数学高中竞赛之初等数论2
- 格式:doc
- 大小:25.50 KB
- 文档页数:2
数学竞赛筑阶系列讲座——初等数论之二讲解人:凌 彬姓名__________专题二:奇数与偶数一、基本知识奇数的特征:它被2除得的余数是1;即任何奇数都是21n +的形式,其中n Z ∈. 偶数的特征:它被2除得的余数是0;即任何偶数都是2n 的形式,其中n Z ∈. 奇数与偶数的一个最明显的性质是:任何奇数决不会与一个偶数相等. 奇数与偶数还有几条运算性质:1.奇数与奇数的和是偶数;2.奇数与偶数的和是奇数;3.偶数与偶数的和是偶数; 4.奇数与奇数的积是奇数;5.奇数与偶数的积是偶数;6.偶数与偶数的积是偶数. 几个常用的结论:1.两个连续整数的积(1)n n +是偶数; 2.整数a 的幂n a 与a 奇偶性相同; 3.整数a 和b 有“a b ±”与“n n a b ±”的奇偶性相同.这些性质都是很平凡的,但灵活地应用它们却能解决许多问题,包括看上去“无从下手”的问题;下面给出的一些例子,解答除了应用奇偶性之外,还包含了一些非常有用的解题思想;利用奇偶性解题的方法叫奇偶性分析法.这个方法是数学竞赛中特别活跃的方法之一. 二、例题选讲例1.证明:不存在整数x 、y 满足:221990y x =+.例22例3.证明:不存在这样的整数a 、b 、c 、d ,使得abcd a -、abcd b -、abcd c -、abcd d -都是奇数.例4.证明:改变一个自然数各位数码的顺序后得到的数,与原数之和不能等于1989999.例5.设129, ,, a a a 是正整数,任意改变这九个数顺序后记为129, ,, b b b ;证明:112299()()()A a b a b a b =---是偶数.例6.平面上有15个点,任意三点都不在一条直线上,试问:能不能从每个点都引三条线段,且仅引三条线段和其余的某三点相连?证明你的结论.例7.已知一奇数β,使得整系数二次三项式2ax bx c ++的值2a b c ββ++也是奇数,其中c 是奇数;求证:方程20ax bx c ++=没有奇数根.例8.圆周上有1989个点,给每一个点染两次颜色:或红、蓝,或全红,或全蓝;最后统计知;染红色1989次,染蓝色1989次.试证:至少有一点被染上红、蓝两种颜色.例9.黑板上写着三个整数,任意擦去其中的一个,将它改写成为其它两数的和减去1;这样继续下去,最后得到19,2007,2009,问原来的三个数能否是2,2,2.例10.桌上有7只茶杯,杯口全部朝上,每次“运动”是指将其中的4只茶杯同时翻转;问:能否经过若干次运动使杯口全部朝下?例11.一个展览馆有26间展览室(如图),图中每个方格代表一间展览室,每相邻的两间展览室都有门相通,出口入口在图中所示之处;问能否找到一条入口到出口的参观路线,使得不遗漏又不重复地走过每一间展览室?入口出口 的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.例12.设有一张88下面对涂了色的方格纸实施“操作”;每次操作都是把任意横行或者竖列上的各个方格同时改变颜色;问能否最终得到恰有一个黑色方格的方格纸?例13.若两人互相握手,则每人都记握手一次,求证:握手是奇数次的人的总数一定是偶数.三、巩固练习1.设, , a b c 都是整数,2|a b c ++,求证:, , a b c a c b b c a +-+-+-都是偶数.2.若某正整数n 的各位数码在适当改变顺序后所得的数与n 之和等于1010,证明:10|n .3.设有整数12, , , n x x x ,使120n x x x +++=,12n x x x n =,求证:4|n .4.如图,给定两张33⨯方格纸,并且在每一方格内填上“+”或“-”号.如图,现在对方格纸中任何一行或一列作全部变号的操作,问可否经过若干次操作,使图(1)变成图(2)?(1)(2)++-++---+--++----+5.试证:找不到两个正整数,使其差与和的乘积等于2010.6.设有n 盏亮着的拉线开关灯,规定每次必须拉动1n -个拉线开关;试问:能否把所有的灯都关闭?证明你的结论或给出一种关灯的办法.。
不定方程不定方程是指未知数的个数多于方程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的方程.不定方程是数论的一个重要课题,也是一个非常困难和复杂的课题.1.几类不定方程 (1)一次不定方程在不定方程和不定方程组中,最简单的不定方程是整系数方程)0,0(,0≠>=++b a c by ax ①通常称之为二元一次不定方程.一次不定方程解的情况有如下定理.定理一:二元一次不定方程c b a c by ax ,,,=+为整数.有整数解的充分必要条件是c b a |),(. 定理二:若00,,1),(y x b a 且=为①之一解,则方程①全部解为at y y bt x x -=+=00,. (t 为整数)。
(2)沛尔)(pell 方程形如122=-dy x (*d N ∈,d 不是完全平方数)的方程称为沛尔方程. 能够证明它一定有无穷多组正整数解;又设),(11y x 为该方程的正整数解),(y x 中使d y x +最小的解,则其的全部正整数解由111111111[()()]2)()]n nn n n n x x x y x x ⎧=+-⎪⎪⎨⎪=-⎪⎩(1,2,3,n =L )给出.①只要有解),(11y x ,就可以由通解公式给出方程的无穷多组解. ②n n y x ,满足的关系:1(nn x y x y +=+;11211222n n n nn n x x x x y x y y ----=-⎧⎨=-⎩ , (3)勾股方程222z y x =+这里只讨论勾股方程的正整数解,只需讨论满足1),(=y x 的解,此时易知z y x ,,实际上两两互素. 这种z y x ,,两两互素的正整数解),,(z y x 称为方程的本原解,也称为本原的勾股数。
容易看出y x ,一奇一偶,无妨设y 为偶数,下面的结果勾股方程的全部本原解通解公式。
定理三:方程222z y x =+满足1),(=y x ,2|y 的全部正整数解),,(z y x 可表为2222,2,b a z ab y b a x +==-=,其中,b a ,是满足b a b a ,,0>>一奇一偶,且1),(=b a 的任意整数.4.不定方程zt xy =这是个四元二次方程,此方程也有不少用处,其全部正整数解极易求出:设a z x =),(,则ad z ac x ==,,其中1),(=d c ,故1),(,,===d c dt cy adt acy 因即, 所以bc t bt y y d ==则设,,|. 因此方程zt xy =的正整数解可表示为d c b a bc t ad z bd y ac x ,,,.,,,====都是正整数,且1),(=d c .反过来,易知上述给出的t z y x ,,,都是解.也可采用如下便于记忆的推导: 设d c d c y t z x 这里,==是既约分数,即1),(=d c . 由于z x 约分后得出dc,故ad z ac x ==,,同理.,ab y cb t ==2.不定方程一般的求解方法1.奇偶分析法;2.特殊模法;3.不等式法;4.换元法; 5.因式分解法6.构造法(构造出符合要求的特解或一个求解的递推关系,证明解无数个) 7.无穷递降法由于不定方程的种类和形式的多样性,其解法也是多种的,上面仅是常用的一般方法. 注:对无穷递降法的理解:以下面的问题为例: 证明:方程442x y z +=无正整数解。
高中数学竞赛课程讲座:初等数论
本课程讲座旨在介绍初等数论的基础知识,帮助学生为高中数学竞赛做最好的准备。
我们将深入探讨数论中的基础概念,如质数分解和
算术难题,并探讨一些实际应用的技巧和常用方法,帮助学生在数学
竞赛中取得好成绩。
本次讲座将向您介绍初等数论,它是一门关于形式化、有限数论等术语和方法的数学分支。
简而言之,初等数论在研究有关有限结构的
问题和计算方法时是不可或缺的。
在这个课程中,我们将探讨整数质
因数分解、质数及其应用、素数概念、余数定理、线性算术等,帮助
您为数学竞赛中的第一题做准备。
我们还将深入讨论有关如何构造有
限结构的问题,利用它们来探究多项式的性质;研究几何图形;通过
图论剖析算法,及解决整数方程组等方面的相关内容。
我们相信您在
学习初等数论时会有所收获,从而在高中数学竞赛中尽显实力!
此外,我们还将为您介绍数论的发展和历史,例如,古希腊的Euclid
的元素书、中国的Sunzi的求积算,以及17世纪的Fermat的大定理等,一起探究中国数学家在数论中的贡献。
在讲座中,我们还会解释完整
的幂的概念,从中分析总结出幂的工具,比如抽象代数和提高多项式
的方法等,以帮助您从大量的幂等式中获取实质性的知识,理清思路。
最后,在考试期间,我们将重点讨论质因数分解原理、构造,以及如
何将数论应用于实际情况中,例如Cryptography,帮助您在考试中取得高分。
《数学竞赛辅导》——初等数论部分数论是竞赛数学中最重要的一部分,特别是在1991年,IMO 在中国举行,国际上戏称那一年为数论年,因为6道IMO 试题中有5道与数论有关。
数论的魅力在于它可以适合小孩到老头,只要有算术基础的人均可以研究数论――在前几年还盛传广东的一位农民数学爱好者证明了哥德巴赫猜想,当然,这一谣言最终被澄清了。
可是这也说明了最难的数论问题,适合于任何人去研究。
初等数论最基础的理论在于整除,由它可以演化出许多数论定理。
做数论题,其实只要整除理论即可,然而要很快地解决数论问题,则要我们多见识,以及学习大量的解题技巧。
这里我们介绍一下数论中必需的一个内容:对于N r q N b a ∈∃∈∀,,,,满足r bq a +=,其中b r <≤0。
除了在题目上选择我们努力做到精挑细选,在内容的安排上我们也尽量做到讲解详尽,明白。
相信通过对本书学习,您可以对数论有一个大致的了解。
希望我们共同学习,相互交流,在学习交流中,共同提高。
编者:刘道生2007-8-21于江西赣州第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。
进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。
在本节,我们着重介绍进位制及其广泛的应用。
基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m --,则此数可以简记为:021a a a A m m --=(其中01≠-m a )。
由于我们所研究的整数通常是十进制的,因此A 可以表示成10的1-m 次多项式,即012211101010a a a a A m m m m +⨯++⨯+⨯=---- ,其中1,,2,1},9,,2,1,0{-=∈m i a i 且01≠-m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m --=。
2009-2017全国高中数学联赛分类汇编第02讲:初等数论1、(2010一试8)方程2010=++z y x 满足z y x ≤≤的正整数解(,,)x y z 的个数是. 【答案】336675易知 100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=,即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2、(2011一试8)已知=n a C ())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为. 【答案】15 【解析】=n a C65400320020023n n n --⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数. 因此,整数项的个数为15114=+.3、(2015一试8)对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若,,a b b c c d <><,则称abcd 为Q 类数,用()N P 与()N Q 分别表示P 类数与Q 类数的个数,则()()N P N Q -的值为【答案】28599b a b c <≤<≤由及知,a 和c 分别有9-b 种取法,从而992200191019|=(9)26|85.b k b k ==⨯⨯-===∑∑A ()()285.N P N Q -=因此,学科@网4、(2016一试8)设4321,,,a a a a 是1,2,…,100中的4个互不相同的数,满足2433221242322232211)())((a a a a a a a a a a a a ++=++++则这样的有序数组),,,(4321a a a a 的个数为 . 【答案】40【解析】由柯西不等式知,2433221242322232211)())((a a a a a a a a a a a a ++≥++++,等号成立的充分必要条件是433221a a a a a a ==,即4321,,,a a a a 成等比数列.于是问题等价于计算满足{1,2,3,},,,{4321⊆a a a a …,100}的等比数列4321,,,a a a a 的个数.设等比数列的公比1≠q ,且q 为有理数.记mn q =,其中n m ,为互素的正整数,且n m ≠. 先考虑m n >的情况.此时331314)(m n a m n a a ==,注意到33,n m 互素,故31ma l =为正整数. 相应地,4321,,,a a a a 分别等于l n l mn nl m l m 3223,,,,它们均为正整数.这表明,对任意给定的1>=mnq ,满足条件并以q 为公比的等比数列4321,,,a a a a 的个数,即为满足不等式1003≤l n 的正整数l 的个数,即]100[3n.由于10053>,故仅需考虑34,4,23,3,2=q 这些情况,相应的等比数列的个数为20113312]64100[]64100[]27100[]27100[]8100[=++++=++++. 当m n <时,由对称性可知,亦有20个满足条件的等比数列4321,,,a a a a . 综上可知,共有40个满足条件的有序数组),,,(4321a a a a .5、(2017一试4)若一个三位数中任意两个相邻数码的差均不超过1,则称其为“平稳数”.平稳数的个数是. 【答案】756、(2009二试3)设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,使得C k m 与l 互素. 【解析】证法一:对任意正整数t ,令(!)m k t l k =+⋅⋅.我们证明()C 1k m l =,.设p 是l 的任一素因子,只要证明:p/|C k m .若p /|k !,则由1!C ()kkmi k m k i ==-+∏1[((!)]ki i tl k =≡+∏1ki i =≡∏()1!mod k p α+≡.及|!p k α,且pα+1/|k !,知|!C k m p k α且1α+p /|!C k m k .从而p/|C km .证法二:对任意正整数t ,令2(!)m k t l k =+⋅⋅,我们证明()C 1k m l =,. 设p 是l 的任一素因子,只要证明:p/|C k m . 若p /|k !,则由 1!C ()==-+∏kkmi k m k i 21[((!)]ki i tl k =≡+∏1ki i =≡∏()!mod k p ≡.即p 不整除上式,故p/|C k m .若|!p k ,设1α≥使|!p k α,但1/|!p k α+.12|(!)p k α+.故由11!C ()k kmi k m k i -==-+∏21[((!)]ki i tl k =≡+∏1ki i =≡∏()1!mod k p α+≡,及|!p k α,且pα+1/|k !,知|!C k m p k α且1α+p /|!C k m k .从而p/|C km .7、(2009二试4)在非负数构成的39⨯数表中每行的数互不相同,前6列中每列的三数之和为1,1728390x x x ===,27x ,37x ,18x ,38x ,19x ,29x 均大于.如果P 的前三列构成的数表111213212223313233x x x S x x x x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭满足下面的性质()O :对于数表P 中的任意一列123k k k x x x ⎛⎫⎪⎪ ⎪⎝⎭(1k =,2,…,9)均存在某个{}123i ∈,,使⑶{}123min ik i i i i x u x x x =≤,,.求证:(ⅰ)最小值{}123min i i i i u x x x =,,,1i =,2,3一定自数表S 的不同列. (ⅱ)存在数表P 中唯一的一列***123k k k x x x ⎛⎫⎪⎪ ⎪ ⎪⎝⎭,*1k ≠,2,3使得33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭仍然具有性质()O . 【解析】(ⅰ)假设最小值{}123min i i i i u x x x =,,,1i =,2,3不是取自数表S 的不同列.则存在一列不含任何i u .不妨设2i i u x ≠,1i =,2,3.由于数表P 中同一行中的任何两个元素都不等,于是2i i u x <,1i =,2,3.另一方面,由于数表S 具有性质()O ,在⑶中取2k =,则存在某个{}0123i ∈,,使得002i i x u ≤.矛盾. (ⅱ)由抽届原理知,{}1112min x x ,,{}2122min x x ,,{}3132min x x ,中至少有两个值取在同一列.不妨设{}212222min x x x =,,{}313232min x x x =,.由前面的结论知数表S 的第一列一定含有某个i u ,所以只能是111x u =.同样,第二列中也必含某个i u ,1i =,2.不妨设222x u =.于是333u x =,即i u 是数表S 中的对角线上数字.下面证明33⨯数表***111212122231323k k k x x x S x x x x x x ⎛⎫ ⎪'= ⎪ ⎪ ⎪⎝⎭具有性质()O .从上面的选法可知{}{}*1212:min min i i i i i ik u x x x x x '==,,,,(13)i =,.这说明{}*111211min k x x x u >,≥,{}*313233min k x x x u >,≥.又由S 满足性质()O .在⑶中取*k k =,推得*22k x u ≤,于是{}**2212222min k k u x x x x '==,,.下证对任意的k M ∈,存在某个1i =,2,3使得i ik u x '≥.假若不然,则{}12min ik i i x x x >,,1i =,3且*22k k x x >.这与*2k x 的最大性矛盾.因此,数表S '满足性质()O . 下证唯一性.设有k M ∈使得数表111212122231323k k k x x x S x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭具有性质()O ,不失一般性,我们假定⑷{}221222322min u x x x x ==,, 3231x x <.由于3231x x <,2221x x <及(ⅰ),有{}11112111min k u x x x x ==,,.又由(ⅰ)知:或者()a {}3313233min k k u x x x x ==,,,或者{}2212222()min k k b u x x x x ==,,.如果()a 成立,由数表S 具有性质()O ,则{}11112111min k u x x x x ==,,,⑸{}22122222min k u x x x x ==,,, {}3313233min k k u x x x x ==,,.由数表S 满足性质()O ,则对于3M ∈至少存在一个{}123i ∈,,使得*i ik u x ≥.由*k I ∈及⑷和⑹式知,*1111k x x u >=,*3323k x x u >=.于是只能有*222k k x u x =≤.类似地,由S '满足性质()O 及k M ∈可推得*222k k x u x '=≤.从而*k k =.学*科网 8、(2010一试11)证明:方程02523=-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r . 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<nb b b 21满足52321321=+++=+++ b b b a a a r r r r r r , 去掉上面等式两边相同的项,有 +++=+++321321t t t s s s r r r r r r,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的. 不妨设11t s <,则 ++=++<21211t t s s s r r r r r,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.9、(2010二试2)设k 是给定的正整数,12r k =+.记(1)()()f r f r r r ==⎡⎤⎢⎥,()()l f r =(1)(()),2l f f r l -≥.证明:存在正整数m ,使得()()m f r 为一个整数.这里,x ⎡⎤⎢⎥表示不小于实数x 的最小整数,例如:112⎡⎤=⎢⎥⎢⎥,11=⎡⎤⎢⎥. 【解析】记2()v n 表示正整数n 所含的2的幂次.则当2()1m v k =+时,()()m f r 为整数.下面我们对2()v k v =用数学归纳法.当0v =时,k 为奇数,1k +为偶数,此时()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭为整数. 假设命题对1(1)v v -≥成立.对于1v ≥,设k 的二进制表示具有形式1212222v v v v v k αα++++=+⋅+⋅+,这里,0i α=或者1,1,2,i v v =++.于是 ()111()1222f r k k k k ⎛⎫⎡⎤⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎢⎥⎝⎭2122k k k =+++ 11211212(1)2()222v v v v v v v ααα-++++=+++⋅++⋅+++12k '=+, ① 这里1121122(1)2()22v v v v v v v k ααα-++++'=++⋅++⋅+++.显然k '中所含的2的幂次为1v -.故由归纳假设知,12r k ''=+经过f 的v 次迭代得到整数,由①知,(1)()v f r +是一个整数,这就完成了归纳证明.10、(2010二试4)一种密码锁的密码设置是在正n边形12nA A A的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?设标有a的边有2i条,02ni⎡⎤≤≤⎢⎥⎣⎦,标有b的边有2j条,22n ij-⎡⎤≤≤⎢⎥⎣⎦.选取2i条边标记a的有2inC种方法,在余下的边中取出2j条边标记b的有22jn iC-种方法,其余的边标记c.由乘法原理,此时共有2inC22jn iC-种标记方法.对i,j求和,密码锁的所有不同的密码设置方法数为222222004n n ii jn n ii jC C-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫⎪⎪⎪⎝⎭∑∑.①这里我们约定01C=.当n为奇数时,20n i->,此时2222122n ij n in ijC-⎡⎤⎢⎥⎣⎦---==∑.②代入①式中,得()()2222222221222000044222n n i n ni j i n i i n in n i n ni j i iC C C C-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦----====⎛⎫⎪==⎪⎪⎝⎭∑∑∑∑0022(1)(21)(21)n nk n k k n k k n nn nk kC C--===+-=++-∑∑31n=+.222222004n n ii jn n ii jC C-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦-==⎛⎫⎪=⎪⎪⎝⎭∑∑()12221412ni n iniC⎡⎤-⎢⎥⎣⎦--=⎛⎫⎪⨯+⎪⎪⎝⎭∑()222124233ni n i nniC⎡⎤⎢⎥⎣⎦--==+=+∑.综上所述,这种密码锁的所有不同的密码设置方法数是:当n 为奇数时有31n +种;当n 为偶数时有33n +种.11、(2011二试2)证明:对任意整数4≥n ,存在一个n 次多项式具有如下性质:(1)110,,,-n a a a 均为正整数;(2)对任意正整数m ,及任意)2(≥k k 个互不相同的正整数k r r r ,,,21 ,均有)()()()(21k r f r f r f m f ≠.【解析】令 2)()2)(1()(++++=n x x x x f , ①将①的右边展开即知)(x f 是一个首项系数为1的正整数系数的n 次多项式. 下面证明)(x f 满足性质(2).对任意整数t ,由于4≥n ,故连续的n 个整数n t t t +++,,2,1 中必有一个为4的倍数,从而由①知)4(mod 2)(≡t f .因此,对任意)2(≥k k 个正整数k r r r ,,,21 ,有 )4(mod 02)()()(21≡≡k k r f r f r f . 但对任意正整数m ,有)4(mod 2)(≡m f ,故)4)(mod ()()()(21k r f r f r f m f ≡/, 从而)()()()(21k r f r f r f m f ≠. 所以)(x f 符合题设要求.学&科网12、(2011二试3)设)4(,,,21≥n a a a n 是给定的正实数,n a a a <<< 21.对任意正实数r ,满足)1(n k j i r a a a a j k ij ≤<<≤=--的三元数组),,(k j i 的个数记为)(r f n .证明:4)(2n r f n <.因此,当n 为偶数时,设m n 2=,则有∑∑∑-=-=-=+==121212)()()()(m mj j m j j n j j n r g r g r g r f2)1(2)1()2()1(1212-+-=-+-≤∑∑-+==m m m m j m j m m j m j 4222n m m m =<-=.当n 为奇数时,设12+=m n ,则有∑∑∑+==-=+==mm j jmj j n j j n r gr g r g r f 21212)()()()(∑∑+==-++-≤mm j mj j m j 212)12()1(422n m <=.13、(2011二试4)设A 是一个93⨯的方格表,在每一个小方格内各填一个正整数.称A 中的一个)91,31(≤≤≤≤⨯n m n m 方格表为“好矩形”,若它的所有数的和为10的倍数.称A 中的一个11⨯的小方格为“坏格”,若它不包含于任何一个“好矩形”.求A 中“坏格”个数的最大值. 【解析】首先证明A 中“坏格”不多于25个.用反证法.假设结论不成立,则方格表A 中至多有1个小方格不是“坏格”.由表格的对称性,不妨假设此时第1行都是“坏格”.设方格表A 第i 列从上到下填的数依次为9,,2,1,,, =i c b a i i i .记9,,2,1,0,)(,11=+==∑∑==k c bT a S ki i ikk i ik ,这里000==T S .即第2行至第3行、第1+m 列至第n 列组成一个“好矩形”,从而至少有2个小方格不是“坏格”,矛盾. 类似地,也不存在90,,≤<≤n m n m ,使)10(mod n n m m T S T S +≡+.因此上述断言得证.故)10(mod 59210)(999≡++++≡+≡≡∑∑∑=== k k k k k k k T S T S ,所以 )10(mod 055)(99090≡+≡+≡+∑∑∑===k k k k k k k T S T S ,矛盾!故假设不成立,即“坏格”不可能多于25个.另一方面,构造如下一个93⨯的方格表,可验证每个不填10的小方格都是“坏格”,此时有25个“坏格”. 综上所述,“坏格”个数的最大值是25.14、(2012二试2)试证明:集合{}22,2,,2,n A =满足b N *∈,若21b a <-,(1)对每个a A ∈,及则(1)b b +一定不是2a的倍数;(2)对每个a A ∈(其中A 表示A 在N 中的补集),且1a ≠,必存在b N *∈,21b a <-,使(1)b b +是2a 的倍数.【解析】证明:对任意的a A ∈,设2,,ka k N *=∈则122,k a +=如果b 是任意一个小于21a -的正整数,则1 1 12 1 1 1 1 10 1 1 1 1 1 1 1 1 1 1111011112121b a+≤-则122ka m+=⋅下面给出(2)的三种证明方法:证法一:令1,12,kb mx b y+=+=消去b得12 1.k y mx+-=由于1(2,)1,k m+=这方程必有整数解;12kx x ty y mt+⎧=+⎪⎨=+⎪⎩其中00,(,)t z x y∈为方程的特解.把最小的正整数解记为(,),x y**则12kx*+<,故21,b mx a*=<-使(1)b b+是2a的倍数.证法二:由于1(2,)1,k m+=由中国剩余定理知,同余方程组10(mod2)1(mod)kxx m m+⎧=⎨=-⎩在区间1(0,2)k m+上有解,x b=即存在21,b a<-使(1)b b+是2a的倍数.证法三:由于(2,)1,m=总存在(,1),r r N r m*∈≤-使21(mod)r m=取,t N*∈使1,tr k>+则21(mod)tr m=存在1(21)(2)0,,tr kb q m q N+=--⋅>∈使021,b a<<-此时1,21,km b m++因而(1)b b+是2a的倍数.15.(2013二试4)(本题满分50分)设,n k为大于1的整数,2kn<.证明:存在2k个不被n整除的整数,若将它们任意分成两组,则总有一组若干个数的和被n整除.【证明】先考虑n为2的幂的情形.设2,1rn r=≥,则r k<.取3个12r-及23k-个1,显然这些数均不被n整除.将这2k个数任意分成两组,则总有一组中含2个12r-,它们的和为2r,被n整除.现在设n不是2的幂,取2k个数为22211,1,2,2,,2,1,2,2,,2k k-------,因为n不是2的幂,故上述2k个数均不被n整除.若可将这些数分成两组,使得每一组中任意若干个数的和均不能被n整除.不妨设1在第一组,由于(-1)+1=0,被n整除,故两个-1必须在第二组;因(-1)+(-1)+2=0,被n整除,故2在第一组,进而推出-2在第二组. 现归纳假设1,2,,2l 均在第一组,而1,1,2,,2l ----均在第二组,这里12l k ≤<-,由于()()()()1112220l l +-+-+-++-+=,被n 整除,故12l +在第一组,从而12l +-在第二组.故由数学归纳法可知,221,2,2,,2k -在第一组,221,1,2,2,,2k ------在第二组.最后,由于()()()()21112220k k ---+-+-++-+=,16、(2014二试4)(本题满分50分)设整数122014,,,2014x x x 模互不同余,122014,,,y y y 整数模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.【证明】(mod 2),12.,i i y i k i k i ≡≡≤≤记k=1007,不妨设x 对每个整数17、(2015二试4)(本题满分50分)求具有下述性质的所有正整数k :对任意正整数(1)1,2k n n -+不整除()!!kn n . 18、(2016二试3)(本题满分50分)给定空间中10个点,其中任意四点不在一个平面上,将某些点之间的线段相连,若得到的图形中没有三角形也没有空间四边形,试确定所连线段数目的最大值.【解析】以这10个点为顶点,所连线段为边,得到一个10界简单图G ,我们证明G 的边数不超过15.边,否则就形成三角形,所以,121,,,n v v v +⋅⋅⋅之间恰有n 条边.对每个j (210)n j +≤≤,j v 至多与21,,n v v +⋅⋅⋅中的一个顶点相邻(否则设j v 与,(21)s t v v s t n ≤<≤+)相邻,则1,,,s j t v v v v 就对应了一个空间四边形的四个顶点,这与题设条件矛盾,从而21,,n v v +⋅⋅⋅与210,,n v v +⋅⋅⋅之间的边数至多10(1)9n n -+=-条.在210,,n v v +⋅⋅⋅这9n -个顶点之间,由于没有三角形,由托兰定理,至多2(9)[]4n -条边,因此G 的边数22(9)(9)25(9)[]9[]9[]15444n n k n n --≤+-+=+≤+=百度文库 - 让每个人平等地提升自我11 如图给出的图共有15条边,且满足要求,综上所述,所求边数的最大值为15.学科*网19、(2017二试3)(本题满分50分)将33×33方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等,若相邻两个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.解:记分隔边的条数为L ,首先,将方格纸按如图分成三个区域,分别染成三种颜色,粗线上均为分隔边,此时共有56个分隔边,即L=56.20、(2017二试4)(本题满分50分)设,m n 均是大于1的整数,12.,,,n m n a a a ≥是n 个不超过m 的互不相同的正整数,且12,,,n a a a 互素.证明:对任意实数x ,均存在一个(1)i i n ≤≤,使得2||||||||(1)i a x x m m ≥+,这里||||y 表示实数y 到它最近的整数的距离. 证明:首先证明以下两个结论.结论1:存在整数121122,,,,+++c 1,||,1.n n n i c c c c a c a a c m i n =≤≤≤满足并且由于121211221,,,+++c 1.1n n n n a a a c c c c a c a a ==(,,,),由裴蜀定理,存在整数,满足() 下面证明,通过调整,存在一组12,,,n c c c 满足(1),且绝对值均不超过m,记因为12S 与S 均是非负整数,故通过有限次上述的调整,可得到一组12,,,n c c c ,。
高中数学竞赛课程讲座:初等数论
随着科学技术的发展,今天的社会更加注重对数学的重视,尤其是对高中生的数学学习。
有越来越多的学生参加各种数学竞赛,而竞赛尤其需要考虑初等数论,使得学生了解竞赛重要知识。
为此,本次讲座将讨论如何利用初等数论帮助高中生参加数学竞赛。
首先,我们需要了解初等数论是什么以及它的定义。
初等数论是一门古老的数学研究学科,主要研究数的性质和关系,以及数的应用。
它主要包括数论基础知识,如有理数的分解形式,素数的性质以及素数的筛选等;代数知识,如根的计算,多项式的分解,方程组的解等;几何知识,如面积的计算,角的概念,三角不等式,向量的概念等。
其次,我们来讨论如何使用初等数论来参加数学竞赛。
首先,通过对数学竞赛试题的准备,学生可以通过预习初等数论知识,把知识应用到实际情况中。
其次,学生用初等数论为数学竞赛题目找到解决办法。
有些数学竞赛的题目会涉及到初等数论的内容,如组合数学,几何,排列组合,等等,学生可以利用初等数论中的知识来求解这些问题。
此外,还要注意初等数论的训练。
学生要熟悉初等数论的知识,以及这些知识的正确应用,包括数论基础知识,代数知识,几何知识等。
学生可以通过做竞赛题来锻炼自己,熟悉题目的形式,学会思考方法,提高解题能力,进而帮助取得好成绩。
最后,我们可以总结,初等数论是高中数学竞赛的基础,是参加数学竞赛的重要意义,可以帮助学生更好地理解竞赛知识。
学生应该
认真预习初等数论知识,并通过练习和训练来提高自己的解题能力,以帮助学生取得好成绩。
1 4 7 10 13 … 4 9 14 19 24 … 7 14 21 28 35 … 10 19 28 37 46 … … … … … … … 定理2:不定方程x 2+y 2=z 2满足(x ,y )=1,x ,y ,z >0,2|x 的全部整数解可表示为 x=2ab ,y=a 2-b 2,z=a 2+b 2。
其中a >b >0,a 、b 一奇一偶,(a ,b )=1为任意整数。
四、例题与练习
1、右表的结构为:第一行是以1为首项,3为
公差的无穷等差数列;第一列中的数与第一行
中的数对应相等;第n (n ≥2)行是公差为2n+1
的无穷等差数列。
证明:⑴若N 在表中,则2N+7
不是素数;⑵若N 不在表中,则2N+7是素数。
2、证明:若正整数x 、y 使得2xy | x 2+y 2-x ,则x 是完全平方数。
3、证明:存在一个1997的整倍数,它不超过11位,且各位数字不含2,3,4,5,6,7。
4、设c 为奇自然数,且存在自然数a ≤
13-c ,使(2a -1)2+8c 为平方数,求证:c 为合数。
5、求最大的正整数x ,使得对任意y ∈N ,有x|(1127-+y y )
6、证明:方程3
25y x =+无整数解。
7、求方程235=-y x 的全部整数解。
8、给数集M={1,2,…,n -1}(n ≥3)中的数染色,满足⑴i 与n -i 同色;⑵有一个k ∈M ,(k ,n )=1,使得当i ≠k 时i 与|k -i|同色,求证:M 中有一色。
9、在一个圆周上标记了4个整数,规定一个方向,使每个整数都有相邻的下一个数,每一步操作是指对每一个数,同时用该数与下一个数之差来替换,即对于a 、b 、c 、d 依次用a -b 、b -c 、c -d 、d -a 来替换。
问经过1996步这样的替换之后,是否可以得到4个数a 、b 、c 、d ,使得|bc -ad|、|ac -bd|、|ab -cd|都是素数。
(IMO -37预选题)
10、求所有大于3的自然数n ,使得1+321n n n C C C ++整除20002(CMO -
1998)
11、有多少个正整数对x 、y ,x ≤y ,使得(x ,y )=5!和[x ,y]=50!成立?(1997年加拿大)
12、设w (n )表示自然数n 的素因数的个数,n >1。
证明:存在无穷多个n ,使得w (n )<w (n+1)<w (n+2)。
13、求最小的整数n (n ≥4),满足从任意n 个不同的整数中能选出四个不同的数a 、b 、c 、d ,使a+b -c -d 可以被20整数。
14、求所有实数对(a ,b ),使对所有的正整数n 满足a[bn]=b[an],其中[x]表示不超过x 的最大整数。
(IMO -39预选题)。