17+7+5+16+11-15-3-6-8-9 =56-41 =+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米. (2)出租司机最远处离出发点有17千米. (3)56+|-41|=97(千米), 0.08×97=7.76(升).44,, 3.14,(5),3⎧⎫-----+⋅⋅⋅⎨⎬⎩⎭422, 3.14,, 1.88,37⎧⎫---+⋅⋅⋅⎨⎬⎩⎭答:这天共耗油7.76升.《第一章 有理数》单元检测(二) 七年级( )班 姓名: 分数:一、选择题(3分×12分=36分)1、下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( ). A 、北京 B 、武汉 C 、广州 D 、哈尔滨2、在有理数-21,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).A 、m 最小B 、n 最小C 、p 最小D 、m, n, p 三个一样大 3、有理数-3的倒数是( ).A 、-31B 、31C 、-3D 、34、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准的一袋是( ). A 、② B 、③ C 、④ D 、⑤5、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ).A 、+B 、-C 、×D 、÷ 6、两个有理数a ,b 式子中运算结果为正数的式子是( ). A 、a+b B 、a -b C 、ab D 、ba7、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ). A 、-1 B 、1 C 、-5 D 、108、下列计算中正确的是( ).A 、-9÷2 ×21 =-9, B 、6÷(31-21)=-1C 、141-141÷65=0,D 、-21÷41÷41=-89、国家游泳中心—“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积为260 000平方米,将260 000用科学记数法表示为( ). A 、0.26×106 B 、26×104 C 、2.6×106 D 、2.6×105 10、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是( ). A 、1022.01(精确到0.01)B 、1.0×103(保留2个有效数字)C 、1020(精确到十位)D 、1022.010(精确到千分位)11、已知|ab |=-ab ≠0 且|a |=|b |,则下列式子中运算结果不正确...的是( ).A 、a+b=0B 、011=+ba C 、022=+b a D 、033=+b a 12、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙丙之间则x 值可能是下列数中的( ).A 、11B 、14C 、17D 、20 二、填空题(3分×4=12分)13、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式: . 14、一列等式如下排列:-2+52=-4÷221,-3+103=-9÷331,-4+174=-16÷441,……,根据观察得到的规律,写出第五个等式: . 15、已知|x |=3,()412=+y , 且xy <0 则x -y 的值是16、如图是一个正方体的平面展开图,每一个面 上写有一个整数并且每两个对面所写数的和都相等。
一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.3.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
七年级数学上册《有理数》单元检测试题带答案初一上册数学有理数单元测试(带答案)一.选择题:(每小题3分,共24 分)1.若规定收入为“+”,那么元表示()A.收入了50元B.支出了50元C减去50元D.等于50元2. -的倒数是()A.-B.2C.-2D.3. 在下列有理数的比较中,正确的是()A.-6V -8B.-1> O.OOO1C.0>-1000D.二4. 计算下列各式,结果是正数的是()A.-(-24)2B.--5 | C(-)2019D.[-(-5)]25•由四舍五入得到的近似数5.30 X 1(下列说法正确的是()A.精确到千位,有两个有效数字B精确到千位,有三个有效数字C.精确到百分位,有两个有效数字D.精确到百分位,有三个有效数字6. 下列每对式子中,计算结果相等的一组是()A. —(—3)与—(—2)3& 32 与(一3)2C.-3X 23与-32X 2D-. 23 与(-2)37. 如图所示的图形为四位同学画的数轴,其中正确的是()8•有理数x和y在数轴上的位置如图所示,那么下列式子中成立的是()A.x+y> OB.x-y v 0C.xy> 0D.x-y> 0二.填空题:(每小题 3 分,共24分)9. 用科学记数法表示-346000000 为10. 某数的绝对值等于8,那么这个数是11. 如果a、b互为倒数,c、d互为相反数,且m=-1,则式子2ab- (c+d)+m2=__12. 某种零件,标明要求是©20士0.2mm(©表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件(填合格”或不合格”13. 数轴上到原点的距离是3 个单位长度的点表示的数是14. 观察下面一列数,探究其中的规律:—1、、、、、…那么,第13三个数是15. 在数-6,1,-2,6,-4 中任取两个数相乘,其中最大的积是__16. 若 | X | +(y+2)2=0, x-y=三.解答题:( 17题9分,其中每小题 1 分;18题25分,每小题5分;19题9分;20题9分.共52分)17. 口算:18 .计算:( 1)( 2)(3) -3 X (-2)3-(-1)1001 -<4))5( 5)19. 现有一车袋装水果,从中抽取10 袋样品进行称重,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,结果记录如下(单位:千克):每袋与标准的差距0-22-11袋数23212(1)这批样品平均每袋的质量比标准每袋的质量多了还是少了?多或少几千克?(2)若标准每袋的质量是25 千克,则抽样检测的总质量是多少千克?(3)如果这车水果共100 袋,则可估计这车水果的总质量比标准的总质量多或少多少千克?20. 某巡警骑摩托车在一条南北大道上巡逻.某天他从岗亭出发,晚上停留在A 处.规定向北的方向为正,当天行驶情况记录如下(单位:千米):附加题(1小题4分,2小题6分,共10分)21. 若,,求.22. 有一种“二十四点”的游戏,游戏规则是这样的:任取四个1至13之间的自然数(包括 1 和13),将这四个数(每个数只能用一次)进行加,减,乘,除,乘方混合运算,使其结果等于24.例如对2,3,4,5 可作如下运算:(3+4+5)X 2=2442+3+5=24.现有四个整数1,2,3,5,运用上述规则能写出很多种不同形式的运算式,使其结果等于24.请你在下面写出其中的三种:运算式如下:(1),(2),(3).。
七年级数学上册有理数单元测试题(新人教带答案)
七年级数学上册有理数单元测试题(新人教带答案)
一、选择题(每小题3分,共24分)
1、下列说法①0是正数;②0是整数;③0是最小的有理数;
④0的相反数是0;⑤0的绝对值是0;⑥0的倒数是0;⑦0大于任何有理数。
其中正确的说法有()
A2个 B3个 c4个 D5个
2、如图,,
根据有理数a 、b、c在数轴上的位置,下列关正确的是()
A b>c>0>a
B a>b>c>0 ca>c>b> 0 Db>0>a>c
3、相反数是它本身的有理数是()
A正数 B负数 c0 D有理数
4、绝对值是10的有理数是()
A10 B-10 c±10 D以上都对
5、下列各组有理数比较大小正确的是()
A-10>-1 B-01<-100 c1>-1000 D0>-10
6、下列各数①(-2)3、②(-2)2 、③ -13、④-(-2)、⑤-(-2)3、
⑥ (-2)2n(n为正整数)其中是负数的个数有()
A1 个 B2个 c3个 D4个
7、若a是最小的自然数,b是最大的负整数,c 是倒数等与它本身的数,则
a+b+ c=( )
A0 B-2 c0或-2 D-1或1
8、若a+b 0,且ab 0,则()
Aa 0、b 0 Ba 0、b 0 ca 0、b 0 Da 0、b 0
二、填空题(每小题3分,共18分)。
第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
人教版七年级上册数学《有理数》测试题(含答案)七年级数学单元测试题(一)有理数一、选择题(每题3分,共30分)1、有一种记分方法:以80分为准,88分记为+8分,则某同学得分为74分,应记为()A、+74分B、74分C、+6分D、6分2、下列各数中,最小的正数是()A、 1B、0C、1D、23、下列说法中正确的是()A、可以用数轴上的点来表示有理数B、数轴上所有的点都表示有理数C、数轴上找不到既不表示正数也不表示负数的点D、数轴上表示1的点一定在原点的左边4、2的相反数是()A、1/2B、1/2C、2D、 25、若a b,则a和b的关系为()A、a和b相等B、a和b互为相反数C、a和b相等或互为相反数D、以上答案都不对6、下列计算,正确的是()A、(2/5)(3/5)=(5/5)B、(7)(3) 4C、(2/3)(1/6)=(1/2)D、(6/7)(6)=(36/7)7、与(x)(y)相等的式子是()A、(x)(y)B、(x)(y)C、(x)yD、(x)(y)8、下列说法错误的是()A、一个数同1相乘,仍得这个数B、一个数同1相乘,得原数的相反数C、互为相反数的数的积为 1D、一个数同0相乘,得09、计算273(1/3)的结果是()A、27B、27C、 3D、310、计算(3)5(2)的值为()A、2B、5C、 3D、 6二、填空题(每题4分,共24分)11、比较大小:3/22和1/31/5的大小关系是1/5的绝对值是12、1030这个数用科学记数法可表示为1.03、12的相反数与7的绝对值的和是19、数轴上点A,B的位置如图所示,若点A左侧有一点C满足AB=AC,则点C表示的数为514、一个数的倒数是1,这个数是115、若x是3的相反数,y=5,则x y的值为2三、解答题一(每题6分,共18分)17、计算:(20)(5)(5)(12)答案:818、计算1(2/3)(5/8)的结果是答案:5/2419、计算:9(1/3)5(1/2)答案:7/6四、解答题二(每题7分,共21分)20、检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,记录结果如下表所示:水泥编号与标准质量的差1 802 1003 504 705 301)用绝对值判断最接近标准质量的是几号水泥;答案:第一号水泥2)计算这5袋水泥的总质量与标准质量的差。
建湖县高作中学七年级数学练习
命题:七年级数学组班级学号姓名
一、选择题:每题2分,共20分
1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( )
A.-500元B.-237元C.237元D.500元
2.有4包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.+2B.-3C.+3D.+4
3.2
|-|的相反数是( ) A.2B.-2C.0.5D.-0.5
4.-2的倒数是( )
A.-2B.2C.1
2
D.
1
2
-
5.甲、乙、丙三地的海拔高度分别为40米、-15米、-10米,那么最低的地方比最高的地方低 ( )
A.-55米B.55米C.50米D.5米
6.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差( )
A.0.8kg B.0.6kg C.0.4kg D.0.5kg
7.下列说法正确的是( ) A.两个数的差一定小于被减数B.减去一个正数,差一定大于被减数
C.0减去任何数,差都是负数D.减去一个负数,差一定大于被减数
8.如图,数轴上A点表示的数减去B点表示的数,结果是( )
A.8B.-8
C.2D.-2
9.在《有理数》这一章的复习课上,同学们在讨论式子“-(-8)”所表示的意义时,出现了下列四种说法:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示-8的绝对值;(4)运算结果等于8.你认为这四种说法中,不正确的说法有( ) A.0个B.1个C.2个D.3个10. 3枚棋子放在数轴的整点上(坐标为整数的点).一次移动可任选其中两枚棋子,并将一枚向右移一个单位,将另一枚向左移一个单位.在下列选项中,最后可将三枚棋子移到同一点上的是( ) A.(0,2009,2010)B.(1,2009,2010)
C.(2,2009,2010)D.(3,2009,2010)
二、填空题:每题2分,共20分
11.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是;
12.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为________;
13.在数8.3、-4、0、-(-5)、+6、-|-10|、1中,正数有____ 个;
14.绝对值小于2.5的所有负整数的积是;
15.
1
2
|-|的倒数是________________;
16.三个数-9、6、-3的和比它们绝对值的和小__________________;
17.写出一个满足下列条件之一的有理数:(1)它在数轴上表示的点在原点的左边;(2)它是一个小于-2
的偶数;答:;
18.一个数是2的相反数,另一个数比-2大-3,则这两个数的和是;
19.如果|a|=5,|b|=3,则a+b=
;
三、解答题
21.(本题满分6分)
(1)画出数轴,并用数轴上的点表示下列各数:-5、2.5、
5
2
-、0、
1
3
2
.
(2)用“<”号把各数从小到大连起来:
(3)请找出其中的一对相反数.
22.计算题:每题3分,共24分 (1) (-23)+(-12) (2) .()8
05425⨯÷- (3) 1+(-2)+|-3|-5
(4) (-4)×2×(-0.25) (5) ()()523121234+-⨯- (6) ()()()311
12424
-⨯-÷-
(7)()()(.)
4
5811255
-⨯⨯-⨯-
(8)()()()311
13428-⨯-÷-⨯
23. (本题满分6分)已知点A 、B 是数轴上的点,完成下列各题:
(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;
(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;
(3)一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .
24. (本题满分8分)某医院急诊病房收治了一位病人,每隔2时测得该病人的体温如下表(单位:℃)
(1)试完成下表(正常人的体温是37℃) (2)这位病人在这一天8时到18时之前,哪个时刻的体温最高?哪个时刻的体温最低? (3)该病人这一天的平均体温是多少摄氏度?
25. (本题满分8分)某同学星期天早晨在双湖公园的东西方向的主干道上跑步,他从A 地出发每隔3分钟就记录下自己的跑步情况:-605,650,580,600,-550(向东记为正方向,单位:米). 15分钟后他在B 地停下来休息,试回答下列问题.
(1)B 地在A 地的什么方向?距A 地多远?(2)该同学在15分钟内一共跑了多少米?
26. (本题满分8分)如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)
(1)当小明输入3、-4、9
5
、-201这四个数时,这四次输出的结果分别是 ; (2)你认为当输入什么数时,其输出结果是0? (3)你认为这个“有理数转换器”不可能输出什么数?。