2020高考数学总复习 第一单元 第二节 命题及其关系、充分条件与必要条件练习
- 格式:doc
- 大小:104.00 KB
- 文档页数:3
课时规范练A组基础对点练1.设a>b,a,b,c∈R,则下列命题为真命题的是()A.ac2>bc2 B.ab>1C.a-c>b-c D.a2>b2解析:对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则ab<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b2,故D错,综上,真命题为C.答案:C2.(2019·太原期末联考)已知a,b都是实数,那么“2a>2b”是“a2>b2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:若2a>2b,则2a-b>1,∴a-b>0,∴a>b.当a=-1,b=-2时,满足2a>2b,但a2<b2,故由2a>2b不能得出a2>b2,因此充分性不成立.必要性:若a2>b2,则|a|>|b|.当a=-2,b=1时,满足a2>b2,但2-2<21,即2a<2b,故必要性不成立.综上,“2a>2b”是“a2>b2”的既不充分也不必要条件.故选D.答案:D3.设a∈R,则“a=4”是“直线l1:ax+8y-8=0与直线l2:2x+ay-a=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵当a≠0时,a2=8a=-8-a⇒直线l1与直线l2重合,∴无论a取何值,直线l1与直线l2均不可能平行,当a=4时,l1与l2重合.故选D.答案:D4.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0 C.若方程x2+x-m=0没有实根,则m>0 D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D5.“x≥1”是“x+1x≥2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意得x+1x≥2⇔x>0,所以“x≥1”是“x+1x≥2”的充分不必要条件,故选A.答案:A6.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.答案:B7.命题“若x>1,则x>0”的否命题是__________.答案:若x≤1,则x≤08.在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A ≤sin B”的__________条件.解析:由正弦定理,得asin A=bsin B,故a≤b⇔sin A≤sin B.答案:充要9.“x>1”是“log12(x+2)<0”的__________条件.解析:由log12(x+2)<0,得x+2>1,解得x>-1,所以“x>1”是“log12(x+2)<0”的充分不必要条件.答案:充分不必要10.设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的______条件.答案:既不充分也不必要B组能力提升练11.若x,y∈R,则x>y的一个充分不必要条件是()A.|x|>|y| B.x2>y2C.x>y D.x3>y3解析:由|x|>|y|,x2>y2未必能推出x>y,排除A,B;由x>y可推出x>y,反之,未必成立,而x3>y3是x>y的充要条件,故选C.答案:C12.“x1>3且x2>3”是“x1+x2>6且x1x2>9”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x1>3,x2>3⇒x1+x2>6,x1x2>9;反之不成立,例如x1=12,x2=20.故选A.答案:A13.“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:∵cos 2α=cos2α-sin2α,∴当sin α=cos α时,cos 2α=0,充分性成立;当cos 2α=0时,∵cos2α-sin2α=0,∴cos α=sin α或cos α=-sin α,必要性不成立,故选A.答案:A14.命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是()A.a≥4 B.a>4C.a≥1 D.a>1解析:要使“对任意x∈[1,2),x2-a≤0”为真命题,只需要a≥4,∴a>4是命题为真的充分不必要条件.答案:B15.(2018·高考北京卷)能说明“若a>b,则1a<1b”为假命题的一组a,b的值依次为________.解析:只要保证a为正b为负即可满足要求.当a>0>b时,1a>0>1b.答案:1,-1(答案不唯一)16.如果“x2>1”是“x<a”的必要不充分条件,则a的最大值为__________.解析:由x2>1,得x<-1,或x>1,又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所以a≤-1,即a的最大值为-1.答案:-1。
教学资料范本2020高考数学一轮复习第1章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件分层演练文-精装版编辑:__________________时间:__________________【精选】20xx最新高考数学一轮复习第1章集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件分层演练文一、选择题1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是( )B.1A.0D.3C.2解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C. 2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( ) B.否命题A.逆命题D.否定C.逆否命题解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(20xx·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的( ) B.充要条件A.充分不必要条件D.既不充分也不必要条C.必要不充分条件件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a-b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.“x>4”是“x2-2x-3>0”的( ) B.充分而不必要条件A.充要条件D.既不充分也不必要条C.必要而不充分条件件解析:选B.因为x2-2x-3>0,所以该不等式的解集为{x|x<-1或x>3},所以x>4⇒x2-2x-3>0.但x2-2x-3>0x>4,所以“x>4”是“x2-2x-3>0”的充分而不必要条件.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m≥1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;④“若a+7是无理数,则a是无理数”的逆否命题.其中正确的是( )A.①②③B.②③④D.①④C.①③④解析:选C.①的逆命题为“若x>0且y>0,则x+y>0”为真,故否命题为真;②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx2-2(m+1)x+m+3>0的解集为R,则m≥1”.因为当m=0时,解集不是R,所以应有即m>1.所以③是真命题;④原命题为真,逆否命题也为真.6.(20xx·石家庄模拟)“log2(2x-3)<1”是“4x>8”的( ) B.必要不充分条件A.充分不必要条件D.既不充分也不必要条C.充分必要条件件解析:选 A.由log2(2x-3)<1⇒0<2x-3<2⇒<x<,4x>8⇒2x>3⇒x>,所以“log2(2x-3)<1”是“4x>8”的充分不必要条件,故选A. 7.已知直线l,m,其中只有m在平面α内,则“l∥α”是“l∥m”的( ) B.必要不充分条件A.充分不必要条件D.既不充分也不必要条C.充分必要条件件解析:选B.当l∥α时,直线l与平面α内的直线m平行、异面都有可能,所以l∥m不一定成立;当l∥m时,根据直线与平面平行的判定定理知直线l∥α,即“l∥α”是“l∥m”的必要不充分条件,故选B. 8.命题“对任意x∈[1,2),x2-a≤0”为真命题的一个充分不必要条件可以是( )B.a>4A.a≥4D.a>1C.a≥1解析:选B.要使“对任意x∈[1,2),x2-a≤0”为真命题,只需要a≥4,所以a>4是命题为真的充分不必要条件.9.(20xx·高考浙江卷)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4 + S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选C.因为{an}为等差数列,所以S4+S6=4a1+6d+6a1+15d=10a1+21d,2S5=10a1+20d,S4+S6-2S5=d,所以d>0⇔S4+S6>2S5,故选C. 10.(20xx·惠州第三次调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的( ) B.充要条件A.充分不必要条件D.既不充分也不必要条C.必要不充分条件件解析:选C.设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C. 11.(20xx·贵阳检测)设向量a=(1,x-1),b=(x+1,3),则“x=2”是“a∥b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.依题意,注意到a∥b的充要条件是1×3=(x-1)(x+1),即x=±2.因此,由x=2可得a∥b,“x=2”是“a∥b”的充分条件;由a∥b不能得到x=2,“x=2”不是“a∥b”的必要条件,故“x=2”是“a∥b”的充分不必要条件,选A. 12.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则实数k的取值范围是( ) B.(2,+∞)A.[2,+∞)D.(-∞,-1]C.[1,+∞)解析:选B.由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.二、填空题13.下列命题中为真命题的是________.①命题“若x>1,则x2>1”的否命题;②命题“若x>y,则x>|y|”的逆命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>1,则x>1”的逆否命题.解析:对于①,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故①为假命题;对于②,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知②为真命题;对于③,命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,故③为假命题;对于④,命题“若x2>1,则x>1”的逆否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故④为假命题.答案:②14.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:1 15.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.解析:由题意知ax2-2ax-3≤0恒成立,当a=0时,-3≤0成立;当a≠0时,得解得-3≤a<0,故-3≤a≤0.答案:[-3,0]16.(20xx·长沙模拟)给出下列命题:①已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的充分不必要条件;②“x<0”是“ln(x+1)<0”的必要不充分条件;③“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的充要条件;④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a=3”可以推出“A⊆B”,但“A⊆B”不能推出“a=3”,所以“a=3”是“A⊆B”的充分不必要条件,故①正确;②“x<0”不能推出“ln(x+1)<0”,但“ln(x+1)<0”可以推出“x<0”,所以“x<0”是“ln(x+1)<0”的必要不充分条件,故②正确;③f(x)=cos2ax-sin2ax=cos 2ax,若其最小正周期为π,则=π⇒a=±1,因此“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件,故③错误;④“平面向量a与b的夹角是钝角”可以推出“a·b<0”,但由“a·b<0”,得“平面向量a与b的夹角是钝角或平角”,所以“a·b<0”是“平面向量a与b的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②。
第二节命题及其关系、充分条件与必要条件一、基础知识批注——理解深一点1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论汇总——规律多一点1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于綈q是綈p的充分不必要条件.其他情况以此类推.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)“x 2+2x -8<0”是命题.( )(2)一个命题非真即假.( )(3)四种形式的命题中,真命题的个数为0或2或4.( )(4)命题“若p ,则q ”的否命题是“若p ,则綈q ”.( )答案:(1)× (2)√ (3)√ (4)×(二)选一选1.“x =-3”是“x 2+3x =0”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件解析:选C 由x 2+3x =0,解得x =-3或x =0,则当“x =-3”时一定有“x 2+3x =0”,反之不一定成立,所以“x =-3”是“x 2+3x =0”的充分不必要条件.2.命题“若a >b ,则a +c >b +c ”的否命题是( )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”.3.(2018·唐山一模)若x ∈R ,则“x >1”是“1x<1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当x >1时,1x <1成立,而当1x <1时,x >1或x <0,所以“x >1”是“1x<1”的充分不必要条件.(三)填一填4.“若a ,b 都是偶数,则ab 是偶数”的逆否命题为________.解析:“a ,b 都是偶数”的否定为“a ,b 不都是偶数”,“ab 是偶数”的否定为“ab 不是偶数”,故其逆否命题为“若ab 不是偶数,则a ,b 不都是偶数”.答案:若ab 不是偶数,则a ,b 不都是偶数5.设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的____________条件.解析:a =(x -1,x ),b =(x +2,x -4),若a ⊥b ,则a·b =0,即(x -1)(x +2)+x (x -4)=0,解得x =2或x =-12, ∴x =2⇒a ⊥b ,反之a ⊥b ⇒x =2或x =-12, ∴“a ⊥b ”是“x =2”的必要不充分条件.答案:必要不充分考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中真命题是( )A .①②B .②③C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D[解题技法]1.由原命题写出其他三种命题的方法由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.2.判断命题真假的2种方法[提醒] (1)对于不是“若p ,则q”形式的命题,需先改写;(2)当命题有大前提时,写其他三种命题时需保留大前提.[题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1或x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若綈q ,则綈p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2,k ∈Z ,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4 解析:选C因为P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =2k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k 2,k ∈Z , 所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题,则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断判断充分、必要条件的三种常用方法为定义法、集合法、等价转化法.[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1” “⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. (3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[解题技法] 判断充分、必要条件的3种方法[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m·n <0成立;当θ=π时,m·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1,则綈p :xy =1,綈q :x =1且y =1.可知綈q ⇒綈p ,綈p 綈q ,即綈q 是綈p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].[答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解:若x ∈P 是x ∈S 的充要条件,则P =S ,所以{ 1-m =-2,+m =10,解得{m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若綈P 是綈S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10},∵綈P 是綈S 的必要不充分条件,∴S 是P 的必要不充分条件,∴P ⇒S 且SP .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧ 1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).[解题技法] 根据充分、必要条件求参数范围的方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.。
第二节 命题及其关系、充分条件与必要条件【考纲下载】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件.(2)若p⇔q,则p与q互为充要条件.(3)若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.1.一个命题的否命题与这个命题的否定是同一个命题吗?提示:不是,一个命题的否命题是既否定该命题的条件,又否定该命题的结论,而这个命题的否定仅是否定它的结论.2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.1.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A 当a=3时,A={1,3},A⊆B;反之,当A⊆B时,a=2或3,所以“a=3”是“A⊆B”的充分而不必要条件.2.命题“若x2>y2,则x>y”的逆否命题是( )A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C 根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材习题改编)命题“如果b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1 C.2 D.3解析:选D 原命题为真,则它的逆否命题为真,逆命题为“若方程ax2+bx+c=0(a≠0)有两个不相等的实根,则b2-4ac>0”,为真命题,则它的否命题也为真.4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 ( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f(x)是奇函数,则f(-x)是奇函数”的否命题是B选项.5.下面四个条件中,使a>b成立的充分而不必要的条件是 ( )A.a>b+1 B.a>b-1 C.a2>b2D.a3>b3解析:选A 由a>b+1,且b+1>b,得a>b;反之不成立.考点一四种命题的关系 [例1] (1)命题“若x>1,则x>0”的否命题是( )A.若x>1,则x≤0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0(2)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数[自主解答] (1)因为“x>1”的否定为“x≤1”,“x>0”的否定为“x≤0”,所以命题“若x>1,则x>0”的否命题为:“若x≤1,则x≤0”.(2)由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案] (1)C (2)C【互动探究】试写出本例(2)中命题的逆命题和否命题,并判断其真假性.解:逆命题:若x+y是偶数,则x,y都是偶数.是假命题.否命题:若x,y不都是偶数,则x+y不是偶数.是假命题. 【方法规律】判断四种命题间关系的方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.(2)原命题和逆否命题、逆命题和否命题有相同的真假性,解题时注意灵活应用.1.命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是 ( )A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>bC.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a≤b解析:选C “且”的否定是“或”,根据逆否命题的定义知,逆否命题为“若a+b≤2 012或a≤-b,则a<b”.2.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A A 中逆命题为“若x >|y |,则x >y ”是真命题;B 中否命题为“若x ≤1,则x 2≤1”是假命题;C 中否命题为“若x ≠1,则x 2+x -2≠0”是假命题;D 中原命题是假命题,从而其逆否命题也为假命题.考点二命题的真假判断 [例2] (1)下列命题是真命题的是( )A .若=,则x =y1x 1y B .若x 2=1,则x =1C .若x =y ,则=x yD .若x <y ,则x 2<y 2(2)(2014·济南模拟)在空间中,给出下列四个命题:①过一点有且只有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A .①②B .②③C .③④D .①④[自主解答] (1)取x =-1排除B ;取x =y =-1排除C ;取x =-2,y =-1排除D ,故选A.(2)对于①,由线面垂直的判定可知①正确;对于②,若点在平面的两侧,则过这两点的直线可能与该平面相交,故②错误;对于③,两条相交直线在同一平面内的射影可以为一条直线,故③错误;对于④,两个相互垂直的平面,一个平面内的任意一条直线必垂直于另一个平面内的无数条与交线垂直的直线,故④正确.综上可知,选D.[答案] (1)A (2)D【方法规律】命题的真假判断方法(1)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.给出下列命题:①函数y =sin(x +k π)(k ∈R )不可能是偶函数;②已知数列{a n }的前n 项和S n =a n -1(a ∈R ,a ≠0),则数列{a n }一定是等比数列;③若函数f (x )的定义域是R ,且满足f (x )+f (x +2)=3,则f (x )是以4为周期的周期函数;④过两条异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中所有正确的命题有________(填正确命题的序号).解析:①当k =时,y =sin(x +k π)就是偶函数,故①错;②当a =1时,S n =0,则a n 的12各项都为零,不是等比数列,故②错;③由f (x )+f (x +2)=3,则f (x +2)+f (x +4)=3,相减得f (x )-f (x +4)=0,即f (x )=f (x +4),所以f (x )是以4为周期的周期函数,③正确;④过两条异面直线外一点,有时没有一条直线能与两条异面直线都相交,故④错.综上所述,正确的命题只有③.答案:③高频考点考点三充 要 条 件 1.充分条件、必要条件是每年高考的必考内容,多以选择题的形式出现,难度不大,属于容易题.2.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性相交汇命题.[例3] (1)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2012·四川高考)设a 、b 都是非零向量,下列四个条件中,使=成立的充分条件a |a|b|b|是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a|=|b|(3)给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =,则3“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.[自主解答] (1)当φ=π时,y =sin(2x +π)=-sin 2x ,则曲线y =-sin 2x 过坐标原点,所以“φ=π”⇒“曲线y =sin(2x +φ)过坐标原点”;当φ=2π时,y =sin(2x +2π)=sin 2x ,则曲线y =sin 2x 过坐标原点,所以“φ=π”⇐/“曲线y =sin(2x +φ)过坐标原点”,所以“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.(2),分别是与a ,b 同方向的单位向量,由=,得a 与b 的方向相同.而a ∥b 时,a |a |b |b |a |a |b |b |a 与b 的方向还可能相反.故选C.(3)对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得=ba =,若B =60°,则sin A =,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =sin Bsin A 312,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.32[答案] (1)A (2)C (3)①④充要条件问题的常见类型及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.(3)充要条件与命题真假性的交汇问题.依据命题所述的充分必要性,判断是否成立即可.1.(2014·西安模拟)如果对于任意实数x ,[x ]表示不超过x 的最大整数,那么“[x ]=[y ]”是“|x -y |<1成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若[x ]=[y ],则|x -y |<1;反之,若|x -y |<1,如取x =1.1,y =0.9,则[x ]≠[y ],即“[x ]=[y ]”是“|x -y |<1成立”的充分不必要条件.2.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的1x -1取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为1x -11x -1x -2x -1(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知a 的取值范围为(-2,-1].3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.解析:一元二次方程x 2-4x +n =0的根为x ==2±,因为x 是整数,4±16-4n24-n 即2±为整数,所以为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知4-n 4-n n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.答案:3或4——————————[课堂归纳——通法领悟]——————————— 1个区别——“A 是B 的充分不必要条件”与“A 的充分不 必要条件是B ”的区别 “A 是B 的充分不必要条件”中,A 是条件,B 是结论;“A 的充分不必要条件是B ”中,B 是条件,A 是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别. 2条规律——四种命题间关系的两条规律 (1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用. 3种方法——判断充分条件和必要条件的方法 (1)定义法;(2)集合法;(3)等价转化法.方法博览(一)三法破解充要条件问题1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.[典例1] 设0<x <,则“x sin 2x <1”是“x sin x <1”的( )π2A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 由0<x <可知0<sin x <1,分别判断命题“若x sin 2x <1,则x sin x <1”π2与“若x sin x <1,则x sin 2x <1”的真假即可.[解析] 因为0<x <,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,π2所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <,而由0<sin x <1,知>1,故x sin 1sin x 1sin x x <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件.[答案] C[点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.(1)若p ⇒q ,则p 是q 的充分条件;(2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q ⇒/ p ,则p 是q 的充分不必要条件;(5)若p ⇒/ q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p ⇒/ q 且q ⇒/ p ,则p 是q 的既不充分也不必要条件.2.集合法集合法就是利用满足两个条件的参数取值所构成的集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.[典例2] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 分别求出使A 、B 成立的参数a 的取值所构成的集合M 和N ,然后通过集合M 与N 之间的关系来判断.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] B[点评] 利用集合间的关系判断充要条件的方法记法条件p 、q 对应的集合分别为A 、B 关系A ⊆B B ⊆A A B⊂B A ⊂A =B A B 且⊄B A ⊄结论p 是q 的充分条件p 是q 的必要条件p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件3.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.[典例3] 已知条件p :≤-1,条件q :x 2-x <a 2-a ,且q 的一个充分不必要条4x -1⌝件是p ,则a 的取值范围是________.⌝[解题指导] “q 的一个充分不必要条件是p ”等价于“p 是q 的一个必要不充分⌝⌝条件”.[解析] 由≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,4x -1当a >1-a ,即a >时,不等式的解为1-a <x <a ;当a =1-a ,即a =时,不等式的解为∅;1212当a <1-a ,即a <时,不等式的解为a <x <1-a .12由q 的一个充分不必要条件是p ,可知p 是q 的充分不必要条件,即p 为q 的一个⌝⌝⌝⌝必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >时,由{x |1-a <x <a } {x |-3≤x <1},得Error!解得<a ≤1;1212当a =时,因为空集是任意一个非空集合的真子集,所以满足条件;12当a <时,由{x |a <x <1-a } {x |-3≤x <1},得Error!解得0≤a <.1212综上,a 的取值范围是[0,1].[答案] [0,1][点评] 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.p 、q 之间的关系和之间的关系p ⌝q ⌝p 是q 的充分不必要条件是的必要不充分条件p ⌝q ⌝p 是q 的必要不充分条件是的充分不必要条件p ⌝q ⌝p 是q 的充要条件是的充要条件p ⌝q ⌝p 是q 的既不充分也不必要条件是的既不充分也不必要条件p ⌝q ⌝[全盘巩固]1.“若b 2-4ac <0,则ax 2+bx +c =0没有实根”,其否命题是 ( )A .若b 2-4ac >0,则ax 2+bx +c =0没有实根B .若b 2-4ac >0,则ax 2+bx +c =0有实根C .若b 2-4ac ≥0,则ax 2+bx +c =0有实根D .若b 2-4ac ≥0,则ax 2+bx +c =0没有实根解析:选C 由原命题与否命题的关系可知,“若b 2-4ac <0,则ax 2+bx +c =0没有实根”的否命题是“若b 2-4ac ≥0,则ax 2+bx +c =0有实根”.2.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 因为f (x ),g (x )均为偶函数,可推出h (x )为偶函数,反之,则不成立.3.(2014·黄冈模拟)与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列解析:选D 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.4.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A “函数f (x )=a x 在R 上是减函数”的充要条件是p :0<a <1.因为g ′(x )=3(2-a )x 2,而x 2≥0,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是2-a >0,即a <2.又因为a >0且a ≠1,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是q :0<a <2且a ≠1.显然p ⇒q ,但q ⇒/ p ,所以p 是q 的充分不必要条件,即“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.5.(2014·南昌模拟)下列选项中正确的是( )A .若x >0且x ≠1,则ln x +≥21ln x B .在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件C .命题“所有素数都是奇数”的否定为“所有素数都是偶数”D .若命题p 为真命题,则其否命题为假命题解析:选B 当0<x <1时,ln x <0,此时ln x +≤-2,A 错;当|a n +1|>a n 时,{a n }不1ln x 一定是递增数列,但若{a n }是递增数列,则必有a n <a n +1≤|a n +1|,B 对;全称命题的否定为特称命题,C 错;若命题p 为真命题,其否命题可能为真命题,也可能为假命题,D 错.6.已知p :≤1,q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则实数2x -1a 的取值范围是( )A. B. C .(-∞,0)∪ D .(-∞,0)∪[0,12](0,12)[12,+∞)(12,+∞)解析:选A 令A ={x |≤1},得A =Error!,令B ={x |(x -a )(x -a -1)≤0},得2x -1B ={x |a ≤x ≤a +1},若p 是q 的充分不必要条件,则A B ,需Error!⇒0≤a ≤.127.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=________.解析:原命题p 显然是真命题,故其逆否命题也是真命题,而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.答案:28.下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >”的充分不必要条件;12④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________(把真命题的序号都填上).解析:①原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,①是真命题;“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,②也是真命题;在△ABC 中,“A >30°”是“sin A >”的必要不充分条件,③是假命题;“函数f (x )=tan(x +φ)为奇函数”12的充要条件是“φ=(k ∈Z )”,④是假命题.k π2答案:①②9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },由|x -1|<1,得0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]10.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).该命题是真命题,证明如下:∵a +b <0,∴a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数.∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),∴否命题为真命题.(2)逆否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.真命题,可证明原命题为真来证明它.∵a +b ≥0,∴a ≥-b ,b ≥-a ,∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ),故原命题为真命题,所以逆否命题为真命题.11.已知集合A =Error!,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-x +1=2+,∵x ∈,∴≤y ≤2,∴A =Error!.32(x -34)716[34,2]716由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤,解得m ≥或m ≤-,7163434故实数m 的取值范围是∪.(-∞,-34][34,+∞)12.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:∵mx 2-4x +4=0是一元二次方程,∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,∴Error!解得m ∈.[-54,1]∵两方程的根都是整数,故其根的和与积也为整数,∴Error!∴m 为4的约数.又∵m ∈,∴m =-1或1.[-54,1]当m =-1时,第一个方程x 2+4x -4=0的根为非整数;而当m =1时,两方程的根均为整数,∴两方程的根均为整数的充要条件是m =1.[冲击名校]1.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B y =|f (x )|的图象关于y 轴对称,但是y =f (x )不一定为奇函数,如取函数f (x )=x 2,则函数y =|x 2|的图象关于y 轴对称,但函数f (x )=x 2是偶函数不是奇函数,即“y =|f (x )|的图象关于y 轴对称”⇒/ “y =f (x )是奇函数”;若y =f (x )是奇函数,图象关于原点对称,所以y =|f (x )|的图象关于y 轴对称,即“y =f (x )是奇函数”⇒“y =|f (x )|的图象关于y 轴对称”,故应选B.2.已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :=1;q :y =f (x )是偶函数f (-x )f (x )C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A解析:选D 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;f (-x )f (x )对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.[高频滚动]1.已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |2x >8},那么集合(∁U A )∩B =( )A .{x |3<x <4}B .{x |x >4}C .{x |3<x ≤4}D .{x |3≤x ≤4}解析:选C A ={x |x 2-3x -4>0}={x |x <-1或x >4},所以∁U A ={x |-1≤x ≤4},又B ={x |2x >8}={x |x >3},所以(∁U A )∩B ={x |3<x ≤4}.2.对于任意的两个正数m ,n ,定义运算⊙:当m ,n 都为偶数或都为奇数时,m ⊙n =;当m ,n 为一奇一偶时,m ⊙n =.设集合A ={(a ,b )|a ⊙b =6,a ,b ∈N *},m +n2mn 则集合A 中的元素个数为________.解析:(1)当a ,b 都为偶数或都为奇数时,=6⇒a +b =12,即a +b22+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a,b)有2×5+1=11个.ab(2)当a,b为一奇一偶时,=6⇒ab=36,即1×36=3×12=4×9=36,故符合题意的点(a,b)有2×3=6个.综上可知,集合A中的元素共有17个.答案:17。
第二节命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否\要命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.突破点一命题及其关系抓牢双基自学回扣[基本知识]1. 命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2. 四种命题及相互关系3. 四种命题的真假关系⑴若两个命题互为逆否命题,则它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[基本能力]一、判断题(对的打,错的打“X” )⑴“x2+ 2x—8V0” 是命题.()(2) 一个命题非真即假.()(3) 四种形式的命题中,真命题的个数为0或2或4.( )⑷命题“若p,则q”的否命题是“若p,则綈q”.( )答案:(1)X (2)V (3) V (4) X二、填空题1•命题“若x2<4,则—2vx<2”的否命题为____________________ ,为________ (填“真”或“假”)命题.答案:若x2》4,贝U x> 2或x<—2真2. 设m € R,命题“若m>0,则方程x2+ x —m = 0有实根”的逆否命题是答案:若方程x2+ x—m= 0没有实根,贝U m w 03. 有下列几个命题:1 1⑴“若a>b,则a>b”的否命题;(2) “若x+ y= 0,则x, y互为相反数”的逆命题;(3) “若|x|<4,则—4VXV4”的逆否命题.其中真命题的序号是 __________ .1 1解析:⑴原命题的否命题为“若a< b,则-w二”,假命题;⑵原命题的逆命题为 a bx, y互为相反数,则x + y= 0”,真命题;(3)原命题为真命题,故逆否命题为真命题.答案:⑵(3)研透高考•深化提能[全析考法]考法一命题真假的判断•[例1]下面的命题中是真命题的是()2A. y= sin x的最小正周期为2 nB. 若方程ax2+ bx+ c= 0(a^ 0)的两根同号,则->0aC .如果M ? N,那么M U N = M—> —>D .在△ ABC中,若AB -BC >0,贝U B为锐角[解析]y= sin2x = 1 —;S 2, T =今=n,故A为假命题;当M ? N时,M U N 故C为假命题;在三角形ABC中,当瓦I BC >0时,向量云S与百?的夹角为锐角,为钝角,故D为假命题,故选 B.[答案]B[方法技巧]判断命题真假的思路方法(1) 判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2) 当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由p”经过逻辑推理,得出q”,则可判定“若P,则q”是真命题;②判定“若P,则q”是假命题,只需举一反例即可.考法二四种命题的关系•[例2](1)(2019长春质监)命题“若x2<1,则—1VXV1 ”的逆否命题是()A .若x2> 1,则x> 1 或x w—12B.若—1<x<1,贝V x <12C .若x>1 或x< —1,贝U x >12D .若x > 1 或x<—1,贝U x》1(2)(2019广•东中山一中第一次统测)下列命题中为真命题的是()A .命题"若x>y,则x>|y|”的逆命题B. 命题“若x>1,则x2>1 ”的否命题C. 命题“若x= 1,则x2+ x —2= 0”的否命题D .命题“若x2>0 ,则x>1 ”的逆否命题[解析](1)命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则—1vxv1 ”的逆否命题是“若x> 1或x w —1, 则x2> 1”.故选D.⑵命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,是真命题,故A正确;命题“若x>1,则x2>1”的否命题为“若x w 1,则x2< 1”,是假命题,故B错误;命题“若x= 1,则x2+ x—2 = 0”的否命题为“若x工1,则x2+ x—2工0”,是假命题,故C错误;命题“若x2>0,则x>1”的逆否命题为“若x w 1,则x2w 0”,是假命题,故D错误.选A.[答案](1)D (2)A[方法技巧]四种命题的关系及真假判断(1) 判断关系时,先分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,注意四种命题间关系的相对性.(2) 命题真假的判断方法①直接判断法:若判断一个命题为真,需经过严格的推理证明;若说明为假,只需举一反例.②间接判断法:转化成等价命题,再判断.[集训冲关]1.[考法二]命题“若a= n,则tan a= 1”的逆否命题是()A .若a^f,则tan aM 14B.若a= ~7,则tan aM 14…nC .右tan aM 1,贝U aM4nD .若tan a丰 1,贝U a=T4解析:选C 否定原命题的结论作条件,否定原命题的条件作结论所得的命题为逆否命题,可知C正确.2. [考法一、二]原命题为“若Z1, Z2互为共轭复数,则|Z i|=|Z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A .真,假,真B.假,假,真C .真,真,假D .假,假,假解析:选B 因为原命题为真,所以它的逆否命题为真;若|Z i|= |Z2|,当z i= 1, Z2 = -1时,这两个复数不是共轭复数,所以原命题的逆命题为假,故否命题也为假.故选 B.+ 0, Ovxvl,3. [考法一]定义“正对数”:ln x = 现有四个命题:IJn x, x> 1.①若a>0, b>0,贝V In+(a b) = bln+a ;②若a>0, b>0,贝V In (ab)= In a+ In b;③若a>0, b>0,贝U In +房In+a - In +b;④若a>0, b>0,贝V In (a+ b)< In a+ In b+ In 2.其中的真命题有 ________ (写出所有真命题的编号).解析:对于①,当a > 1时,a b> 1,则In (a b)= In a b= bIn a= bIn a;当0<a<1 时,0<a b<1,则In+(a b)= 0, bIn+a= 0,即In*(a b)= bIn^a,故①为真命题.同理讨论a, b在(0,+s)内的不同取值,可知③④为真命题.对于②,可取特殊值 a = e, b=1,e贝V In,ab) = 0, In*a + In*b= 1 + 0= 1,故②为假命题.综上可知,真命题有①③④.答案:①③④突破点二充分条件与必要条件抓牢双基•自学回扣[基本知识]1.充分条件与必要条件的概念2.一、判断题(对的打,错的打“X” )(1) 当q是p的必要条件时,p是q的充分条件.()(2) 当p是q的充要条件时,也可说成q成立当且仅当p成立.()(3) “ x= 1”是“ x2—3x+ 2 = 0”的必要不充分条件.()答案:⑴“(2)V (3) X二、填空题1. ______________________________ “x = 3”是“ x2=9”的条件(填“充分不必要”或“必要不充分” _______________ ).答案:充分不必要2. ab>0”是“ a>0, b>0” 的_______ 条件.答案:必要不充分3. xy= 1 是lg x+ lg y= 0 的________ 条件.解析:lg x + lg y= lg(xy) = 0,/• xy= 1 且x>0, y>0.所以“lg x + lg y= 0”成立,xy= 1必成立,反之无法得到x>0 , y>0.因此“xy= 1”是“lg x+ lg y= 0”的必要不充分条件.答案:必要不充分4. 设p, r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的____________ 条件,r是t的 ___________ 条件(用“充分不必要”“必要不充分” “充要”填空).解析:由题知p? q? s? t,又t? r, r? q,故p是t的充分不必要条件,r是t的充要条件.答案:充分不必要充要研透高考廉化提能[全析考法]考法一充分条件与必要条件的判断•[例1](1)(2018北京高考)设a, b, c, d是非零实数,则“ ad= be”是“ a, b, c, d成等比数列”的()A .充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件11 交(2)(2018 天•津高考)设x € R,则“ x -寸V ;” 是“ x3V 1 ”的( )A .充分而不必要条件B.必要而不充分条件C•充要条件D.既不充分也不必要条件[解析](1)a, b, e, d 是非零实数,若a<0, d<0, b>0, e>0,且ad= be,则a, b , e , d不成等比数列(可以假设a= —2, d=- 3, b= 2 , e= 3).若a , b , e , d成等比数列,贝U 由等比数列的性质可知ad= be.所以“ad= be”是“a , b , e , d成等比数列”的必要而不充分条件.1 1 ,(2)由X-2 V 2,得0 V X V 1,则0V x3v 1 ,1 1 3即“ x-2 V 2” ? “ x3V 1”;1 1由x3V 1 ,得X V 1,当x< 0 时,x- 1 > -,2 2即“ x3V 1 ”* “ x -1 V 2 ”.1 1 3所以“ x-1V 1”是“ x3V 1”的充分而不必要条件.2 2[答案](1)B (2)A[方法技巧]充分、必要条件的判断方法考法二根据充分、必要条件求参数范围[例2](2019大庆质检)已知p:x< 1+ m, q:|x—4|w 6.若p是q的必要不充分条件,则m的取值范围是()A. (— m,—1]B. (— 8, 9]C. [1,9]D. [9,+m )[解析]由|x—4|W 6,解得一2< x< 10,因为p是q的必要不充分条件,所以m+ 1> 10, 解得m> 9.故选D.[答案]D[方法技巧]根据充分、必要条件求参数范围的思路方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[集训冲关]1. [考法一]已知m,n为两个非零向量,贝U"mnv0”是"m与n的夹角为钝角”的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m, n的夹角为0,若才< 0v n,则cos 0<0,所以m n<0 ;若0= n则m n=—|m| |n|<0.故“ m n<0”是“ m与n的夹角为钝角”的必要不充分条件.故选 B.2. [考法一]已知a, B均为第一象限角,那么“a> g'是“ sin a>sin 的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选D a= 7n B=寸均为第一象限角,满足a> g但sin a= sin g因此不满足充3 3分性;a=—5n, 3=;均为第一象限角,满足sin a>sin g,但a< g因此不满足必要性.故3 6选D.3. [考法二]设M为实数区间,a>0且1,若“ a € M”是“函数f(x)= log a|x—1|在(0,1)上单调递增”的充分不必要条件,则区间M可以是()C • (0,1) D. 0, 1 2解析:选D 由函数f(x)= log a|x —1|在(0,1)上单调递增可知0<a<1,由题意及选项知区间M可以是0,1 .故选D.4.[考法二]已知p:(x—m)3>3(x—m)是q:x2+ 3x—4<0的必要不充分条件,则实数m 的取值范围为_____________ .解析:p对应的集合A= {x|x<m或x>m+ 3}, q对应的集合 B = {x| —4<x<1}.由p是q的必要不充分条件可知 B A,/• m> 1 或m+ 3< —4,即m> 1 或m< —7.答案:(—a, —7]U [1 ,+^ )[课时跟踪检测]2(2019合肥模拟)命题“若a2+ b2= 0,贝V a= 0且b= 0”的逆否命题是()A .若a丰 0 或b z 0,贝U a2+ b2z 0B.若a2+ b2z 0,贝y a丰0 或b z 0C .若a = 0 或b= 0,贝U a2+ b2z 0D .若a2+ b2z 0,贝y a z 0 且b z 0解析:选A 原命题的逆否命题为“若a z0或b z 0,则a2+ b2z 0”.故选A.3(2018 天津高考)设x€ R,则“ x3 4>8” 是“ |x|>2”的()A .充分而不必要条件B.必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由x3> 8? x> 2? |x|> 2,反之不成立,故“x3>8”是“ |x|>2”的充分而不必要条件.解析:选A 因为y = 2 x 是增函数,又a>1,所以3 a >i ,所以3a >2a ;若3a >2a , 则/>1 = g :,所以a>0,所以a>1 ”是3a >2a ”的充分不必要条件,故选 A.5.已知下列三个命题:① 若一个球的半径缩小到原来的 2,则其体积缩小到原来的 8 ② 若两组数据的平均数相等,则它们的标准差也相等; ③ 直线x + y + 1 = 0与圆x 2 + y 2= 1相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③解析:选C对于命题①,设球的半径为 R ,则4 n R 3 = 1-u R 3,故体积缩小到原来的3 y 8 38,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确; 半径,所以直线与圆相切,命题正确.26. (2019咸阳模拟)已知p : m =— 1, q :直线x — y = 0与直线x + m y = 0互相垂直, 则p 是q 的()A •充分不必要条件B .必要不充分条件C •充要条件D •既不充分也不必要条件2 一 1解析:选A 由题意得直线 x + m 2y = 0的斜率是—1,所以 肓 =—1, m = ±. 所以p 是q 的充分不必要条件•故选A.7. (2019重庆调研)定义在R 上的可导函数f(x),其导函数为f ' (x),则“ f ' (x)为偶函 数”是“ f(x)为奇函数”的()A •充分不必要条件B .必要不充分条件C •充要条件D •既不充分也不必要条件解析:选 B •/ f(x)为奇函数,••• f( — x) =— f(x).「. [f( — x)] = [— f(x)] =— f ' (x), ••• f ' (— x)= f ' (x) ,即卩 f ' (x)为偶函数;反之,若 f ' (x)为偶函数,如 f ' (x)= 3x 2, f(x)=对于命题③, 圆x 2+ / = *的圆心(0,0)到直线x + y + 1 = 0的距离d =吩等于圆的1x3+ 1满足条件,但f(x)不是奇函数,所以“ f'(X)为偶函数”是“ f(x)为奇函数”的必要不充分条件.故选B.8. (2019抚州七校联考)A, B, C三个学生参加了一次考试,A, B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,贝U A,B,C都没有及格.则下列四个命题中为p的逆否命题的是()A .若及格分不低于70分,则A, B, C都及格B.若A, B, C都及格,则及格分不低于70分C .若A, B, C至少有一人及格,则及格分不低于70分D •若A, B, C至少有一人及格,则及格分高于70分解析:选C 根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A, B,C 至少有一人及格,则及格分不低于70 分.故选C.9. (2019济南模拟)原命题:“ a, b为两个实数,若a + b>2,则a, b中至少有一个不小于1”,下列说法错误的是( )A. 逆命题为:a, b为两个实数,若a, b中至少有一个不小于1,则a+b>2,为假命题B. 否命题为:a, b为两个实数,若a + b<2,则a, b都小于1,为假命题C .逆否命题为:a, b为两个实数,若a, b都小于1,则a + b<2,为真命题D. a, b为两个实数,“a+ b》2”是“a, b中至少有一个不小于1”的必要不充分条件解析:选D 原命题:a, b为两个实数,若a+ b> 2,则a, b中至少有一个不小于1; 逆命题:a, b为两个实数,若a, b中至少有一个不小于1,则a+ b> 2;否命题:a, b为两个实数,若a + b<2,则a, b都小于1;逆否命题:a, b为两个实数,若a, b都小于1, 则a+ b<2.逆否命题显然为真,故原命题也为真;若a= 1.2, b= 0.5,则a+ b> 2不成立,逆命题为假命题,所以否命题为假命题. 所以“ a+ b>2”是“a, b中至少有一个不小于1 ” 的充分不必要条件.故选D.10. 已知:p:x> k, q:(x+ 1)(2 —x)<0,如果p是q的充分不必要条件,则实数k的取值范围是( )A. [2,+s )B. (2,+^ )C. [1 ,+^ )D. (— a, —1]解析:选B 由q:(x + 1)(2 —x)<0,得x< —1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2, + a),故选B.11. 在原命题“若A U B工B,则A A B M A”与它的逆命题、否命题、逆否命题中,真命题的个数为________ .解析:逆命题为“若A A B M A,贝U A U B M B” ;否命题为“若A U B= B,贝U A A B = A” ;逆否命题为“若A A B = A,贝U A U B= B”.全为真命题.答案:412.已知命题"若 m — ivxvm + 1,贝U 1<x<2”的逆命题为真命题,则 m 的取值范围是 解由已知得,若1<x<2成立, 则m — 1<xvm + 1也成立.m —1<1, K m < 2. m + 1 > 2.答案:[1,2]13.条件p : 1 — x<0,条件q : x>a ,若p 是q 的充分不必要条件,则 a 的取值范围是 解析:p : x>1,若p 是q 的充分不必要条件,则p ? q ,但q ' p ,也就是说,p 对应的集合是q 对应的集合的真子集,所以 a<1.答案:(—3 1) 14. (2019湖南十校联考)已知数列{a n }的前n 项和S n = Aq n + B(q M 0),则“ A =— B ” 是“数列{a n }为等比数列”的 ____________ 条件.解析:若A = B = 0,贝y S n = 0,数列{a n }不是等比数列.2 3如果{a n }是等比数列,由 a 1= S 1 = Aq + B ,得 a 2= S 2 — a 1= Aq — Aq , a 3= S 3 — S 2= Aq —Aq 2,.a 1a 3= a 2,从而可得 A =— B ,故“A =— B ”是“数列{a n }为等比数列”的必要不充分条件.答案:必要不充分15. (2019湖南长郡中学模拟)已知函数f(x)= 4sin 2 ;+ x - 2.3遇 2x — 1, p : n< x < 才, q : |f(x)— m|<2,若p 是q 的充分不必要条件,求实数 m 的取值范围. =4sin ( 2x — n ) + 1.当毛 寸,n 2x —J 4 2 6 3 3 则 f w sin 2x —n w 1,所以 f(x)€ [3,5]. 当 |f(x) — m|<2 时,f(x) € (m — 2, m + 2). 又p 是q 的充分不必要条件,了m — 2<3,所以 所以3<m<5.|m + 2>5,解:化简解析式,=2sin 2x — 2 3cos 2x + 11 — cos 得 f(x) = 4^ --------- cos 2x — 1即实数m的取值范围为(3,5).3. 下列命题中为真命题的是()A. mx2+ 2x—1 = 0是一元二次方程B. 抛物线y= ax2+ 2x—1与x轴至少有一个交点C .互相包含的两个集合相等D.空集是任何集合的真子集解析:选C A中,当m = 0时,是一元一次方程,故是假命题;B中,当△= 4+ 4a<0, 即a< —1时,抛物线与x轴无交点,故是假命题;C是真命题;D中,空集不是本身的真子集,故是假命题.4. (2019 •肥调研)a>1 ”是“3>2a”的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件。
2020年高考一轮复习《命题及其关系、充分条件与必要条件》A组基础巩固1.(2019·益阳调研)已知命题p:“∀a≥0,a4+a2≥0”,则命题¬p为()A.∀a≥0,a4+a2<0B.∀a≥0,a4+a2≤0C.∃a0<0,a40+a20<0D.∃a0≥0,a40+a20<0解析:命题q为全称命题,其否定为特称命题.将量词改变,结论否定,即¬p为∃a0≥0,a40+a20<0.答案:D2.第十八届亚运会于2018年8月18日在雅加达隆重开幕,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q 是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(¬p)∨(¬q) B.p∨(¬q)C.(¬p)∧(¬q) D.p∨q解析:命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(¬p)∧(¬q).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p∧q”的否定选A.答案:A3.设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A .p ∧(¬q )B .(¬p )∧qC .p ∧qD .(¬p )∨q解析:对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得2x 0=x 20成立,故命题q 为假命题,所以p ∧(¬q )为真命题.答案:A4.(2019·湖南湘东五校联考)已知命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,则实数a 的取值范围为( ) A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析:因为命题“∃x ∈R ,4x 2+(a -2)x +14≤0”是假命题,所以其否定命题“∀x ∈R ,4x 2+(a -2)x +14>0”是真命题. 则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4. 答案:D5.(2019·淮北模拟)命题p :若向量a ·b <0,则a 与b 的夹角为钝角;命题q :若cos α·cos β=1,则sin(α+β)=0.下列命题为真命题的是( )A .pB .¬qC .p ∧qD .p ∨q解析:当a ,b 方向相反时,a ·b <0,但夹角是180°,不是钝角,命题p 是假命题;若cos αcos β=1,则cos α=cos β=1或cos α=cos β=-1, 所以sin α=sin β=0,从而sin(α+β)=0,命题q 是真命题,所以p∨q是真命题.答案:D6.已知命题p:∀x∈R,2x<3x,命题q:∃x∈R,x2=2-x,若命题(¬p)∧q为真命题,则x的值为()A.1 B.-1 C.2 D.-2解析:若(¬p)∧q为真命题,则q真,且¬p为真,由q为真,解x2=2-x,得x=1或x=-2.又¬p:∃x∈R,2x≥3x,得x≤0.因此x=-2.答案:D7.(2017·山东卷)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是()A.p∧q B.p∧¬qC.¬p∧q D.¬p∧¬q解析:因为一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,所以x2-x+1>0恒成立,所以p为真命题,¬p为假命题.因为当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,所以q为假命题,¬q为真命题.根据真值表可知p∧¬q为真命题,p∧q,¬p∧q,¬p∧¬q为假命题.故选B.答案:B8.已知函数f(x)=a2x-2a+1.若命题“∀x∈(0,1),f(x)≠0”是假命题,则实数a的取值范围是()A.⎝ ⎛⎭⎪⎫12,1 B .(1,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 解析:因为函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题,所以原命题的否定是“∃x 0∈(0,1),使f (x 0)=0”是真命题, 所以f (1)f (0)<0,即(a 2-2a +1)(-2a +1)<0,所以(a -1)2(2a -1)>0,解得a >12且a ≠1, 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案:D9.已知命题p :1x 2-x -2>0,则¬p 对应的集合为________. 解析:由p :1x 2-x -2>0,得p :x >2或x <-1,所以¬p 对应的值的取值范围是{x |-1≤x ≤2}.答案:{x |-1≤x ≤2}10.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.解析:因为0≤x ≤π4,所以0≤tan x ≤1, 由“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,得m ≥1. 故实数m 的最小值为1.答案:111.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f(-x0)≠0”是假命题,则f(a+b)=________.解析:若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.答案:012.下列结论:①若命题p:∃x0∈R,tan x0=1;命题q:∀x∈R,x2-x+1>0,则命题“p∧(¬q)”是假命题;②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是ab=-3;③命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”.其中正确结论的序号为________.解析:①中命题p为真命题,命题q为真命题,所以p∧(¬q)为假命题,故①正确;②当b=a=0时,有l1⊥l2,故②不正确;③正确;所以正确结论的序号为①③.答案:①③B组素养提升13.命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是() A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x0∈R,∀n∈N*,使得n<x20解析:改变量词,否定结论.所以¬p 应为∃x 0∈R ,∀n ∈N *,使得n <x 20.答案:D14.(2019·深圳联考)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧(¬q )D .(¬p )∧q解析:命题p :当a =0时,可得1>0恒成立;当a ≠0时,可得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解得0<a <4,综上,可得实数a ∈[0,4),因此p 是假命题,则¬p 是真命题;命题q :由x 2-2x -8>0解得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,是真命题.故(¬p )∧q 是真命题.故选D.答案:D15.(2019·深圳质检)设p :实数x 满足x 2-4ax +3a 2<0,q :实数x 满足|x -3|<1.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若a >0且¬p 是¬q 的充分不必要条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,当a =1时,1<x <3,即p 为真时,实数x 的取值范围是1<x <3. 由|x -3|<1得-1<x -3<1,解得2<x <4,即q 为真时,实数x 的取值范围是2<x <4,若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3.(2)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,因为a >0,所以a <x <3a .若¬p 是¬q 的充分不必要条件,则¬p ⇒¬q ,且¬q ¬p ,设A ={x |¬p },B ={x |¬q },则AB , 又A ={x |¬p }={x |x ≤a 或x ≥3a },B ={x |¬q }={x |x ≥4或x ≤2},所以⎩⎪⎨⎪⎧a >0,a ≤2,3a >4,或⎩⎪⎨⎪⎧a >0,a <2,3a ≥4,解得43≤a ≤2, 所以实数a 的取值范围是43≤a ≤2.。
2020年高考数学一轮复习《命题及其关系、充分条件与必要条件》考纲解读1.理解命题的概念.2.了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的意义. 命题均势探究预测2020年高考命题中.本专题所涉考点依然会以选择题和填空题形式出现,融汇代数或几何的具体知识考查充要条件的判断以及四种命题的关系. 知识点精讲 一、命题可以判断真假的语句叫做命题.注:判断一个语句是否为命题包含以下两个要素:①必须是陈述句;②必须能判断真假. 二、四种命题 1.四种命题的表述只有“若p ,则q ”形式的命题才有以下四种命题: 原命题:若p ,则q ; 逆命题:若q ,则p ; 否命题:若p ⌝,则q ⌝; 逆否命题:若q ⌝,则p ⌝. 2.四种命题的关系(1)原命题为真(假),其逆命题不一定为真(假); (2)原命题为真(假),其否命题不一定为真《假); (3)原命题为真(假),其逆否命题一定为真(假);(4)若命题的逆命题为真(假)时,其否命题一定为真(假)(两者互为逆否命题). 如图1-6所示,根据互为逆否命题的两个命题的真值相同,可知四种命题中实质不同的命题只有原命题和逆命题两类.另外两类只是它们的不同表示形式.三、充分条件、必要条件、充要条件 1.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件. 2.从逻辑推理关系上看(1)若p q ⇒且q p ¿,则p 是q 的充分不必要条件; (2)若p q ¿且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价); (4)若p q ¿且q p ¿,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立). 注:根据互为逆否命题等价.若有p q ⇒,则一定有q p ⌝⇒⌝. 3.从集合与集合之间的关系上看 设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B 躡,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ¿; 注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件; (3)若A B =,则p 与q 互为充要条件. 题型归纳及思路提示 题型4 四种命题及真假关系 思路提示互为逆否命题的两个命题是等价命题,它们同真同假,即一个命题与其逆否命题同真同假;一个命题的逆命题和否命题同真同假.当一个命题的真假不易判断时,可以通过判断其逆否命题的真假来判断.例 1.12 (2017·益阳联考)命题p :“若a ≥b ,则a +b >2 015且a >-b ”的逆否命题是________________________________________________________________________. 解析:若a +b ≤2 015或a ≤-b ,则a <b评注:当命题有大前提,写该命题的逆命题、否命题和逆否命题时,应保持大前担不变. 变式1 命题“若21x <,则11x -<<”的逆否命题是( ) A .若21x ≥,则1x ≥或1x ≤- B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1x ≥或1x ≤-,则21x ≥ 解析 “若,则”的逆否命题形式是“若,则”,由此可知“若,则”的逆否命题为“若,则”。
2020年高考数学一轮复习第一章第2节命题及其关系充分条件与必要条件1.原命题:〝设( )A.0个B.1个C.2个D.3个解析:由题意可知,原命题正确,逆命题错误,因此否命题错误,而逆否命题正确.答案:B2.(2018·重庆高考)命题〝假设一个数是负数,那么它的平方是正数〞的逆命题是 ( )A.〝假设一个数是负数,那么它的平方不是正数〞B.〝假设一个数的平方是正数,那么它是负数〞C.〝假设一个数不是负数,那么它的平方不是正数〞D.〝假设一个数的平方不是正数,那么它不是负数〞解析:结论与条件互换位置选B.答案:B3.以下命题是真命题的为 ( )A.假设1x =1y,那么x =y B.假设x 2=1,那么x =1C.假设x =y ,那么x =yD.假设x <y ,那么x 2<y 2解析:1x =1y,等式两边都乘以xy ,得x =y . 答案:A4.有以下四个命题,其中真命题有:①〝假设x +y =0,那么x 、y 互为相反数〞的逆命题;②〝全等三角形的面积相等〞的否命题;③〝假设q ≤1,那么x 2+2x +q =0有实根〞的逆命题;④〝不等边三角形的三个内角相等〞的逆否命题.其中真命题的序号为 ( )A.①②B.②③C.①③D.③④解析:命题①的逆命题:〝假设x 、y 互为相反数,那么x +y =0”是真命题;命题②可考虑其逆命题〝面积相等的三角形是全等三角形〞是假命题,因此命题②的否命题是假命题;命题③的逆命题:〝假设x2+2x+q=0有实根,那么q≤1”是真命题;命题④是假命题.答案:C5.(文)给定以下命题:①假设k>0,那么方程x2+2x-k=0有实数根;②〝假设a>b,那么a+c>b+c〞的否命题;③〝矩形的对角线相等〞的逆命题;④〝假设xy=0,那么x、y中至少有一个为0”的否命题.其中真命题的序号是.解析:①∵Δ=4-4(-k)=4+4k>0,∴①是真命题.②否命题:〝假设a≤b,那么a+c≤b+c〞是真命题.③逆命题:〝对角线相等的四边形是矩形〞是假命题.④否命题:〝假设xy≠0,那么x、y都不为零〞是真命题.答案:①②④(理)(2018·安徽高考)关于四面体ABCD,以下命题正确的选项是(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③假设分不作△ABC和△ABD的边AB上的高,那么这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分不作三组相对棱中点的连线,所得的三条线段相交于一点.解析:①正确,∵A、B、C、D四点不共面,∴AB与CD异面;②不正确,如图,假设A在底面BCD的射影O是△BCD的三条高线交点,那么延长BO交CD于M,那么BM⊥CD,可证CD⊥面ABM.那么CD⊥AB,即四面体相对棱异面垂直,而一样四面体ABCD相对棱不一定垂直,∴②不正确;③不正确,如图,作DM⊥AB于M,连结CM,假设CM⊥AB,那么AB⊥面CMD.又CD⊂面CMD,∴AB⊥CD.而CD与AB不一定垂直,∴③不正确;④明显成立;⑤如图,取各棱中点M、N、P、Q、S、T,∴▱MNPQ的对角线MP与NQ交于一点O.同理▱MSPT的对角线MP与ST也交于点O,∴三条线MP、NQ、ST交于一点O.答案:①④⑤题组二充分条件必要条件的判定6.(2018·)A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:〝a+c>b+d〞〝a>b且c>d〞,∴充分性不成立;〝a>b且c>d〞⇒〝a+c>b+d〞,∴必要性成立.答案:A7.〝sinα=12〞是〝cos2α=12〞的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:充分性:假如sinα=12,那么cos2α=1-2sin 2α=12,成立;必要性:假如cos2α=12,那么sinα=±12,不成立,可知是充分而不必要条件. 答案:A8.(2018·陕西高考)〝m >n >0”是〝方程mx 2+ny 2=1表示焦点在y 轴上的椭圆〞的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:把椭圆方程化成x 21m +y 21n=1.假设m >n >0,那么1n >1m>0.因此椭圆的焦点在y 轴上.反之,假设椭圆的焦点在y 轴上,那么1n >1m>0即有m >n >0. 答案:C9.以下选项中,p 是q 的必要不充分条件的是 ( )A.p :ac 2≥bc 2, q :a >bB.p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象只是第二象限C.p :x =1, q :x 2=xD.p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数解析:a >b ⇒ac 2≥bc 2,但ac 2≥bc 2 a >b .答案:A10.(2018·海口模拟)集合A ={x ∈R|12<2x <8},B ={x ∈R|-1<x <m +1},假设x ∈B 成立的一个充分不必要的条件是x ∈A ,那么实数m 的取值范畴是 ( )A.m ≥2B.m ≤2C.m >2D.-2<m <2解析:A ={x ∈R|12<2x <8}={x |-1<x <3} ∵x ∈B 成立的一个充分不必要条件是x ∈A∴A B∴m +1>3,即m >2.答案:C11.e 1、e 2是不共线的两个向量,a =e 1+ke 2,b =ke 1+e 2,那么a ∥b 的充要条件是实数k = . 解析:a =λb ,1k k λλ=⎧⎨=⎩⇒k 2=1⇒k =±1. 答案:±112.设命题p :(4x -3)2≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,假设 p 是 q 的必要不充 分条件,求实数a 的取值范畴.解:设A ={x |(4x -3)2≤1},B ={x |x 2-(2a +1)x +a (a +1)≤0},易知A ={x |12≤x ≤1}, B ={x |a ≤x ≤a +1}.由 p 是 q 的必要不充分条件,从而p 是q 的充分不必要条件,即A B ,121 1.a a ⎧⎪⎨⎪+⎩≤>或1,211a a ⎧⎪⎨⎪+-⎩<≥ 故所求实数a 的取值范畴是[0,12]. ⌝⌝⌝⌝。
授课提示:对应学生用书第251页[A组基础保分练]1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q 是p的()A.逆命题__________B.否命题C.逆否命题D.否定解析:命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.答案:B2.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B 的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.答案:C3.(2021·九江模拟)原命题“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0B.1C.2D.4解析:当c=0时,ac2=bc2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以否命题也是真命题.综上所述,真命题有2个.答案:C4.(2021·西安模拟)若a,b都是正整数,则a+b>ab成立的充要条件是()A.a=b=1B.a,b至少有一个为1C.a=b=2D.a>1且b>1解析:因为a+b>ab,所以(a-1)(b-1)<1.因为a,b∈N+,所以(a-1)(b-1)∈N,所以(a -1)(b-1)=0,所以a=1或b=1.答案:B5.a,b是单位向量,“(a+b)2<2”是“a,b的夹角为钝角”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:(a+b)2=a2+2a·b+b2=2+2a·b<2⇒a·b<0,当a·b<0时,a,b的夹角为钝角或平角;当a,b的夹角为钝角时,a·b<0成立.所以“(a+b)2<2”是“a,b的夹角为钝角”的必要而不充分条件.答案:C6.命题“任意x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件是()A.a≥9B.a≤9C.a≥10D.a≤10解析:命题“任意x∈[1,3],x2-a≤0”⇔“任意x∈[1,3],x2≤a”⇔a≥9.则a≥10是命题“任意x∈[1,3],x2-a≤0”为真命题的一个充分不必要条件.答案:C7.下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2-x+3≥0的解集为R”的逆否命题;③“周长相同的圆面积相等”的逆命题;④“若2x为有理数,则x为无理数”的逆否命题.其中真命题的序号为()A.②④B.①②③C.②③④D.①③④解析:对于①,逆命题为真,故否命题为真;对于②,原命题为真,故逆否命题为真;对于③,“面积相等的圆周长相同”为真;对于④,“若2x为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.答案:B8.(2021·玉溪模拟)不等式x-1x>0成立的一个充分不必要条件是()A.-1<x<0或x>1B.x<-1或0<x<1C.x>-1D.x>1解析:由x -1x >0可知x 2-1x >0,即⎩⎪⎨⎪⎧x 2-1>0,x >0或⎩⎪⎨⎪⎧x 2-1<0,x <0,解得x >1或-1<x <0,不等式x -1x >0的解集为{x |x >1或-1<x <0},故不等式x -1x >0成立的一个充分不必要条件是x >1. 答案:D9.在△ABC 中,“A =B ”是“tan A =tan B ”的__________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z .因为0<A <π,0<B <π,所以A =B ,故“A =B ”是“tan A =tan B ”的充要条件. 答案:充要10.若“x 2-x -6>0”是“x >a ”的必要不充分条件,则a 的最小值为__________. 解析:由x 2-x -6>0,解得x <-2或x >3. 因为“x 2-x -6>0”是“x >a ”的必要不充分条件,所以{x |x >a }是{x |x <-2或x >3}的真子集,即a ≥3,故a 的最小值为3. 答案:3[B 组 能力提升练]1.(2021·咸阳模拟)已知p :m =-1,q :直线x -y =0与直线x +m 2y =0互相垂直,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意得直线x +m 2y =0的斜率是-1,所以-1m2=-1,m =±1.所以p 是q 的充分不必要条件. 答案:A2.使a >0,b >0成立的一个必要不充分条件是( ) A.a +b >0 B.a -b >0 C.ab >1D.ab>1 解析:因为a >0,b >0⇒a +b >0,反之不成立,而由a >0,b >0不能推出a -b >0,ab >1,a b >1. 答案:A3.(2021·贵阳模拟)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析:因为|a -3b |=|3a +b |,所以(a -3b )2=(3a +b )2,所以a 2-6a ·b +9b 2=9a 2+6a ·b +b 2,又因为|a |=|b |=1,所以a ·b =0,所以a ⊥b ;反之也成立. 答案:C4.已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r≤3,所以p 是q 的必要不充分条件. 答案:B5.(2021·唐山模拟)若“x 2-2x -8>0”是“x <m ”的必要不充分条件,则m 的最大值为__________.解析:由x 2-2x -8>0,得x <-2或x >4,若由x <m 能得出x <-2或x >4,则m ≤-2,即m 的最大值为-2. 答案:-26.集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -1x +1<0,B ={x ||x -b |<a }.若“a =1”是“A ∩B ≠∅”的充分条件,则实数b 的取值范围是__________.解析:由“a =1”是“A ∩B ≠∅”的充分条件,知当a =1时,A ∩B ≠∅.当a =1时,由题意得A =(-1,1),B =(b -1,b +1),由A ∩B ≠∅得-1≤b -1<1或-1<b +1≤1,即-2<b <2,所以b 的取值范围是(-2,2). 答案:(-2,2)[C 组 创新应用练]1.(2021·武汉模拟)若x >2m 2-3是-1<x <4的必要不充分条件,则实数m 的取值范围是( ) A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]解析:x>2m2-3是-1<x<4的必要不充分条件,∴(-1,4)(2m2-3,+∞),∴2m2-3≤-1,解得-1≤m≤1.答案:D2.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p 是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即非q是非p的充分不必要条件,故p是q的充分不必要条件.答案:A3.A,B,C三个学生参加了一次考试,A,B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是()A.若及格分不低于70分,则A,B,C都及格B.若A,B,C都及格,则及格分不低于70分C.若A,B,C至少有一人及格,则及格分不低于70分D.若A,B,C至少有一人及格,则及格分高于70分解析:根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A,B,C至少有一人及格,则及格分不低于70分.答案:C。
第一单元第二节
一、选择题
1.设原命题:若a+b≥2,则a,b中至少有一个不小于1.则原命题与其逆命题的真假情况是( )
A.原命题真,逆命题假
B.原命题假,逆命题真
C.原命题与逆命题均为真命题
D.原命题与逆命题均为假命题
【解析】可以考虑原命题的逆否命题,即a,b都小于1,则a+b<2,显然为真.其逆命题,即a,b中至少有一个不小于1,则a+b≥2,为假,如a=1.2,b=0.2,则a+b<2.
【答案】 A
2.使不等式2x2-5x-3≥0成立的一个充分不必要条件是( )
A.x<0 B.x≥0
C.x∈{-1,3,5} D.x≤-1
2
或x≥3
【解析】∵2x2-5x-3≥0成立的充要条件是x≤-1
2
或x≥3,∴对于A,当x=-
1
3
时,
2x2-5x-3<0.同理,其他选项也可用特殊值验证.
【答案】 C
3.有下列四个命题:
①“若b=3,则b2=9”的逆命题;
②“全等三角形的面积相等”的否命题;
③若c≤1,则x2+2x+c=0有实根;
④“若A∪B=A,则A⊆B”的逆否命题.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
【解析】在③中,当c≤1时,4-4c≥0,方程有实根,命题为真.其余全为假.【答案】 A
4.(精选考题·天津高考)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)是奇函数,则f(x)不是奇函数
【解析】否定原命题条件为条件,否定原命题结论为结论,即为否命题.故选B.
【答案】 B
5.(精选考题·陕西高考)对于数列{a n},“a n+1>|a n|(n=1,2,3,…)”是“{a n}为递增数列”的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
【解析】当a n+1>|a n|(n=1,2,3,…)时,{a n}为递增数列;反之,未必成立,如数列{a n},a n=2n-10,n=1,2,3,….
【答案】 B
6.命题“若一个数是负数,则它的平方是正数”的逆命题是( )
A.“若一个数是负数,则它的平方不是正数”
B.“若一个数的平方是正数,则它是负数”
C.“若一个数不是负数,则它的平方不是正数”
D.“若一个数的平方不是正数,则它不是负数”
【解析】原命题条件为结论,结论为条件,即得逆命题.
【答案】 B
7.(精选考题·枣庄一模)集合A ={x |-4≤x ≤4,x ∈R },B ={x |x ≤a },则“A ⊆B ”是“a >5”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【解析】 A ={x |-4≤x ≤4},若A ⊆B ,则a ≥4.a ≥4不能推出a >5,但a >5⇒a ≥4.故“A ⊆B ”是“a >5”的必要不充分条件.
【答案】 B
二、填空题
8.命题“若m >0,则关于x 的方程x 2+x -m =0有实数根”与它的逆命题、否命题、逆
否命题中,真命题的个数为______.
【解析】 先写出其命题的逆命题、否命题、逆否命题,逐一判断.或只写出逆命题,判断原命题和逆命题的真假即可,原命题为真,逆命题为假.
【答案】 2
9.“a +c >b +d ”是“a >b 且c >d ”的________条件.
【解析】 由于a >b 且c >d ,可以推出a +c >b +d ;而a +c >b +d 不能得到a >b 且c >d .所以“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件.
【答案】 必要不充分
10.(精选考题·青岛模拟)“a <0”是“方程ax 2+2x +1=0至少有一个负数根”的
________条件.
【解析】 当a <0时,Δ=4-4a >0,由韦达定理知x 1·x 2=1a
<0,故此一元二次方程有一个正根和一个负根,符合题意;当ax 2+2x +1=0至少有一个负数根时,a 可以为0,因为当
a =0时,该方程仅有一根为-12
,所以a 不一定小于0.由上述推理可知,“a <0”是“方程ax 2
+2x +1=0至少有一个负数根”的充分不必要条件.
【答案】 充分不必要
三、解答题
11.已知p 是r 的充分条件,而r 是q 的必要条件,同时又是s 的充分条件,q 是s 的必要条件,试判断:
(1)s 是p 的什么条件?
(2)p 是q 的什么条件?
(3)其中有哪几对条件互为充要条件?
【解析】 (1)因为p ⇒r ,q ⇒r ,r ⇒s ,s ⇒q ,所以p ⇒r ⇒s ,
所以p ⇒s 而s ⇒/ p ,所以s 是p 的必要条件.
(2)由于p ⇒q 而q ⇒/ p ,所以p 是q 的充分条件.
(3)其中r 与s ,r 与q ,s 与q 三对互为充要条件.
12.(精选考题·普陀区调研)设函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3x
-1的定义域为集合B .已知α:x ∈A ∩B ,β:x 满足2x +p ≤0,且α是β的充分条件,求实数p 的取值范围.
【解析】 依题意,得A ={x |x 2
-x -2>0}=(-∞,-1)∪(2,+∞),B =⎩⎨⎧⎭⎬⎫x |3x -1≥0=(0,3],∴A ∩B =(2,3].
设集合C ={x |2x +p ≤0},则x ∈⎝
⎛⎦⎥⎤-∞,-p 2. ∵α是β的充分条件,∴(A ∩B )⊆C ,
则须满足3≤-p
2
⇒p ≤-6. ∴实数p 的取值范围是(-∞,-6].。