算法201008-动态规划1
- 格式:ppt
- 大小:770.00 KB
- 文档页数:61
动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。
在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。
本文将详细介绍动态规划算法的难点以及应用技巧。
一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。
状态是指问题在某一阶段的具体表现形式。
在进行状态定义时,需要考虑到问题的最优子结构性质。
状态的定义直接影响到问题的子问题划分和状态转移方程的建立。
2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。
因此,建立合理的状态转移方程是动态规划算法的关键。
在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。
3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。
边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。
二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。
在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。
在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。
其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。
在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
什么是动态规划算法,常见的动态规划问题分析与求解理解动态规划动态规划中递推式的求解⽅法不是动态规划的本质。
我曾经给学校参加NOIP的同学多次讲过动态规划,我试着讲⼀下我理解的动态规划,争取深⼊浅出。
希望你看了我的答案,能够喜欢上动态规划。
0. 动态规划的本质,是对问题状态的定义和状态转移⽅程的定义。
引⾃维基百科dynamic programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems.动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的⽅式去解决。
本题下的其他答案,⼤多都是在说递推的求解⽅法,但如何拆分问题,才是动态规划的核⼼。
⽽拆分问题,靠的就是状态的定义和状态转移⽅程的定义。
1. 什么是状态的定义?⾸先想说⼤家千万不要被下⾯的数学式吓到,这⾥只涉及到了函数相关的知识。
我们先来看⼀个动态规划的教学必备题:给定⼀个数列,长度为N,求这个数列的最长上升(递增)⼦数列(LIS)的长度.以 1 7 2 8 3 4 为例。
这个数列的最长递增⼦数列是 1 2 3 4,长度为4;次长的长度为3,包括 1 7 8; 1 2 3 等.要解决这个问题,我们⾸先要定义这个问题和这个问题的⼦问题。
有⼈可能会问了,题⽬都已经在这了,我们还需定义这个问题吗?需要,原因就是这个问题在字⾯上看,找不出⼦问题,⽽没有⼦问题,这个题⽬就没办法解决。
所以我们来重新定义这个问题:给定⼀个数列,长度为N,设为:以数列中第k项结尾的最长递增⼦序列的长度.求中的最⼤值.显然,这个新问题与原问题等价。
⽽对于来讲,都是的⼦问题:因为以第k项结尾的最长递增⼦序列(下称LIS),包含着以第中某项结尾的LIS。
上述的新问题也可以叫做状态,定义中的“为数列中第k项结尾的LIS的长度”,就叫做对状态的定义。
动态规划算法⼊门1. 动态规划算法定义:动态规划,英⽂描述为Dynamic programming. 是⼀种可以把原始问题分解为若⼲相关联的⼦解问题,并通过求取和保存⼦问题的解,获得原问题的解。
动态规划算法可以解决的问题通常包含如下特征:重叠⼦问题最优⼦结构 对于第⼀个特征,⽐较容易理解,即分解的若⼲⼦问题,包含着重复的解。
举例如:斐波那契数列,F(n) = F(n-1) + F(n-2),求解的F(n-1)的过程中,包含着求解F(n-2)的结果。
对于第⼆个特征,参考⽹上的说法为:假设当前决策结果是f[n],则最优⼦结构就是要让f[n-k]最优,最优⼦结构性质就是能让转移到n的状态是最优的,并且与后⾯的决策没有关系,即让后⾯的决策安⼼地使⽤前⾯的局部最优解的⼀种性质。
关键字解读为:当前的决策与后⾯的决策是⽆关的, f[n-k]是最优的,转移到f[n]的状态是最优的2. 动态规划算法的⼀般步骤和难点使⽤动态规划算法解决问题的⼀般步骤是:找到问题的最优解的性质,⽤数学公式或者算法描述拆解⼦问题,确定问题的递推结构,保证可以收敛。
⽤知乎⼤神们的总结就是:找到问题的状态描述和状态转移⽅程。
3. 动态规划算法的分类和理解根据我的理解,以及⽹上的说法,我把动态规划算法分为三个类别和层次:简单动态规划算法,即状态⽅程是⽤⼀个维度的变量的描述的,常见的问题如:斐波那契数列,爬台阶问题等 爬台阶问题问题描述:有⼀座⾼度是10级台阶的楼梯,从下往上⾛,每跨⼀步只能向上1级或者2级台阶。
要求⽤程序来求出⼀共有多少种⾛法。
状态描述:我们使⽤变量n表⽰台阶的级数,F(n)表⽰n级台阶⼀共有多少种⾛法 状态转移⽅程与问题分解:根据每次能跨越的台阶数⽬:1级台阶或者2级台阶,因为⾛到N级台阶之前,⼈⼀定是处于N-1级台阶或者N-2级台阶。
F(n)的⾛法,⼀定是n-1级别的台阶的所有的⾛法和n-2级别台阶的所有⾛法之和。
F(n) = F(n-1) + F(n-2); 关于状态的分解,更详细的说明,可以看这篇⽂章:。
动态规划算法及其应用案例解析动态规划算法是计算机科学中一种非常重要的算法,它在许多领域都有大量的应用。
在本文中,我们将介绍动态规划算法的基本思想和特点,并通过一些常见的应用案例来深入理解这个算法。
1. 动态规划算法的基本思想动态规划算法是一种算法设计技术,用于在多阶段决策过程中寻找最优解。
它的基本思想是将一个大问题分解成较小的子问题来解决,然后将这些子问题的解组合起来得到原问题的解。
它与分治算法很类似,但是动态规划算法通常是针对问题的重复性结构进行优化的。
动态规划算法通常适用于满足以下几个条件的问题:(1)问题具有重叠子问题的特点,即一个大问题可以分解为多个子问题,且这些子问题存在相同的子结构;(2)问题具有最优子结构的特点,即一个问题的最优解包含其子问题的最优解。
通过以上两个条件,在通过子问题的最优解推导出大问题的最优解时,我们可以避免重复计算并且保证得到的结果是最优的。
2. 动态规划算法的特点动态规划算法的主要特点包括以下几个方面:(1)动态规划算法使用一个递推公式来计算问题的解,这个递推公式通常是由原问题和子问题之间的关系建立而来的。
(2)动态规划算法使用一个表格来存储子问题的解,这个表格通常称为动态规划表或者状态转移表。
(3)动态规划算法通常需要进行一些预处理操作,例如初始化表格的值,以及确定递推公式的边界条件。
(4)动态规划算法的时间复杂度通常是由子问题的个数和计算每个子问题的时间复杂度来决定的。
3. 应用案例解析下面我们将通过一些常见的应用案例来更好地理解动态规划算法。
(1)背包问题背包问题是指给定一组物品和一个容量为W的背包,选择一些物品放入背包中,使得放入背包的物品的总价值最大。
这个问题可以通过动态规划算法来解决。
我们可以定义一个二维数组f[i][j],表示前i个物品放进容量为j的背包所得到的最大价值。
递推公式可以定义为:f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
动态规划算法原理及应用动态规划算法(Dynamic Programming,DP)是一种通过将问题分解为子问题来解决复杂问题的方法。
其核心思想就是将原问题分解为若干个子问题,先求解子问题,然后再根据子问题的解得出原问题的解。
1.定义子问题:将原问题分解为若干个子问题,每个子问题都是原问题的一个子集。
2.构建状态转移方程:根据子问题的关系,建立状态转移方程来描述问题的解。
3.确定边界条件:确定问题的边界条件,即当问题规模很小的时候可以直接求解的情况。
4.自底向上求解:根据状态转移方程,自底向上地求解子问题,最终得到原问题的解。
1.背包问题:给定一个背包的容量和一系列物品的重量和价值,选择若干个物品放入背包中,使得背包的总重量不超过容量,同时总价值最大化。
2.最长公共子序列(LCS)问题:给定两个字符串,求它们的最长公共子序列,即两个字符串中都出现的最长的子序列。
3.最短路径问题:给定一个有向带权图和两个顶点,求两个顶点之间的最短路径。
4.最大连续子序列和问题:给定一个整数数组,找到一个具有最大和的连续子序列。
5.斐波那契数列:求解斐波那契数列中第n个数的值。
其中,斐波那契数列的定义为:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2),n>11.避免了重复计算:动态规划算法使用备忘录或者数组来存储中间计算结果,避免了重复计算,提高了效率。
2.自底向上求解:动态规划算法从最小的子问题开始求解,逐步拓展到原问题,保证了每个子问题都是已经求解过的。
3.可通过状态压缩进行优化:动态规划算法中,可以根据具体问题的特点,通过状态压缩来减少空间复杂度。
然而,动态规划算法也有一些限制:1.无法应用于所有问题:动态规划算法要求问题满足最优子结构的性质,因此不是所有问题都可以使用动态规划算法来解决。
2.有时需要额外的空间和时间:动态规划算法可能需要使用额外的空间来存储中间结果,同时也需要额外的时间来计算和存储中间结果。
动态规划算法动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。
20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。
动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果自从动态编程问世以来,它已广泛应用于经济管理,生产计划,工程技术和最优控制。
例如,最短路径,库存管理,资源分配,设备更新,分类,装载和其他问题比其他方法更容易解决。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
概念引入在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线.这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。
在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化的过程为动态规划方法。
基本思想动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。
它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。
动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。
即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。
动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。
2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。
3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。
4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。
5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。
动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。
它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。
总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。
动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。