高速铁路轨道结构
- 格式:ppt
- 大小:10.94 MB
- 文档页数:33
高速铁路设备系列介绍之十六——高速铁路轨道结构:与普通铁路轨道结构一样,高速铁路轨道结构由钢轨、轨枕、联结零件、道床、防爬设备、轨撑和道岔等设备组成。
钢轨是轨道结构中细长的部件。
将钢轨牢固地支承和约束是确保安全和提高运输品质的关键问题。
钢轨直接承受由机车车辆传来的巨大动力,并传向轨枕。
轨枕又称枕木,也是铁路配件的一种。
只不过现在所用材料不仅仅是木材,因此叫轨枕更加科学。
别看轨枕的模样单调划一,貌不惊人,它的作用可不小。
轨枕承受钢轨传来的竖向垂直力、横向和纵向水平力后再将其分布于道床,并保持钢轨正常的几何位置。
轨枕既要支承钢轨,又要保持钢轨的位置,还要把钢轨传递来的巨大压力再传递给道床。
它必须具备一定的柔韧性和弹性,硬了不行,软了也不行。
列车经过时,它可以适当变形以缓冲压力,但列车过后还得尽可能恢复原状。
联结零件包括接头联结零件和中间联结零件两类。
接头联结零件是用来联结钢轨间的接头的,钢轨接头处必须保持的缝隙叫做轨缝。
中间联结零件(又称扣件)的作用是将钢轨紧扣在轨枕上。
钢筋混泥土轨枕用的扣件有扣板式,拱形弹片式和ω形弹条式三种。
道床是轨道的重要组成部分,是轨道框架的基础。
道床通常指的是轨枕下面,路基面上铺设的石碴(道碴)垫层。
主要作用是支撑轨枕,把轨枕上部的巨大压力均匀地传递给路基面,并固定轨枕的位置,阻止轨枕纵向或横向移动,大大减少路基变形的同时还缓和了机车车辆轮对对钢轨的冲击,便于排水。
根据材料不同,有碎石道床、沥青道床和混凝土整体道床。
混凝土整体道床是用浇筑成型的混凝土整体基础作为钢轨的基础,由于取消了道碴层,线路强度高,维修工作量小,我国在隧道内或客运站到发线上已开始铺设。
防爬设备的设置,是因列车运行时常常产生作用在钢轨上的纵向力,使钢轨作纵向移动,有时甚至带动轨枕一起移动。
这种纵向移动,叫做线路爬行。
一般发生在复线铁路的区间正线、单线铁路的重车方向、长大下坡道上和进站时的制动范围内。
安装防爬设备就能够在轨道两边将轨道死死拉住,能够有效防止线路爬行。
高速铁路轨道结构及检测技术研究随着高速铁路的不断发展,铁路的安全问题也成为了人们高度关注的话题。
而高速铁路轨道的结构及检测技术成为了保证高速铁路安全运行的重要保障。
本文将从几个方面介绍高速铁路轨道的结构和检测技术研究的现状和未来发展趋势,以期为铁路的安全运行提供参考和帮助。
一、高速铁路轨道结构道床高速铁路轨道的结构从下往上依次为道床、轨枕、轨道和固定方式等。
其中,道床是铺设轨道的基础,它的作用主要在于承受铁路轨道的重量和各种荷载,并向下传递荷载,同时还要起到排水、保温、抗沉降的作用。
目前,常用的道床形式主要有混凝土板式道床、桥梁式钢筋混凝土道床以及碎石(球ast)道床等。
轨枕高速铁路轨道的轨枕通常由木质、钢筋混凝土、预应力混凝土和复合材料等材料制成,其作用是为轨道提供支撑,并保证铁路轨道的线路精度和稳定性。
其中,轨枕质量的高低决定了车轮对轨的接触质量和轨道的噪声和震动程度。
轨道高速铁路轨道的主要结构是钢轨和钢轨之间的连接部件,而钢轨的质量、尺寸和定位精度都是直接影响高速铁路行车安全与平稳的关键因素。
目前,高速铁路轨道中最常用的钢轨类型是50kg/m、60kg/m以及68kg/m三种类型,它们具有不同的优缺点。
固定方式高速铁路轨道的固定方式主要包括道钉固定和橡胶垫片固定两种形式。
道钉固定是在轨枕上加装特制钉子固定铁轨,能够提供较高的保持力和减轨噪声的效果,但在高速铁路应用中,缺乏弹性的刚性固定方式会导致过高的钢轨温度,存在一定的安全隐患。
而橡胶垫片固定是采用橡胶垫片作为铁轨和轨枕之间的组合,在形变方面具有较好的可调性和良好的隔振效果,具有良好的适应性和可塑性。
二、高速铁路轨道检测技术轨道在线监测系统轨道在线监测系统能够实时监测轨道的状态,并对问题情况进行报警和预测,从而及时发现轨道的缺陷和隐患,提高铁路运行的安全性和便捷性。
目前,轨道在线监测系统主要分为两种:激光测距监测系统和斯特劳斯测距监测系统。
国外主要高速铁路轨道结构概况高速铁路是现代交通建设的重要组成部分,具有运行速度高、运输能力大、安全可靠等特点。
在全球范围内,国外的高速铁路轨道结构也有不同的特点和技术。
首先,国外的高速铁路轨道结构通常采用了混凝土板式轨道结构。
这种结构是将混凝土板直接铺设在路基上,轨枕直接嵌入混凝土中,形成一个坚固的基础。
这种结构具有结构简单、耐久性好的特点,并且可以适应高速列车的运行要求。
此外,国外的高速铁路轨道结构在路基处理方面也有一定的特点。
为了提高铁路的平顺性和稳定性,国外的高速铁路通常采用了较高的路基处理标准。
这包括采用混凝土路基、加设防震层、进行地基处理等措施,以确保铁路的安全运营。
国外高速铁路轨道结构中的关键技术还包括无砟轨道技术和弹性床轨道技术。
无砟轨道技术是指在轨道上不使用砟石作为路基,而是采用一种特殊的材料层来代替,如聚氨酯、玻璃钢等。
这种技术可以提高铁路的平顺性和稳定性,减少噪音和振动。
弹性床轨道技术则是在轨道上加设了一层弹性材料,可以通过调节弹性材料的硬度来改变轨道的弹性特性,进而提高铁路的平顺性和稳定性。
另外,国外的高速铁路轨道结构还在线路布局和设计上有一些创新。
例如,在一些山区或者海上建设的高速铁路,需要采用特殊的桥梁和隧道结构。
这些结构要求在地形起伏的情况下能够平稳地过桥或者通过隧道,同时要确保铁路的稳定和安全。
因此,在这些特殊地形条件下,国外的高速铁路轨道结构通常采用了更复杂的设计和建造技术。
总的来说,国外的高速铁路轨道结构在技术上有较高的水平,结构简单、稳定性好、耐久性强。
同时,国外的高速铁路轨道结构在特殊地形条件下也有很好的解决方案。
随着高速铁路的快速发展,国外的高速铁路轨道结构将不断创新和改进,以满足不同地区和条件下的需求。
国外主要高速铁路轨道结构概况高速铁路是一种有轨道的陆上交通工具,它以高速、高效和安全为特点。
成熟的高速铁路系统,不仅依靠先进的列车技术,还需要具备优良的轨道结构,以保障乘客舒适的行车环境和运输效率。
国外一些高速铁路系统在轨道结构的设计和建设方面做出了许多令人瞩目的创新。
1.TGV高速铁路(法国)法国TGV(Train à Grande Vitesse)高速铁路系统在轨道结构方面采用了德国Vossloh公司开发的Vossloh快速型轨道。
这种轨道采用了一种特殊的锐角缺口结构,通过在轨道头部切削出一定角度的槽口,使得轮轨相对位置的调整更加方便快捷。
该型轨道在降低轮轨打滑和噪音的同时,还提高了轮轨的精度和准确性。
2. Shinkansen高速铁路(日本)日本的Shinkansen高速铁路系统采用了一种双层桁架结构的轨道。
该轨道结构由两根平行的钢轨和连接两根钢轨的横梁组成。
这种结构能够提高轨道的稳定性和刚性,减少轨道的垂直变形,提高乘车舒适度。
另外,日本的Shinkansen还采用了混凝土轨道床来减少噪音和振动。
3.ICE高速铁路(德国)德国的ICE(Intercity-Express)高速铁路系统采用了一种称为LVT型的轨道结构。
LVT型轨道是德国LVT公司开发的一种全新材料,它由一种名为"VE-Drehlastic"的弹性聚合物制成。
LVT型轨道具有较好的弹性和消音特性,可以有效降低乘车噪音和振动。
此外,LVT型轨道还可以使列车的运行更加平稳,提高乘车舒适度。
4.AVE高速铁路(西班牙)西班牙的AVE(Alta Velocidad Española)高速铁路系统在轨道结构方面采用了一种称为"Platz LVT"的轨道。
Platz LVT轨道是由德国Platz公司研发的一种高弹性塑料轨道。
该轨道具有优异的噪音和振动吸收能力,能够有效降低列车行驶时的噪音和振动。
高速铁路无砟轨道高速铁路的无砟轨道结构形式分为长枕埋入式无砟轨道、板式无砟轨道和弹性支承块式无砟轨道3种类型,国内高速铁路常用的有CRTSⅠ、Ⅱ、Ⅲ型板式无砟轨道和CRTSⅠ、Ⅱ型双块式无砟轨道。
1.长枕埋入式无砟轨道长枕埋入式无砟轨道是将混凝土枕用混凝土灌注在钢筋混凝土的道床板上,使轨枕与道床板形成一个整体的轨道结构形式,由预应力混凝土轨枕、混凝土道床板和混凝土底座组成。
其结构内没有易受环境或温度影响的橡胶、乳化沥青等材料,结构整体性和耐用性较好。
制造混凝土枕和现场灌注混凝土的技术及设备均是成熟、配套的。
2.板式无砟轨道板式无砟轨道是用双向预应力混凝土轨道板及CA砂浆(乳化沥青水泥砂浆)替换传统有砟轨道的轨枕和道砟的一种新型轨道形式,它由板下混凝土底座、CA砂浆垫层、轨道板、长钢轨及扣件4部分组成。
板式无砟轨道是将预制好的轨道板直接放置在混凝土底座上,通过轨道板与底座间填充的沥青混凝土材料调整轨道板,以确保铺设的精度。
CA砂浆作为调整层和弹性层被放置在轨道板的下面。
CA砂浆的下面是混凝土基础,作为板式轨道的底座。
在混凝土基础上设有凸形挡台来防止轨道板的移位,为防止轨道板与凸形挡台因相互挤压而破损,在凸形挡台与轨道板之间用树脂材料填充。
板式无砟轨道以预制轨道板为核心。
轨道板的结构形式、抵抗纵横向作用力的方式和高性能的调整层材料是板式无砟轨道的关键技术。
板式无砟轨道具有无砟轨道所具有的线路稳定性和刚度均匀性好、线路平顺性和耐久性高的突出优点,并可显著减少线路的维修工作量。
从轨道结构每延米重量看,板式无砟轨道小于有砟轨道,且板式无砟轨道结构高度低、道床宽度小、质量轻。
框架式板式无砟轨道为非预应力结构,便于制造,可节省钢筋和混凝土材料,降低桥梁的二期恒载,造价低廉,但没有降低轨道板实际承受列车荷载的有效强度,不影响列车荷载的传递,在隧道内应用时可减小隧道的开挖断面。
板式无砟轨道主要以日本新干线板式无砟轨道和德国博格板式无砟轨道为代表。