动态规划
- 格式:doc
- 大小:310.00 KB
- 文档页数:18
动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划原理动态规划(Dynamic Programming)是一种在数学、计算机科学和经济学等领域中使用的优化方法。
它是一种将复杂问题分解成更小的子问题来解决的方法,通过将问题分解成相互重叠的子问题,动态规划可以大大简化问题的解决过程,提高算法的效率。
在本文中,我们将介绍动态规划的原理及其应用。
动态规划的基本原理是将原问题分解成相互重叠的子问题,通过解决子问题来解决原问题。
在动态规划中,我们通常使用一个表格来存储子问题的解,以便在解决更大的问题时能够重复利用已经计算过的结果。
动态规划通常用于解决具有重叠子问题和最优子结构性质的问题,这些问题可以被分解成相互重叠的子问题,并且最优解可以通过子问题的最优解来计算得到。
动态规划的关键步骤包括定义子问题、构建状态转移方程、初始化边界条件和计算最优解。
首先,我们需要定义子问题,即将原问题分解成更小的子问题。
然后,我们需要构建状态转移方程,即找到子问题之间的递推关系,以便能够通过子问题的解来计算更大的问题的解。
接下来,我们需要初始化边界条件,即确定最小的子问题的解。
最后,我们可以通过自底向上或自顶向下的方式计算最优解。
动态规划的应用非常广泛,包括但不限于最短路径问题、背包问题、编辑距离、最长公共子序列、最大子数组和斐波那契数列等。
这些问题都具有重叠子问题和最优子结构性质,因此可以通过动态规划来解决。
动态规划在实际应用中往往能够大大提高算法的效率,因此受到了广泛的关注和应用。
总之,动态规划是一种将复杂问题分解成更小的子问题来解决的优化方法。
通过定义子问题、构建状态转移方程、初始化边界条件和计算最优解,动态规划可以大大简化问题的解决过程,提高算法的效率。
它在各个领域都有着广泛的应用,是一种非常重要的算法设计思想。
希望本文能够帮助读者更好地理解动态规划的原理及其应用。
以上就是关于动态规划原理的介绍,希望对您有所帮助。
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划的基本概念与方法动态规划(Dynamic Programming,简称DP)是解决一类最优化问题的一种方法,也是算法设计中的重要思想。
动态规划常用于具有重叠子问题和最优子结构性质的问题。
它将问题分解为子问题,并通过求解子问题的最优解来得到原问题的最优解。
动态规划的基本概念是“最优子结构”。
也就是说,一个问题的最优解可以由其子问题的最优解推导出来。
通过分解问题为若干个子问题,可以形成一个递归的求解过程。
为了避免重复计算,动态规划使用一个表格来保存已经计算过的子问题的解,以便后续直接利用。
这个表格也被称为“记忆化表”或“DP表”。
动态规划的基本方法是“状态转移”。
状态转移指的是,通过已求解的子问题的解推导出更大规模子问题的解。
常用的状态转移方程可以通过问题的递推关系定义。
通过定义好状态转移方程,可以通过迭代的方式一步步求解问题的最优解。
在动态规划中,通常需要三个步骤来解决问题。
第一步,定义子问题。
将原问题划分为若干个子问题。
这些子问题通常与原问题具有相同的结构,只是规模更小。
例如,对于计算斐波那契数列的问题,可以定义子问题为计算第n个斐波那契数。
第二步,确定状态。
状态是求解问题所需要的所有变量的集合。
子问题的解需要用到的变量就是状态。
也就是说,状态是问题(解决方案)所需要的信息。
第三步,确定状态转移方程。
状态转移方程通过已求解的子问题的解推导出更大规模子问题的解。
通常情况下,状态转移方程可以通过问题的递推关系确定。
在实际应用中,动态规划常用于求解最优化问题。
最优化问题可以归纳为两类:一类是最大化问题,另一类是最小化问题。
例如,最长递增子序列问题是一个典型的最大化问题,而背包问题是一个典型的最小化问题。
动态规划的优势在于可以解决许多复杂问题,并且具有可行的计算复杂度。
但是,动态规划也有一些限制。
首先,动态规划要求问题具有重叠子问题和最优子结构性质,不是所有问题都能够满足这两个条件。
其次,动态规划需要存储计算过的子问题的解,对于一些问题来说,存储空间可能会非常大。
什么是动态规划?⼀、基本思想态规划算法的基本思想与分治法类似,都是将问题⼤问题拆分为⼩问题,通过⼩问题的求解来得到最后的解。
与分治法不同的是,分治法是分⽽治之,分治法将⼤问题拆分为相同性质的⼦问题,最后合并⼦问题的解来构成最终解。
⽽动态规划是,将⼦问题拆解后,按顺序求解⼦问题,前⾯阶段的求解为后⼀阶段提供有⽤信息,通过动态的选择来到达最终解。
⽤图来表⽰就是如下所⽰:⼆、适⽤情况(1)最优化原理:如果问题的最优解所包含的⼦问题的解也是最优的,就称该问题具有最优⼦结构,即满⾜最优化原理。
(2)⽆后效性:即某阶段状态⼀旦确定,就不受这个状态以后决策的影响。
也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。
(3)有重叠⼦问题:即⼦问题之间是不独⽴的,⼀个⼦问题在下⼀阶段决策中可能被多次使⽤到。
(该性质并不是动态规划适⽤的必要条件,但是如果没有这条性质,动态规划算法同其他算法相⽐就不具备优势)----摘⾃百度百科三、求解步骤动态规划中有三个⾮常重要的概念:最优⼦结构、边界、状态转移公式。
最优⼦结构:最优⼦结构指的是,问题的最优解包含⼦问题的最优解。
反过来说就是,我们可以通过⼦问题的最优解,推导出问题的最优解。
边界:就是问题的出⼝。
状态转移公式:动态规划问题的这⼀阶段的最优解是可以通过前⾯阶段的解和上⼀阶段的决策推导出来的。
这个推导过程就是⼀个状态转移公式我们通常按照如下4个步骤设计⼀个动态规划算法:1.刻画⼀个最优解的结构特征2.递归地定义最优解的值3.计算最优解的值,通常采⽤⾃底向上的⽅法(采⽤⼀张表格记录之前的状态)4.利⽤计算出的信息构造⼀个最优解我们之前的和也是⼀样的求解步骤。
以硬币找零问题为例:⾸先,⾯对⼀枚新的硬币,我们有两个选择:使⽤和不使⽤。
构成当前阶段的最优解 = min{使⽤这枚硬币的解,不使⽤这枚硬币的解} ----(1.刻画⼀个最优解的结构特征)然后,我们就得到转移⽅程 Value(i) = min {Value(i-1), Value(s-c[i])) + 1} ---- (2.递归地定义最优解的值)之后我们从找零1⾓开始算起,⼀直到达我们想要找零的数⽬。
动态规划引言——由一个问题引出的算法考虑以下问题[例1] 最短路径问题现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。
如图1所示,试找出从结点A到结点E的最短距离。
图 1我们可以用深度优先搜索法来解决此问题,该问题的递归式为其中是与v相邻的节点的集合,w(v,u)表示从v到u的边的长度。
具体算法如下:function MinDistance(v):integer;beginif v=E then return 0elsebeginmin:=maxint;for 所有没有访问过的节点i doif v和i相邻thenbegin标记i访问过了;t:=v到i的距离+MinDistance(i);标记i未访问过;if t<min then min=t;end;end;end;开始时标记所有的顶点未访问过,MinDistance(A)就是从A到E的最短距离。
这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!),这是一个“指数级”的算法,那么,还有没有更好的算法呢?首先,我们来观察一下这个算法。
在求从B1到E的最短距离的时候,先求出从C2到E的最短距离;而在求从B2到E的最短距离的时候,又求了一遍从C2到E的最短距离。
也就是说,从C2到E的最短距离我们求了两遍。
同样可以发现,在求从C1、C2到E的最短距离的过程中,从D1到E的最短距离也被求了两遍。
而在整个程序中,从D1到E的最短距离被求了四遍。
如果在求解的过程中,同时将求得的最短距离"记录在案",随时调用,就可以避免这种情况。
于是,可以改进该算法,将每次求出的从v到E 的最短距离记录下来,在算法中递归地求MinDistance(v)时先检查以前是否已经求过了MinDistance(v),如果求过了则不用重新求一遍,只要查找以前的记录就可以了。
这样,由于所有的点有n个,因此不同的状态数目有n个,该算法的数量级为O(n)。
更进一步,可以将这种递归改为递推,这样可以减少递归调用的开销。
请看图1,可以发现,A只和B i相邻,B i只和C i相邻,...,依此类推。
这样,我们可以将原问题的解决过程划分为4个阶段,设S1={A},S2={B1,B2},S3={C1,C2,C3,C4},S4={D1,D2,D3},F k(u)表示从S k中的点u到E的最短距离,则并且有边界条件显然可以递推地求出F1(A),也就是从A到E的最短距离。
这种算法的复杂度为O(n),因为所有的状态总数(节点总数)为n,对每个状态都只要遍历一次,而且程序很简洁。
具体算法如下:procedure DynamicProgramming;beginF5[E]:=0;for i:=4 downto 1 dofor each u ∈S k dobeginF k[u]:=无穷大;for each v∈S k+1∩δ(u) doif F k[u]>w(u,v)+F k+1[v] then F k[u]:=w(u,v)+F k+1[v];end;输出F1[A];end;这种高效算法,就是动态规划算法。
动态规划的基本概念动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
多阶段决策问题多阶段决策过程,是指这样的一类特殊的活动过程,问题可以按时间顺序分解成若干相互联系的阶段,在每一个阶段都要做出决策,全部过程的决策是一个决策序列。
要使整个活动的总体效果达到最优的问题,称为多阶段决策问题。
例1是一个多阶段决策问题的例子,下面是另一个多阶段决策问题的例子:[例2] 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。
还规定年初和年末这种产品均无库存。
试制订一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。
决策过程的分类根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process),即多阶段决策过程和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。
动态规划模型的基本要素一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素:1.阶段阶段(step)是对整个过程的自然划分。
通常根据时间顺序或空间特征来划分阶段,以便按阶段的次序解优化问题。
阶段变量一般用k=1,2,..,n表示。
在例1中由A出发为k=1,由B i(i=1,2)出发为k=2,依此下去从D i(i=1,2,3)出发为k=4,共n=4个阶段。
在例2中按照第一、二、三、四季度分为k=1,2,3,4,共4个阶段。
2.状态状态(state)表示每个阶段开始时过程所处的自然状况。
它应该能够描述过程的特征并且具有无后向性,即当某阶段的状态给定时,这个阶段以后过程的演变与该阶段以前各阶段的状态无关,即每个状态都是过去历史的一个完整总结。
通常还要求状态是直接或间接可以观测的。
描述状态的变量称状态变量(state variable)。
变量允许取值的范围称允许状态集合(set of admissible states)。
用x k表示第k阶段的状态变量,它可以是一个数或一个向量。
用X k表示第k阶段的允许状态集合。
在例1中x2可取B1,B2,X2={B1,B2}。
n个阶段的决策过程有n+1个状态变量,x n+1表示x n演变的结果,在例1中x5取E。
根据过程演变的具体情况,状态变量可以是离散的或连续的。
为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。
状态变量简称为状态。
3.决策当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)。
描述决策的变量称决策变量(decision variable)。
变量允许取值的范围称允许决策集合(set of admissible decisions)。
用u k(x k)表示第k阶段处于状态x k时的决策变量,它是x k的函数,用U k(x k)表示了x k的允许决策集合。
在例1中u2(B1)可取C1,C2,C3。
决策变量简称决策。
4.策略决策组成的序列称为策略(policy)。
由初始状态x1开始的全过程的策略记作p1n(x1),即p1n(x1)={u1(x1),u2(x2),...,u n(x n)}。
由第k阶段的状态x k开始到终止状态的后部子过程的策略记作p kn(x k),即p kn(x k)={u k(x k),u k+1(x k+1),...,u n(x n)}。
类似地,由第k到第j阶段的子过程的策略记作p kj(x k)={u k(x k),u k+1(x k+1),...,u j(x j)}。
对于每一个阶段k的某一给定的状态x k,可供选择的策略p kj(x k)有一定的范围,称为允许策略集合(set of admissible policies),用P1n(x1),P kn(x k),P kj(x k)表示。
5.状态转移方程在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态便完全确定。
用状态转移方程(equation of state)表示这种演变规律,写作在例1中状态转移方程为:x k+1=u k(x k)6.指标函数和最优值函数指标函数(objective function)是衡量过程优劣的数量指标,它是关于策略的数量函数,从阶段k到阶段n的指标函数用V kn(x k,p kn(x k))表示,k=1,2,...,n。
能够用动态规划解决的问题的指标函数应具有可分离性,即V kn可表为x k,u k,V k+1 n的函数,记为:其中函数是一个关于变量V k+1 n单调递增的函数。
这一性质保证了最优化原理(principle of optimality)的成立,是动态规划的适用前提。
过程在第j 阶段的阶段指标取决于状态x j和决策u j,用v j(x j,u j)表示。
阶段k到阶段n的指标由v j(j=k,k+1,..n)组成,常见的形式有:阶段指标之和,即阶段指标之积,即阶段指标之极大(或极小),即这些形式下第k到第j阶段子过程的指标函数为V kj(x k,u k,x k+1,...,x j+1)。
可以发现,上述(3)-(5)三个指标函数的形式都满足最优性原理。
在例1中指标函数为(3)的形式,其中v j(x j,u j)是边<x j,u j(x j)>的权(边的长度),u j(x j)表示从x j出发根据决策u j(x j)下一步所到达的节点。
根据状态转移方程,指标函数V kn还可以表示为状态x k和策略p kn的函数,即V kn(x k,p kn)。
在x k给定时指标函数V kn对p kn的最优值称为最优值函数(optimal value function),记作f k(x k),即其中opt可根据具体情况取max或min。