当前位置:文档之家› 初等数论在数学中的应用

初等数论在数学中的应用

初等数论在数学中的应用
初等数论在数学中的应用

给学弟学妹的建议

我是大四的学生,大学生活即将结束,在快要离别之际,我想给亲爱的学弟学妹们一点建议。

在学习方面的建议。

1,阅读几位与自己人生发展目标相近的名人传记

2,听几场优秀大学生报告会

3,每学期制定一个详细的学习计划,让自己每天进步一点点

4,放弃考前通宵达旦的突击来蒙混过关,平时学习才最重要

5,兴趣是最好的老师,认真辅修或选修专业课以外的课程,也许你会发现这些知识比主修课更实用

6,去去英语角,不会说总会听吧,这是提高你口语的有效途径

7,千万别挂科,更不要考试作弊,一旦捉住你将终生遗憾

8,学习,永远别忘记学习。不管别人怎么说大学是个提高综合能力的地方云云,如果你学习失败了,你就什么也不是了——不排除意外,但你会是那个意外吗?

9,毕业设计和毕业论文可能是你求学生涯的最后一次作业,务必认真完成10,要不停地向校友和学长取经:请教为人处事之道和学习生活的经验之谈

11,电脑不是整天用来上网娱乐的,认真学学WORD、EXEEL、PHOTOSHOP、POWERPOINT等实用工程

12,证书不是万能的,但TOEFL、GRE、G—、MAT、LELTS证书和计算机等级证书将会成为你选择的加速器

13,永远别把英语忘掉,英语四六级越往后越难考,否则你将会承受越来越多的压力

14,立身以立学为先,立学以读书为本。书是个人终极意义的归宿,多去看看书,别让图书馆成为你眼前的摆设

15,一分耕耘,一分收获,永远别忽视学习,在别人放弃的时候再坚持30min.你或许会得到精神和物质上的双重收获

16,再熟悉一下Albert Einstein的成功秘诀:成功=艰苦劳动+正确方法+少

说废话

17,报个辅导班,尝试一下那种高价买罪受的经历,这样会使你珍惜大学学习生活

18,欣赏一次高雅艺术(如芭蕾,交响乐等),它所带来的震撼力会远远超出你的意料

19,基础课对你非常重要,听课时要善于赢得时间的积累

20,作为大学生的你,要有精英意识和危机意识

21,只有学习潇洒才可能一切潇洒,尽管只是可能,但你必须牢记实力的价值

在实践方面的建议。

1,参加几次班级或学校的干部竞选活动

2,组织几次学生实践活动,除了费心费力外,你会有许多收获

3,主持几次座谈会或辩论会,也许这会圆你“金话筒”的梦想

4,参加几次集体发展讨论,并提出自己的创新见解

5,带一次家教,尝试一下当老师的感觉,并会使你更加尊重老师

6,不要盲目的参加社团,要选择适合自己发展的

7,积累一些结伴旅行的处世生活经验

8,跑了一天的赞助,在多少次拒之门外的感觉中体味人生的意义

9,参加“三下乡”实践活动,体验农村的生活

10,有过辛苦打工的经历,才会体会大学生活的来之不易

11,要有过面对全校师生登台表演的机会,有助于让你成为一个公众面前挥洒自如的人

12,好好利用在公共场合说话的机会,展示或者锻炼自己

13,大学创业是你从大学走向社会的良好过渡

14,做事情要主动,只有这样你才会赢得更多的机会

15,多多尝试新的领域,发掘你的兴趣

在生活方面的建议。

1. 参加一次职业生涯测试,了解自己的职业发展倾向

2. 树立一个大学发展目标,让它为你的大学生活导航

3. 养成良好的习惯,克服坏习惯,尝试着改变一下自己

4. 参加几次心理健康测试,了解自己的心理健康水平

5. 参加几次团体心理辅导,体验成长心理历程

6. 参加几次文明素质测试,了解自己文明素质水平

7. 培养一个健康的生活态度和积极进取的心态

8. 每年参加一次大学生发展自我评价活动

9. 在太阳快要升起的早晨去操场跑跑步,你会发现懒觉之余原来还有温暖的晨曦

10. 如果可以的话,报名参加运动会,体味一下赛场竞技的快乐

11. 如果你贫穷,请正视贫穷;如果你富有,请不要藐视贫穷,贫穷是一笔你所没有的财富

12. 不要有踹门的习惯,请用你的手指唤醒在你内心潜伏的文明

13. 在你骑虎难下,犹豫不决的时刻,请敢于说“yes”or“no”

14. 现在就开始训练自己的冷静力,尽量做到宠辱不惊

15. 不要什么都想得到,有时候放弃也不失为一种好的选择

16. 如果你太顺利,从未失败过,这就是你最大的失败。所以失败也是一种成功的经历

17. 永不言败,永不放弃,做愈挫愈勇的执著

18. 记住那句朴实的话:好人有好报,翻译成近期版本:做人要实在

19. 记住,你不是天生在某些方面差,只是缺乏训练,所以,抓住一切机会赶快练习吧

20. 要把“重要的事”和“紧急的事”分开,先做“最重要的事”而非“紧急的事”,尽量做到二者的平衡

21. 别人拥有的并不一定是你所需要的,别把时间浪费在别人的追求上,快乐比成功更重要

22. 不要去网吧玩游戏,那会使你走上永远堕落的生活

23. QQ是联系朋友的工具,也可以是交朋友的工具,但别轻易相信QQ上的友谊,更别幻想QQ上朋友的样子

24. 尊严是最重要的,在大学里,你要懂得锻炼自己,要让自己的尊严有足够的承受力

25. 面对不公平的东西,你不要抱怨,不要悲伤叹气,你的不公平可能恰恰是别人的公平。所以,你不如去努力的奋斗,争取你自己最合适的公平。

希望我的一点建议会对学弟学妹们有所帮助,最后祝愿学弟学妹们的大学生活愉快。

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

高中数学竞赛辅导初等数论不定方程

不定方程 不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题. 1.几类不定方程 (1)一次不定方程 在不定方程和不定方程组中,最简单的不定方程是整系数方程 )0,0(,0≠>=++b a c by ax 通常称之为二元一次不定方程.一次不定方程解的情况有如下 定理. 定理一:二元一次不定方程c b a c by ax ,,,=+为整数.有整数解的充分必要条件是c b a |),(. 定理二:若00,,1),(y x b a 且=为①之一解,则方程①全部解为at y y bt x x -=+=00,. (t 为整数)。 (2)沛尔)(pell 方程 形如12 2 =-dy x (*d N ∈,d 不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设),(11y x 为该方程的正整数解),(y x 中使d y x +最小的 解,则其的全部正整数解由111111111[()()]2)()] n n n n n n x x x y x x ?=+-?? ??=-?? (1,2,3, n =)给 出. ①只要有解),(11y x ,就可以由通解公式给出方程的无穷多组解. ②n n y x , 满足的关系:1(n n x y x y +=+;112 11222n n n n n n x x x x y x y y ----=-?? =-? , (3)勾股方程2 2 2 z y x =+ 这里只讨论勾股方程的正整数解,只需讨论满足1),(=y x 的解,此时易知z y x ,,实际上两两互素. 这种z y x ,,两两互素的正整数解),,(z y x 称为方程的本原解,也称为本原的勾股数。容易看出y x ,一奇一偶,无妨设y 为偶数,下面的结果勾股方程的全部本原解通解公式。 定理三:方程2 2 2 z y x =+满足1),(=y x ,2|y 的全部正整数解),,(z y x 可表为 2222,2,b a z ab y b a x +==-=,其中,b a ,是满足b a b a ,,0>>一奇一偶,且

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

竞赛数学中的初等数论(精华版)

《竞赛数学中的初等数论》 贾广素编著 2006-8-21

序 言 数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。 数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。可是这也说明了最难的数论问题,适合于任何人去研究。 初等数论最基础的理论在于整除,由它可以演化出许多数论定理。做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈?∈?,,,,满足r bq a +=,其中b r <≤0。 除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。相信通过对本书学习,您可以对数论有一个大致的了解。希望我们共同学习,相互交流,在学习交流中,共同提高。 编者:贾广素 2006-8-21于山东济宁

第一节 整数的p 进位制及其应用 正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制, 这是一种位值记数法。进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与 国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理 数列问题等等。在本节,我们着重介绍进位制及其广泛的应用。 基础知识 给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。 由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即 012211101010a a a a A m m m m +?++?+?=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且 01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。在我们的日常 生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m --=,以后我们 所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。但是随着计算机的 普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。特别是 现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种 数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是 一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。 为了具备一般性,我们给出正整数A 的p 进制表示: 012211a p a p a p a A m m m m +?++?+?=---- ,其中1,,2,1},1,,2,1,0{-=-∈m i p a i 且 01≠-m a 。而m 仍然为十进制数字,简记为p m m a a a A )(021 --=。 典例分析 例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与 八进制,并将其表示成多项式形式。 分析与解答 分析:用2作为除数(若化为p 进位制就以p 作为除数),除2004商1002,余数为0;再 用2作为除数,除1002商501余数为0;如此继续下去,起到商为0为止。所得的各次余 数按从左到右的顺序排列出来,便得到所化出的二进位制的数。 解:

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

数学高中竞赛之初等数论2

1 4 7 10 13 … 4 9 14 19 24 … 7 14 21 28 35 … 10 19 28 37 46 … … … … … … … 定理2:不定方程x 2+y 2=z 2满足(x ,y )=1,x ,y ,z >0,2|x 的全部整数解可表示为 x=2ab ,y=a 2-b 2,z=a 2+b 2。其中a >b >0,a 、b 一奇一偶,(a ,b )=1为任意整数。 四、例题与练习 1、右表的结构为:第一行是以1为首项,3为 公差的无穷等差数列;第一列中的数与第一行 中的数对应相等;第n (n ≥2)行是公差为2n+1 的无穷等差数列。证明:⑴若N 在表中,则2N+7 不是素数;⑵若N 不在表中,则2N+7是素数。 2、证明:若正整数x 、y 使得2xy | x 2+y 2-x ,则x 是完全平方数。 3、证明:存在一个1997的整倍数,它不超过11位,且各位数字不含2,3,4,5,6,7。 4、设c 为奇自然数,且存在自然数a ≤ 13-c ,使(2a -1)2+8c 为平方数,求证:c 为合数。 5、求最大的正整数x ,使得对任意y ∈N ,有x|(1127-+y y ) 6、证明:方程3 25y x =+无整数解。 7、求方程235=-y x 的全部整数解。 8、给数集M={1,2,…,n -1}(n ≥3)中的数染色,满足⑴i 与n -i 同色;⑵有一个k ∈M ,(k ,n )=1,使得当i ≠k 时i 与|k -i|同色,求证:M 中有一色。

9、在一个圆周上标记了4个整数,规定一个方向,使每个整数都有相邻的下一个数,每一步操作是指对每一个数,同时用该数与下一个数之差来替换,即对于a 、b 、c 、d 依次用a -b 、b -c 、c -d 、d -a 来替换。问经过1996步这样的替换之后,是否可以得到4个数a 、b 、c 、d ,使得|bc -ad|、|ac -bd|、|ab -cd|都是素数。(IMO -37预选题) 10、求所有大于3的自然数n ,使得1+321n n n C C C ++整除20002(CMO - 1998) 11、有多少个正整数对x 、y ,x ≤y ,使得(x ,y )=5!和[x ,y]=50!成立?(1997年加拿大) 12、设w (n )表示自然数n 的素因数的个数,n >1。证明:存在无穷多个n ,使得w (n )<w (n+1)<w (n+2)。 13、求最小的整数n (n ≥4),满足从任意n 个不同的整数中能选出四个不同的数a 、b 、c 、d ,使a+b -c -d 可以被20整数。 14、求所有实数对(a ,b ),使对所有的正整数n 满足a[bn]=b[an],其中[x]表示不超过x 的最大整数。(IMO -39预选题)

初等数论中的几个重要定理高中数学竞赛

初等数论中的几个重要定理 基础知识 定义(欧拉(Euler)函数)一组数称为是模的既约剩余系,如果对任意的,且对于任意的,若=1,则有且仅有一个是对模 的剩余,即。并定义中和互质的数的个数, 称为欧拉(Euler)函数。 这是数论中的非常重要的一个函数,显然,而对于,就是1,2,…,中与互素的数的个数,比如说是素数,则有。 引理:;可用容斥定理来证(证明略)。 定理1:(欧拉(Euler)定理)设=1,则。 分析与解答:要证,我们得设法找出个相乘,由个数我们想到中与互质的的个数:,由于=1,从而 也是与互质的个数,且两两余数不一样,故 (),而()=1,故。 证明:取模的一个既约剩余系,考虑,由于与互质,故仍与互质,且有,于是对每个都能找到唯一的一个,使得,这种对应关系 是一一的,从而,。

,,故。证毕。 这是数论证明题中常用的一种方法,使用一组剩余系,然后乘一个数组组成另外一组剩余系来解决问题。 定理2:(费尔马(Fermat)小定理)对于质数及任意整数有。 设为质数,若是的倍数,则。若不是的倍数,则 由引理及欧拉定理得,,由此即得。 定理推论:设为质数,是与互质的任一整数,则。 定理3:(威尔逊(Wilson)定理)设为质数,则。 分析与解答:受欧拉定理的影响,我们也找个数,然后来对应乘法。 证明:对于,在中,必然有一个数除以余1,这是因为则好是的一个剩余系去0。 从而对,使得; 若,,则,,故对于,有。即对于不同的对应于不同的,即中数可两两配对,其积除以余1,然后有,使,即与它自己配对,这时,,或,或。 除外,别的数可两两配对,积除以余1。故。

定义:设为整系数多项式(),我们把含有的一组同余式 ()称为同余方组程。特别地,,当均为的一次整系数多项式时,该同余方程组称为一次同余方程组.若整数同时满足: ,则剩余类(其中)称为同余方程组的一个解,写作 定理4:(中国剩余定理)设是两两互素的正整数,那么对于任意整数,一次同余方程组,必有解,且解可以写为: 这里,,以及满足,(即为对模的逆)。 中国定理的作用在于它能断言所说的同余式组当模两两互素时一定有解,而对于解的形式并不重要。 定理5:(拉格郎日定理)设是质数,是非负整数,多项式 是一个模为次的整系数多项式(即),则同余方程至多有个解(在模有意义的情况下)。 定理6:若为对模的阶,为某一正整数,满足,则必为的倍数。 以上介绍的只是一些系统的知识、方法,经常在解决数论问题中起着突破难点的作用。另外还有一些小的技巧则是在解决、思考问题中起着排除情况、辅助分析等作用,有时也会起到

初等数论试卷

一、判断题(对的写A ,错的写B ,3'1030?=) 1.12,,,k a a a 两两互素可以推出12,,,k a a a 互素,反之亦真。 ( ) 2.设10n n N a a a -=是整数N 的十进制表示,则0 1111(1)n i i i N a =?-∑。 ( ) 3.设,,a b m 是整数,(,)1a m =,若x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系。 ( ) 4.对于正整数k ,Euler 函数()k ?的值等于模k 简化剩余系中元素的个数。 ( ) 5.形如65n +的素数有无穷多个。 ( ) 6.32514805112133=????是51480的标准分解式。 ( ) 7. 已知(,,)x y z 是不定方程222x y z +=满足(,)1x y =的正整数解,则,x y 有不同的奇偶性。 ( ) 8.同余方程322310(mod5)x x x -+-≡的解数小于3。 ( ) 9. 3,5,9(mod14)x ≡是模14的全部原根。 ( ) 10.设,x y 是任意实数,则[][][]x y x y +=+。 ( ) 二、填空(3'1030?=) 1.159313被7除的余数是 。 2.使12347!被35k 整除的最大的k = 。 3.用(,)a b ,[,]a b 分别表示整数,a b 的最大公约数和最小公倍数,则[,](,)a b a b = 。 4.设n 是正整数,12,,,k p p p 是它的全部素因数,则 ()n ?= 。 5.同余方程2 1(mod61)x ≡-的解数是 。 6.设,a b 是整数,0(mod )a m ≠,则同余方程(mod )ax b m ≡有解的充要条件是 。若有解,则恰有 个解,mod m 。 7.模11的所有二次剩余是 。

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

初中数学竞赛专题复习第三篇初等数论第20章同余试题新人教版

第20章 同 余 20.1.1★(1)证明:任意平方数除以4,余数为0或1; (2)证明:任意平方数除以8,余数为0、1或4. 解析 (1)因为 奇数()2 22214411(mod 4)k k k =+=++≡, 偶数()222240(mod4)k k ==≡, 所以,正整数21(mod 4),;0(mod 4),.n n n ?≡??奇偶为数为数 (2)奇数可以表示为21k +,从而 奇数()22441411k k k k =++=++. 因为两个连续整数k 、1k +中必有一个是偶数,所以()41k k +是8的倍数,从而 奇数()2811mod8i =+≡. 又,偶数()2 2224k k ==(k 为整数). 若k =偶数2t =,则()224160mod 8k t ==. 若k =奇数21t =+,则 ()()2 2244211644(mod8)k t t t =+=++≡. 所以,平方数()()()0mod8,1mod8,4mod8. ??≡??? 评注 事实上,我们也可以这样来证:因为对任意整数a ,有0a ≡,±1,2(mod4),所以,0a ≡,1(mod4);又a ≡0,±1,±2,±3,4(mod8),所以,2a ≡0,1,()4mod8. 20.1.2★求证:一个十进制数被9除所得的余数,等于它的各位数字被9除所得的余数. 解析 设这个十进制数1210n n A a a a a a -=. 因10≡1(mod9),故对任何整数k ≥1,有 ()1011mod9k k ≡=. 因此 1210n n A a a a a a -= 1110101010n n n n a a a a --=?+?++?+ ()110mod9n n a a a a -≡++ ++.

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(m od 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求 ??? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初中数学竞赛专题复习第三篇初等数论第21章不定方程试题新人教版

第21章 不定方程 §21.1 二元一次不定方程 21.1.1★求不定方程2x y -=的正整数解. 解析 因为312-=,422-=,532-=,…,所以这个方程的正整数解有无数组,它们是 2, ,x n y n =+?? =? 其中n 可以取一切正整数. 21.1.2★求11157x y +=的整数解. 解析1 将方程变形得 71511 y x -= . 因为x 是整数,所以715y -应是11的倍数.由观察得02x =,01y =-是这个方程的一组整数解, 所以方程的解为 215, 111,x t y t =-?? =-+? t 为整数. 解析2 先考察11151x y +=,通过观察易得 ()()1141531?-+?=, 所以 ()()114715377?-?+??=, 可取028x =-,0 21y =.从而 2815, 2111,x t y t =--?? =+? t 为整数. 评注 如果a 、b 是互质的整数,c 是整数,且方程 ax by c += ① 有一组整数解0x 、0y .则此方程的一切整数解可以表示为 00, ,x x bt y y at =-?? =+? 其中0t =,±1,±2,±3,…. 21.1.3★求方程62290x y +=的非负整数解. 解析 因为(6,22)=2,所以方程两边同除以2得 31145x y +=. ① 由观察知,14x =,11y =-是方程 3111x y += ② 的一组整数解,从而方程①的一组整数解为

()00 454180, 45145,x y =?=??? =?-=-?? 所以方程①的一切整数解为 18011, 453.x t y t =-?? =-+? 因为要求的原方程的非负整数解,所以必有 180110,4530.t t -?? -+? ≥③ ≥④ 由于t 是整数,由③、④得15≤t ≤16,所以只有t =15,t =16两种可能. 当t =15时,x =15,0y =;当t =16时,x =4,y = 3.所以原方程的非负整数解是 15,0, x y =?? =?4, 3.x y =??=? 21.1.4★求方程719213x y +=的所有正整数解. 解析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数 的方法使系数变小,最后再用观察法求解. 用方程 719213x y +=① 的最小系数7除方程①的各项,并移项得 213193530277 y y x y --= =-+ .② 因为x 、y 是整数,故 357 y u -=也是整数,于是有573y u +=.再用5除此式的两边得 373255 u u y u --= =-+ .③ 令 325 u v -= (整数),由此得 253u v +=.④ 由观察知1u =-,1v =是方程④的一组解.将1u =-代入③得2y =.2y =代入②得x =25.于 是方程①有一组解025x =,02y =,所以它的一切解为 2519, 27.x t y t =-?? =+? 0,1,2,t =±± 由于要求方程的正整数解,所以 25190, 270.t t ->?? +>? 解不等式,得t 只能取0,1.因此得原方程的正整数解为 25,2, x y =?? =?6, 9.x y =??=?

初等数论试卷

初等数论试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a L 的公因数中最大的称为最大公因数; B.整数12,,,n a a a L 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =-=+=±±L B.00,,0,1,2,;a b x x t y y t t d d =+=-=±±L C.00,,0,1,2,;b a x x t y y t t d d =+=-=±±L D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±L 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112211mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9;L B.1,2,3,,10; L

初等数论c++

备注:纯手写代码,注释。 数论 1、素数 (1)暴力求解法 根据素数的概念,没有1和其本身没有其他正因数的数。所以只需枚举比这个数小的数,看能整除即可; C++代码: #include #include #include using namespace std; bool determine(int number) { if(n<=2)return false; if(!n%2)return false; for(int i=3;i<=ceil(sqrt(number));i+=2)

//去掉了偶数的判断,效率提高一倍 /*如果number整除以i,那么会得到两个的因数, 而较小的那个因数不会超过number的二分之一次方; 所以只需判断到number的平方根向上取整即可;*/ if(number%i); else return false; return true; } int main() { int sum; cin>>sum; if(determine(sum)) cout<<"YES!"; else cout<<"NO!"; return 0; } 时间复杂度:o(sqrt(n)/2); 空间复杂度:几乎没有; (2)一般线性筛法: 因为任何一个合数都能分解成几个素数相乘的形式; 所以可以做一个表,首先把2设为质数,然后将2的倍数设为合数,剩下的数就是新得到的质数,然后重复这个过程,直到筛到合

适的范围即可; 但是这个算法有缺陷: 1、同一个数可能被筛多次,这就产生了多余的步骤。 2、占用空间很大,如果使用bool数组的话,只能筛到1e9; 3、从1-n筛,不能从m-n开始筛; C++代码: #include #include #include using namespace std; bool s[1000000000]; int m,n; int main() { cin>>m>>n; memset(s,true,n); s[0]=s[1]=0; //输出M—N之间所有素数; for(int i=2;i<=ceil(sqrt(n));++i) if(s[i]) {

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

初中数学竞赛专题复习第三篇初等数论第22章[x]与{x}试题新人教版

第22章[]x与{}x 求1-的值. 解析因为 1200712006 +, 又 =<, 所以200612007 <. 故12006 =. 若n是正整数,求的值. 解析因为3321 n n n n <+++ ()3 32 3311 n n n n <+++=+, 所以1 n n <=+, 所以n =. 数1232008 A=????的末尾有多少个连续的零? 解析A的质因数分解式中,5的最高次方幂为 40080163499 =+++=, 所以1232008 A=????的末尾有499个零. 评注在() !12 n n =???中,质数p的最高次幂是 () 2 ! m n n n p n p p p ?????? =+++ ?????? ?????? , 其中m p n ≤,且1m p n +>. 设 222 111 1 232007 S=++++,求[]S. 解析要求[]S,只需证明S介于两个连续的整数之间.所以需要对S进行适当的变形,通过放大、缩小 的手段求出S的范围,从而确定[]S的取值. 由题设知,1 S>.考虑到 () 2 1111 11 k k k k k <=- -- ,k=2,3,4,…,2007,可以得到

1222007 =-<, 所以[]1S =. 评注 上述解题过程中,首先对S 进行了“放缩”,又通过“拆项”的方法使和式中前后两项能够相互抵消一部分,使和式化简,从而得到了S 的范围. 在对和式取整时,利用和式本身的性质进行“缩放”的方法非常重要,需要在平时的学习中多积累一 些和式的性质以及变形技巧. 计算和式 的值. 解析 因为(23,101)=1,所以,当1,2,,100n =时,23101n 都不是整数,即23101n ?????? 都不为零.又因为 ()2310123101101 n n -+ =23, 而()231012302101101n n -????<+

相关主题
文本预览
相关文档 最新文档