高中数学第五章三角函数5-1任意角和蝗制5-1-1任意角课时作业新人教A版必修第一册
- 格式:docx
- 大小:124.44 KB
- 文档页数:7
第五章三角函数5.1 任意角和弧度制5.1.1 任意角1.了解任意角的概念及角的分类.2.理解象限角的概念.3.理解终边相同的角的概念,并能熟练写出终边相同的角的集合表示.1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,射线的端点是圆心O,它从起始位置OA按逆时针方向旋转到终止位置OP,形成一个角α,射线OA,OP分别是角α的始边和终边.“角α”或“∠α”可以简记成“α”.(3)角的分类(4)相等角与相反角①设角α由射线OA绕端点O旋转而成,角β由射线O′A′绕端点O′旋转而成.如果它们的旋转方向相同且旋转量相等,那么就称α=β.②我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为-α.③设α,β是任意两个角.我们规定,把角α的终边旋转角β,这时终边所对应的角是α+β.④角的减法可以转化为角的加法.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.温馨提示:对终边相同的角的理解(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360°与α中间用“+”连接,如k·360°-α可理解成k·360°+(-α).1.在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?[答案]不正确.在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°2.初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?[答案]不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角3.判断正误(正确的打“√”,错误的打“×”)(1)当角的始边和终边确定后,这个角就确定了.( )(2)-30°是第四象限角.( )(3)钝角是第二象限的角.( )(4)终边相同的角一定相等.( )(5)第一象限的角是锐角.( )[答案](1)×(2)√(3)√(4)×(5)×题型一任意角的概念【典例1】下列命题正确的是( )A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[思路导引] 对角的概念的理解关键是弄清角的终边与始边及旋转方向和大小.[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C正确;小于90°的角可以是0°,也可以是负角,故D错误.[答案] C理解与角的概念有关问题的关键关键在于正确理解象限角与锐角、直角、钝角、平角、周角等的概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧:判断结论正确需要证明,而判断结论不正确只需举一个反例即可.[针对训练]1.若将钟表拨慢10分钟,则时针转了______度,分针转了________度.[解析] 由题意可知,时针按逆时针方向转了10×360°12×60=5°,分针按逆时针方向转了10×360°60=60°.[答案] 5° 60°题型二 终边相同的角的表示【典例2】 已知角α=2020°.(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α终边相同,且-360°≤θ<720°.[思路导引] 解题关键是理解与角α终边相同的角的表示形式.[解] (1)由2020°除以360°,得商为5,余数为220°.∴取k =5,β=220°,α=5×360°+220°.又β=220°是第三象限角,∴α为第三象限角.(2)与2020°终边相同的角为k·360°+2020°(k∈Z).令-360°≤k·360°+2020°<720°(k∈Z),解得-6109180≤k<-31118(k ∈Z). 所以k =-6,-5,-4.将k 的值代入k·360°+2020°中,得角θ的值为-140°,220°,580°.(1)求适合某种条件且与已知角终边相同的角的方法先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.(2)求终边落在直线上的角的集合的步骤①写出在0°~360°范围内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并的一定要合并,使结果简洁.[针对训练]2.如图所示,求终边落在直线y=3x上的角的集合.[解]终边落在射线y=3x(x>0)上的角的集合是S1={α|α=60°+k·360°,k∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z},于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.题型三象限角的判断【典例3】已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[思路导引] 作出图形,根据象限角的定义确定.[解]作出各角,其对应的终边如图所示.(1)由图①可知-75°是第四象限角.(2)由图②可知855°是第二象限角.(3)由图③可知-510°是第三象限角.象限角的判断方法 (1)根据图形判定,在直角坐标系中作出角,角的终边落在第几象限,此角就是第几象限角;(2)根据终边相同的角的概念把角转化到0°~360°范围内,转化后的角在第几象限,此角就是第几象限角.[针对训练]3.已知α是第二象限的角,则180°-α是第________象限的角.[解析] 由α是第二象限的角可得90°+k·360°<α<180°+k·360°(k∈Z),则180°-(180°+k·360°)<180°-α<180°-(90°+k·360°)(k∈Z),即-k·360°<180°-α<90°-k·360°(k ∈Z),所以180°-α是第一象限的角.[答案] 一题型四 角αn,nα(n∈N *)所在象限的确定 【典例4】 若α是第二象限角,则α2是第几象限的角? [思路导引] 已知角α是第几象限角,判断αn所在象限,主要方法是解不等式并对k 进行分类讨论,考查角的终边位置.[解] ∵α是第二象限角,∴90°+k·360°<α<180°+k·360°(k∈Z),∴45°+k·180°<α2<90°+k·180°(k∈Z). 解法一:①当k =2n(n ∈Z)时,45°+n·360°<α2<90°+n·360°(n∈Z),即α2是第一象限角; ②当k =2n +1(n ∈Z)时,225°+n·360°<α2<270°+n·360°(n∈Z),即α2是第三象限角. 故α2是第一或第三象限角.解法二:∵45°+k·180°表示终边为一、三象限角平分线的角,90°+k·180°(k∈Z)表示终边为y轴的角, ∴45°+k·180°<α2<90°+k·180°(k∈Z)表示如图中阴影部分图形.即α2是第一或第三象限角. [变式] (1)若本例条件不变,求角2α的终边的位置.(2)若本例中的α改为第一象限角,则2α,α2分别是第几象限角? [解] (1)∵α是第二象限角,∴k·360°+90°<α<k·360°+180°(k∈Z).∴k·720°+180°<2α<k·720°+360°(k∈Z).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.(2)因为α是第一象限角,所以k·360°<α<90°+k·360°,k ∈Z.所以2k·360°<2α<180°+2k·360°,k ∈Z.所以2α是第一或第二象限角,或是终边落在y 轴的正半轴上的角. 同理,k·180°<α2<45°+k·180°,k ∈Z. 当k 为偶数时,α2为第一象限角, 当k 为奇数时,α2为第三象限角.分角、倍角所在象限的判定思路(1)已知角α终边所在的象限,确定αn终边所在的象限用分类讨论法,要对k 的取值分以下几种情况进行讨论:k 被n 整除;k 被n 除余1;k 被n 除余2,…,k 被n 除余n -1.然后方可下结论.(2)已知角α终边所在的象限,确定nα终边所在的象限,可依据角α的范围求出nα的范围,再直接转化为终边相同的角即可.注意不要漏掉nα的终边在坐标轴上的情况.[针对训练]4.已知α是第一象限角,则角α3的终边可能落在________.(填写所有正确的序号) ①第一象限 ②第二象限 ③第三象限 ④第四象限[解析] ∵α是第一象限角,∴k·360°<α<k·360°+90°,k ∈Z, ∴k 3·360°<α3<k 3·360°+30°,k ∈Z. 当k =3m,m ∈Z 时,m·360°<α3<m·360°+30°, ∴角α3的终边落在第一象限. 当k =3m +1,m ∈Z 时,m·360°+120°<α3<m·360°+150°, ∴角α3的终边落在第二象限. 当k =3m +2,m ∈Z 时,m·360°+240°<α3<m·360°+270°, ∴角α3的终边落在第三象限,故选①②③. [答案] ①②③课堂归纳小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.2.把任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k,可以用观察法(α的绝对值较小),也可以用除法.3.已知角的终边范围,求角的集合时,先写出边界对应的一个角,再写出0°~360°内符合条件的角的范围,最后都加上k·360°,得到所求.1.下列说法正确的是( )A .三角形的内角一定是第一、二象限角B .钝角不一定是第二象限角C .终边与始边重合的角是零角D .钟表的时针旋转而成的角是负角[解析] A 错,若一内角为90°,则不属于任何象限;B 错,钝角一定是第二象限角;C 错,若角的终边作了旋转,则不是零角;D 对.[答案] D2.-215°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由于-215°=-360°+145°,而145°是第二象限角,故-215°也是第二象限角,选B.[答案] B3.已知α为第三象限角,则α2所在的象限是( ) A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限[解析] 由于k·360°+180°<α<k·360°+270°,k ∈Z,得k 2·360°+90°<α2<k 2·360°+135°,k ∈Z. 当k 为偶数时,α2为第二象限角; 当k 为奇数时,α2为第四象限角. [答案] D4.将-885°化为α+k·360°(0°≤α<360°,k ∈Z)的形式是________.[解析] 因为-885°÷360°=-3…195°,且0°≤α<360°,所以k =-3,α=195°,故-885°=195°+(-3)·360°.[答案] 195°+(-3)·360°5.在角的集合{α|α=k·90°+45°,k ∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?[解] (1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k·90°+45°<360°,得-92<k<72. 又∵k ∈Z,∴k =-4,-3,-2,-1,0,1,2,3,∴满足条件的角共有8个.课后作业(三十七)复习巩固一、选择题1.下列是第三象限角的是( )A .-110°B .-210°C .80°D .-13°[解析] -110°是第三象限角,-210°是第二象限角,80°是第一象限角,-13°是第四象限角.故选A.[答案] A2.与600°角终边相同的角可表示为( )A.k·360°+220°(k∈Z)B.k·360°+240°(k∈Z)C.k·360°+60°(k∈Z)D.k·360°+260°(k∈Z)[解析]与600°终边相同的角α=n·360°+600°=n·360°+360°+240°=(n+1)·360°+240°=k·360°+240°,n∈Z,k∈Z.[答案] B3.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B?C?A B.B?A?CC.D?(A∩C) D.C∩D=B[解析]显然第一象限角不是都小于90°,且小于90°的角不都在第一象限,故A,B错;0°不属于任何象限,故C错;锐角为小于90°而大于0°的角,∴C∩D=B,选D.[答案] D4.终边在直线y=-x上的所有角的集合是( )A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}[解析]因为直线y=-x为二、四象限角平分线,所以角终边落到第四象限可表示为k·360°-45°=2k·180°-45°,k∈Z;终边落到第二象限可表示为k·360°-180°-45°=(2k-1)·180°-45°,k∈Z,综上可得终边在直线y=-x上的所有角的集合为{α|α=k·180°-45°,k∈Z}.[答案] D5.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有( )A.1个B.2个C.3个D.4个[解析]①正确;②正确;③中475°=360°+115°,因为115°为第二象限角,所以475°也为第二象限角,正确;④中-315°=-360°+45°,因为45°为第一象限角,所以-315°也为第一象限角,正确.[答案] D二、填空题6.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.[解析]顺时针方向旋转3周转了-(3×360°)=-1080°,又50°+(-1080°)=-1030°,故所得的角为-1030°.[答案]-1030°7.已知角α=-3000°,则与角α终边相同的最小正角是________.[解析]设与角α终边相同的角为β,则β=-3000°+k·360°,k∈Z,又因为β为最小正角,故取k=9,则β=-3000°+360°×9=240°.[答案]240°8.若角α与β的终边在一条直线上,则α与β的关系是______________________.[解析]因为α与β的终边在一条直线上,所以α与β相差180°的整数倍.[答案]α=β+k·180°,k∈Z三、解答题9.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-120°;(2)660°;(3)-950°08′.[解](1)∵-120°=240°-360°,∴在0°~360°范围内,与-120°角终边相同的角是240°角,它是第三象限的角.(2)∵660°=300°+360°,∴在0°~360°范围内,与660°角终边相同的角是300°角,它是第四象限的角.(3)∵-950°08′=129°52′-3×360°,∴在0°~360°范围内,与-950°08′终边相同的角是129°52′,它是第二象限的角.10.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).[解](1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.综合运用11.若角α,β的终边相同,则α-β的终边在( )A.x轴的非负半轴B.y轴的非负半轴C.x轴的非正半轴D.y轴的非正半轴[解析]∵角α,β终边相同,∴α=k·360°+β(k∈Z),∴α-β=k·360°(k∈Z),故α-β的终边在x轴的非负半轴上.[答案] A12.已知角2α的终边在x轴的上方,那么α是( )A.第一象限角B.第一、二象限角C.第一、三象限角D.第一、四角限角[解析]由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α在第一或第三象限.[答案] C13.已知角α的终边与角-690°的终边关于y轴对称,则角α=____________________.[解析]-690°=-720°+30°,则角α的终边与30°角的终边关于y轴对称,而与30°角的终边关于y轴对称的角可取150°,故α=k·360°+150°,k∈Z.[答案]k·360°+150°,k∈Z14.已知-990°<α<-630°,且α与120°角的终边相同,则α=________.[解析]∵α与120°角终边相同,故有α=k·360°+120°,k∈Z.又∵-990°<α<-630°,∴-990°<k·360°+120°<-630°,即-1110°<k·360°<-750°.当k=-3时,α=(-3)·360°+120°=-960°.[答案]-960°15.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.[解]由题意可知,α+β=-280°+k·360°,k∈Z,∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴{0°<α<90°-90°<-β<0°, ∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。
【新教材】人教统编版高中数学A版必修第一册第五章教案教学设计+课后练习及答案5.1.1《任意角和弧度制---任意角》教案教材分析:学生在初中学习了o 0~o 360,但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.教学目标与核心素养:课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.教学重难点:重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入初中对角的定义是:射线OA 绕端点O 按逆时针方向旋转一周回到起始位置,在这个过程中可以得到o 0~o 360范围内的角.但是现实生活中随处可见超出o 0~o 360范围的角.例如体操中有“前空翻转体o 540”,且主动轮和被动轮的旋转方向不一致.请学生思考,如何定义角才能解决这些问题呢?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本168-170页,思考并完成以下问题1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角2.象限角在平面直角坐标系中,若角的顶点与原点重合,角的始边与 x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.四、典例分析、举一反三题型一任意角和象限角的概念例1(1)给出下列说法:①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°,②855°,③-510°.【答案】(1)①(2)图略,①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.【解析】(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.(2) 作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.解题技巧:(任意角和象限角的表示)1.判断角的概念问题的关键与技巧.(1)关键:正确的理解角的有关概念,如锐角、平角等;(2)技巧:注意“旋转方向决定角的正负,旋转幅度决定角的绝对值大小.2.象限角的判定方法.(1)图示法:在坐标系中画出相应的角,观察终边的位置,确定象限.(2)利用终边相同的角:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.跟踪训练一1.已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=C B.A⊆CC.A∩C=B D.B∪C⊆C【答案】D【解析】由已知得B C,所以B∪C⊆C,故D正确.2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-315°=-360°+45°且0°<45°<90°.所以这四个命题都是正确的.题型二终边相同的角的表示及应用例2(1)将-885°化为k·360°+α(0°≤α<360°,k∈Z)的形式是________.(2)写出与α=-910°终边相同的角的集合,并把集合中适合不等式-720°<β<360°的元素β写出来.【答案】(1)(-3)×360°+195°,(2)终边相同的角的集合为{β|β=k·360°-910°,k∈Z},适合不等式-720°<β<360°的元素-550°、-190°、170°.【解析】(1)-885°=-1 080°+195°=(-3)×360°+195°.(2)与α=-910°终边相同的角的集合为{β|β=k·360°-910°,k∈Z},∵-720°<β<360°,即-720°<k·360°-910°<360°,k∈Z,∴k取1,2,3.当k=1时,β=360°-910°=-550°;当k=2时,β=2×360°-910°=-190°;当k=3时,β=3×360°-910°=170°.解题技巧:(终边相同的角的表示)1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到所求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.跟踪训练二1.下面与-850°12′终边相同的角是( )A .230°12′B .229°48′C .129°48′D .130°12′【答案】B【解析】与-850°12′终边相同的角可表示为α=-850°12′+k ·360°(k ∈Z),当k =3时,α=-850°12′+1 080°=229°48′.2.写出角α的终边落在第二、四象限角平分线上的角的集合为________.【答案】{α|α=k ·180°+135°,k ∈Z}.【解析】落在第二象限时,表示为k ·360°+135°.落在第四象限时,表示为k ·360°+180°+135°,故可合并为{α|α=k ·180°+135°,k ∈Z}. 题型三 任意角终边位置的确定和表示例3 (1)若α是第一象限角,则α2是( )A .第一象限角B .第一、三象限角C .第二象限角D .第二、四象限角(2)已知,如图所示.①分别写出终边落在OA ,OB 位置上的角的集合;②写出终边落在阴影部分(包括边界)的角的集合.【答案】(1)B (2) ①终边落在OA 位置上的角的集合为{α|α=135°+k ·360°,k ∈Z};终边落在OB 位置上的角的集合为{β|β=-30°+k ·360°,k ∈Z}.②故该区域可表示为{γ|-30°+k ·360°≤γ≤135°+k ·360°,k ∈Z}.【解析】(1) 因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+45°,k ∈Z ,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.所以α2是第一、三象限角.(2) ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z};终边落在OB位置上的角的集合为{β|β=-30°+k·360°,k∈Z}.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{γ|-30°+k·360°≤γ≤135°+k·360°,k∈Z}.解题技巧:(任意角终边位置的确定和表示)1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α<x<β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.提醒:表示区间角时要注意实线边界与虚线边界的差异.2.nα或所在象限的判断方法:的范围;(1)用不等式表示出角nα或αn所在象限.(2)用旋转的观点确定角nα或αn跟踪训练三1.如图所示的图形,那么终边落在阴影部分的角的集合如何表示?【答案】角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.【解析】在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k·360°+60°≤β<k·360°+105°,k∈Z}∪{β|k·360°+240°≤β<k·360°+285°,k∈Z}={β|2k·180°+60°≤β<2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β<(2k+1)·180°+105°,k∈Z}={β|n·180°+60°≤β<n·180°+105°,n∈Z}.故角β的取值集合为{β|n·180°+60°≤β<n·180°+105°,n∈Z}.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本171页练习及175页习题5.1 1、2、7题.教学反思:本节课主要采用讲练结合与分组探究的教学方法,让学生从旋转方向和旋转度数熟悉角的概念,象限角,终边相同的角等,并且掌握其应用.5.1.2《任意角和弧度制---弧度制》教案教材分析:前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养:课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点:重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
A级——基础过关练1.-215°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】B 【解析】由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.(2021年白银高一期中)下列选项中叙述正确的是( )A.三角形的内角是第一象限角或第二象限角B.锐角一定是第一象限的角C.小于90°的角一定是锐角D.终边相同的角一定相等【答案】B 【解析】A中,当三角形的内角为90°时,不是象限角,A错误.B中,锐角的范围是(0°,90°),是第一象限角,B正确.C中,0°<90°,但0°不是锐角,C错误.D中,终边相同的角不一定相等,比如45°和360°+45°的终边相同,但两个角不相等,D错误.故选B.3.(2021年杭州模拟)下列说法:①第二象限的角必大于第一象限的角;②若角α的终边经过点M(0,-3),则角α是第三或第四象限.则( )A.①正确,②错误B.①错误,②正确C.①②都正确D.①②都错误【答案】D 【解析】①第二象限的角不一定大于第一象限的角,如120°是第二象限角,390°是第一象限角,故①错误;②若角α的终边经过点M(0,-3),则角α是终边在y轴负半轴上的角,故②错误.故选D.4.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】C 【解析】可以给α赋一特殊值,如-60°,则180°-α=240°,故180°-α是第三象限角.5.(多选)下列四个选项中正确的有( )A.-75°角是第四象限角B.225°角是第三象限角C.475°角是第二象限角D.-315°是第一象限角【答案】ABCD 【解析】对于A,如图1所示,-75°角是第四象限角;对于B,如图2所示,225°角是第三象限角;对于C,如图3所示,475°角是第二象限角;对于D,如图4所示,-315°角是第一象限角.故选ABCD.6.已知α为第三象限角,则α2是__________________,2α是____________________________.【答案】第二或第四象限角第一或第二象限角或终边在y轴非负半轴的角.7.若α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,则α=________.【答案】270°【解析】因为5α=α+k·360°,k∈Z,所以α=k·90°,k∈Z.又因为180°<α<360°,所以α=270°.8.若角α的终边与75°角的终边关于直线y=0对称且-360°<α<360°,则角α的值为________.【答案】-75°或285°【解析】如图,设75°角的终边为射线OA,射线OA关于直线y=0对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又-360°<α<360°,令k=0或k=1,得α=-75°或α=285°.9.写出终边落在图中阴影区域内(不包括边界)的角α的集合.解:(1){α|k·360°+135°<α<k·360°+300°,k∈Z}.(2){α|k·180°-60°<α<k·180°+45°,k∈Z}.B级——能力提升练10.若α与β终边相同,则α-β的终边落在( )A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上【答案】A 【解析】因为α=β+k·360°,k∈Z,所以α-β=k·360°,k∈Z,所以其终边在x轴的非负半轴上.11.与-468°角的终边相同的角的集合是( )A.{α|α=k·360°+456°,k∈Z}B.{α|α=k·360°+252°,k∈Z}C.{α|α=k·360°+96°,k∈Z}D.{α|α=k·360°-252°,k∈Z}【答案】B 【解析】因为-468°=-2×360°+252°,所以252°角与-468°角的终边相同,所以与-468°角的终边相同的角为k·360°+252°,k∈Z.故选B.12.如图,终边在阴影部分内的角的集合为________.【答案】{α|30°+k·360°≤α≤150°+k·360°,k∈Z} 【解析】先写出边界角,再按逆时针顺序写出区域角,则得终边在阴影部分内的角的集合为{α|30°+k·360°≤α≤150°+k·360°,k∈Z}.13.已知角2α的终边在x轴的上方,那么α是第________象限角.【答案】一或三【解析】由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),所以α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),所以α在第三象限.故α是第一或第三象限角.C 级——探究创新练14.集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k ·180°2±45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x=k ·180°4±90°,k ∈Z ,则M 、N 之间的关系为( )A .M =NB .M NC .MND .M ∩N =∅【答案】B 【解析】对集合M :x =(2k ±1)·45°,k ∈Z ,即为45°的奇数倍;对于集合P :x =(k ±2)·45°,k ∈Z ,即为45°的整数倍.所以MN .故选B .15.如图所示,写出终边落在图中阴影部分(不包括边界)的角α的集合,并指出2α,α2分别是第几象限的角.解:由题意可知k ·360°+135°<α<k ·360°+150°,k ∈Z , 所以k ·720°+270°<2α<k ·720°+300°,k ∈Z ,是第四象限角,k ·180°°<α2<k ·180°+75°,k ∈Z ,是第一或第三象限的角.。
2020年高中数学人教A 版必修第一册课时作业5.1《任意角和弧度制》一、选择题1.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数是( )A .1 B. C. D .ππ6π32.在半径为8 cm 的圆中,的圆心角所对的弧长为( )5π3A.π cmB.π cmC.π cmD.π cm 403203200340033.下列说法中,错误的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度4.已知α是第三象限角,则-α是第________象限角.( )A .四B .三C .二D .一5.若角α与β的终边相同,则角α-β的终边( )A .在x 轴的非负半轴上B .在x 轴的非正半轴上C .在y 轴的非正半轴上D .在y 轴的非负半轴上6.若角α满足α=45°+k·180°,k ∈Z ,则角α的终边落在( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限7.设扇形的半径长为2 cm,面积为4 cm 2,则扇形的圆心角的弧度数是( )8.如果α在第三象限,则3一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题9.若把-570°写成2kπ+α(k∈Z,0≤α<2π)的形式,则α=________.10.集合A={α|α=k·90°-36°,k ∈Z },B={β|-180°<β<180°},则A ∩B= .11.如图,终边落在OA 的位置上的角的集合是 ;终边落在OB 的位置上,且在-360°~360°内的角的集合是 ;终边落在阴影部分(含边界)的角的集合是 .12.已知一扇形的圆心角为rad ,半径为R ,则该扇形的内切圆面积与扇形面积之比为π3______.三、解答题13.已知角的集合M={α|α=30°+k·90°,k ∈Z},回答下列问题:(1)集合M 中大于-360°且小于360°的角是哪几个?(2)写出集合M 中的第二象限角β的一般表达式.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB 上;(2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).15.已知一个扇形的周长是40,(1)若扇形的面积为100,求扇形的圆心角;(2)求扇形面积S的最大值.16.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.答案解析1.答案为:C.解析:因为弦长等于圆的半径,所以弦所对的圆心角为.π32.答案为:A.解析:根据弧长公式,得l=×8= (cm).5π340π33.答案为:D.解析:根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误.4.答案为:C.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k ∈Z.则-k·360°-270°<-α<-k·360°-180°,k ∈Z.∴-α是第二象限角.5.答案为:A.解析:由已知可得α=β+k·360°(k ∈Z),∴α-β=k·360°(k∈Z),∴α-β的终边在x 轴的非负半轴上.6.答案为:A.解析:当k 为奇数时,角α与225°角终边相同,在第三象限;当k 为偶数时,角α与45°角终边相同,在第一象限.7.答案为:B ;解析:设扇形弧长为l cm.因为扇形面积S=4,∴l=4.所以扇形圆心角的弧度数为α=2(rad).8.答案为:B ;解析:9.答案为:;解析:[-570°=-=-4π+.]5π619π65π610.答案为:{-126°,-36°,54°,144°};解析:当k=-1时,α=-126°;当k=0时,α=-36°;当k=1时,α=54°;当k=2时,α=144°.∴A ∩B={-126°,-36°,54°,144°}.11.答案为:{α|α=120°+k·360°,k ∈Z } {315°,-45°}{α|-45°+k·360°≤α≤120°+k·360°,k ∈Z }解析:终边落在OA 的位置上的角的集合是{α|α=120°+k·360°,k ∈Z }.终边落在OB 的位置上的角的集合是{α|α=315°+k·360°,k ∈Z },取k=0,-1得α=315°,-45°.故终边落在OB 的位置上,且在-360°~360°内的角的集合是{315°,-45°}.终边落在阴影部分的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k ∈Z }.12.答案为:2∶3;解析:设扇形内切圆的半径为r ,∵扇形的圆心角为,半径为R ,∴S 扇形=×R 2=R 2.π312π3π6∵扇形内切圆的圆心在圆心角的角平分线上,∴R=r +2r=3r ,∴r=.∵S 内切圆=πr 2=R 2,R 3π9∴S 内切圆∶S 扇形=R 2∶R 2=2∶3.π9π613.解:(1)令-360°<30°+k·90°<360°,则-<k<,133113又∵k ∈Z ,∴k=-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M 中的第二象限角与120°角的终边相同,∴β=120°+k·360°,k ∈Z.14.解:(1)终边落在射线OB 上的角的集合为S 1={α|α=60°+k·360°,k ∈Z}.(2)终边落在直线OA 上的角的集合为S 2={α|α=30°+k·180°,k ∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S 3={α|30°+k·180°≤α≤60°+k·180°,k ∈Z}.15.解:(1)设扇形的半径为r ,弧长为l ,圆心角为α,则由题意得解得则α==2(rad).{l +2r =40,12lr =100,){l =20,r =10,)l r 故扇形的圆心角为2 rad.(2)由l +2r=40得l=40-2r ,故S=lr=(40-2r)·r=20r -r 2=-(r -10)2+100,1212故r=10时,扇形面积S 取最大值100.16.解:由题意可知,α+β=-280°+k·360°,k ∈Z .∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z,α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。
5.1.1 任意角一、选择题1.下列角中,终边在y轴非负半轴上的是( )A.45° B.90°C.180° D.270°解析:根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.答案:B2.把一条射线绕着端点按顺时针方向旋转240°所形成的角是( )A.120° B.-120°C.240° D.-240°解析:一条射线绕着端点按顺时针方向旋转240°所形成的角是-240°,故选D.答案:D3.与-457°角终边相同的角的集合是( )A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}解析:263°=-457°+360°×2,所以263°角与-457°角的终边相同,所以与-457°角终边相同的角可写作α=k·360°+263°,k∈Z.答案:C4.若α为锐角,则下列各角中一定为第四象限角的是( )A.90°-α B.90°+αC.360°-α D.180°+α解析:∵0°<α<90°,∴270°<360°-α<360°,故选C.答案:C二、填空题5.图中从OA旋转到OB,OB1,OB2时所成的角度分别是________、________、________.解析:图(1)中的角是一个正角,α=390°.图(2)中的角是一个负角、一个正角,β=-150°,γ=60°.答案:390°-150°60°6.已知角α与2α的终边相同,且α∈[0°,360°),则角α=________.解析:由条件知,2α=α+k ·360°,所以α=k ·360°(k ∈Z ),因为α∈[0°,360°),所以α=0°.答案:0°7.如图,终边在阴影部分内的角的集合为________.解析:先写出边界角,再按逆时针顺序写出区域角,则得{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }.答案:{α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }三、解答题8.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解析:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°.因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.9.已知α与240°角的终边相同,判断α2是第几象限角. 解析:由α=240°+k ·360°,k ∈Z ,得α2=120°+k ·180°,k ∈Z . 若k 为偶数,设k =2n ,n ∈Z ,则α2=120°+n ·360°,n ∈Z ,α2与120°角的终边相同,是第二象限角; 若k 为奇数,设k =2n +1,n ∈Z ,则α2=300°+n ·360°,n ∈Z ,α2与300°角的终边相同,是第四象限角. 所以,α2是第二象限角或第四象限角.[尖子生题库]10.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).解析:(1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)由(1)得终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z},终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z}={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z}={α|α=45°+n·180°,n∈Z}.(3)终边落在直线ON上的角的集合为C={β|β=60°+n·180°,n∈Z},则终边落在阴影区域内(含边界)的角的集合为S={α|45°+n·180°≤α≤60°+n·180°,n∈Z}.。
2020年高中数学人教A 版必修第一册课时作业5.1《任意角和弧度制》一、选择题 1.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数是( )A .1 B.π6 C.π3 D .π2.在半径为8 cm 的圆中,5π3的圆心角所对的弧长为( ) A.403π cm B.203π cm C.2003π cm D.4003π cm3.下列说法中,错误的是( )A .半圆所对的圆心角是π radB .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度4.已知α是第三象限角,则-α是第________象限角.( )A .四B .三C .二D .一5.若角α与β的终边相同,则角α-β的终边( )A .在x 轴的非负半轴上B .在x 轴的非正半轴上C .在y 轴的非正半轴上D .在y 轴的非负半轴上6.若角α满足α=45°+k·180°,k ∈Z ,则角α的终边落在( )A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限7.设扇形的半径长为2 cm,面积为4 cm 2,则扇形的圆心角的弧度数是( )A.1B.2C.πD.658.如果α在第三象限,则3一定不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题 9.若把-570°写成2kπ+α(k∈Z,0≤α<2π)的形式,则α=________.10.集合A={α|α=k ·90°-36°,k ∈Z },B={β|-180°<β<180°},则A ∩B= .11.如图,终边落在OA 的位置上的角的集合是 ;终边落在OB 的位置上,且在-360°~360°内的角的集合是 ;终边落在阴影部分(含边界)的角的集合是 .12.已知一扇形的圆心角为π3rad ,半径为R ,则该扇形的内切圆面积与扇形面积之比为______.三、解答题13.已知角的集合M={α|α=30°+k ·90°,k ∈Z},回答下列问题:(1)集合M 中大于-360°且小于360°的角是哪几个?(2)写出集合M 中的第二象限角β的一般表达式.14.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB 上;(2)终边落在直线OA 上;(3)终边落在阴影区域内(含边界).15.已知一个扇形的周长是40,(1)若扇形的面积为100,求扇形的圆心角;(2)求扇形面积S的最大值.16.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.答案解析 1.答案为:C.解析:因为弦长等于圆的半径,所以弦所对的圆心角为π3.2.答案为:A.解析:根据弧长公式,得l=5π3×8=40π3(cm).3.答案为:D.解析:根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误.4.答案为:C.解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k ∈Z. 则-k·360°-270°<-α<-k·360°-180°,k ∈Z.∴-α是第二象限角.5.答案为:A.解析:由已知可得α=β+k·360°(k∈Z),∴α-β=k·360°(k∈Z),∴α-β的终边在x 轴的非负半轴上.6.答案为:A.解析:当k 为奇数时,角α与225°角终边相同,在第三象限;当k 为偶数时,角α与45°角终边相同,在第一象限.7.答案为:B ;解析:设扇形弧长为l cm.因为扇形面积S=4,∴l=4.所以扇形圆心角的弧度数为α=2(rad).8.答案为:B ;解析:9.答案为:5π6;解析:[-570°=-19π6=-4π+5π6.]10.答案为:{-126°,-36°,54°,144°};解析:当k=-1时,α=-126°;当k=0时,α=-36°;当k=1时,α=54°;当k=2时,α=144°.∴A ∩B={-126°,-36°,54°,144°}.11.答案为:{α|α=120°+k ·360°,k ∈Z } {315°,-45°}{α|-45°+k ·360°≤α≤120°+k ·360°,k ∈Z }解析:终边落在OA 的位置上的角的集合是{α|α=120°+k ·360°,k ∈Z }. 终边落在OB 的位置上的角的集合是{α|α=315°+k ·360°,k ∈Z }, 取k=0,-1得α=315°,-45°.故终边落在OB 的位置上,且在-360°~360°内的角的集合是{315°,-45°}.终边落在阴影部分的角的集合是{α|-45°+k ·360°≤α≤120°+k ·360°,k ∈Z }.12.答案为:2∶3;解析:设扇形内切圆的半径为r ,∵扇形的圆心角为π3,半径为R ,∴S 扇形=12×π3R 2=π6R 2. ∵扇形内切圆的圆心在圆心角的角平分线上,∴R=r +2r=3r ,∴r=R 3.∵S 内切圆=πr 2=π9R 2, ∴S 内切圆∶S 扇形=π9R 2∶π6R 2=2∶3.13.解:(1)令-360°<30°+k ·90°<360°,则-133<k<113, 又∵k ∈Z ,∴k=-4,-3,-2,-1,0,1,2,3,∴集合M 中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M 中的第二象限角与120°角的终边相同,∴β=120°+k ·360°,k ∈Z.14.解:(1)终边落在射线OB 上的角的集合为S 1={α|α=60°+k ·360°,k ∈Z}.(2)终边落在直线OA 上的角的集合为S 2={α|α=30°+k ·180°,k ∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S 3={α|30°+k ·180°≤α≤60°+k ·180°,k ∈Z}.15.解:(1)设扇形的半径为r ,弧长为l ,圆心角为α,则由题意得⎩⎪⎨⎪⎧l +2r =40,12lr =100,解得⎩⎪⎨⎪⎧l =20,r =10,则α=l r =2(rad). 故扇形的圆心角为2 rad.(2)由l +2r=40得l=40-2r ,故S=12lr=12(40-2r)·r=20r -r 2=-(r -10)2+100, 故r=10时,扇形面积S 取最大值100.16.解:由题意可知,α+β=-280°+k ·360°,k ∈Z .∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①∵α-β=670°+k·360°,k∈Z,α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。
弧度制A 组 学考过关一、选择题 1.-25π6的角是 ( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 [解析] 因为-25π6=-π6-4π,所以-25π6与-π6的终边相同,为第四象限的角.[答案] D2.用弧度制表示与150°角的终边相同的角的集合为 ( ) A .{β|β=-5π6+2k π,k ∈Z }B .{β|β=2π6+k ·360°,k ∈Z }C .{β|β=2π3+2k π,k ∈Z }D .{β|β=5π6+2k π,k ∈Z }[解析] 150°=150×π180=5π6,故与150°角终边相同的角的集合为{β|β=5π6+2k π,k ∈Z}.[答案] D3.一段圆弧的长度等于其所在圆的圆内接正方形的边长,则这段圆弧所对的圆心角为 ( ) A .π2B .π3C .√2D .√3[解析] 设圆内接正方形的边长为a ,则该圆的直径为√2a ,所以弧长等于a 的圆弧所对的圆心角α=l r=√22a=√2,故选C .[答案] C4.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为 ( )A .2B .4C .6D .8[解析] 设扇形的半径为r ,弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =αr =4,所以所求扇形的周长为2r +l =6.[答案] C5.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的值是 ( )A .-34π B .-2π C .π D .-π[解析] ∵-114π=-2π+(-34π)=2×(-1)π+(-34π).∴θ=-34π. [答案] A 二、填空题6.用弧度制表示终边落在x 轴上方的角α的集合为 . [解析] 若角α的终边落在x 轴上方,则2k π<α<2k π+π(k ∈Z ). [答案] {α|2k π<α<2k π+π,k ∈Z}7.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 . [解析] |α|=l r =128=32rad ,S =12lr =12×12×8=48. [答案] 32 488.如图所示,用集合表示终边在阴影部分的角α的集合为 .[解析] 由题图知,终边落在射线OA 上的角为2k π+π4(k ∈Z ),终边落在射线OB 上的角为-π3+2k π(k ∈Z ),即5π3+2k π(k ∈Z ),所以终边落在题图中阴影部分的角α的集合为{α|2k π+π4≤α≤2k π+5π3,k ∈Z}.[答案] {α|2k π+π4≤α≤2k π+5π3,k ∈Z}三、解答题9.把下列角化为2k π+α(0≤α<2π,k ∈Z )的形式: (1)16π3;(2)-315°.[解析] (1)16π3=4π+4π3.因为0≤4π3<2π,所以16π3=4π+4π3.(2)因为-315°=-315×π180=-7π4=-2π+π4.因为0≤π4<2π,所以-315°=-2π+π4. 10.已知一个扇形的周长是40,(1)若扇形的面积为100,求扇形的圆心角; (2)求扇形面积S 的最大值.[解析] (1)设扇形的半径为r ,弧长为l ,圆心角为α, 则由题意得{l +2r =40,12lr =100,解得{l =20,r =10,则α=lr =2(rad ).故扇形的圆心角为2rad . (2)由l +2r =40得l =40-2r ,故S =12lr =12(40-2r )·r =20r -r 2=-(r -10)2+100,故r =10时,扇形面积S 取最大值100.B 组 等级测评一、选择题1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )[解析] ∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).[答案] D2.集合{α|k π+π4≤α≤k π+π2,k ∈Z }中角的终边所在的范围(阴影部分)是( )[解析] 当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C .[答案] C3.如图是一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形(阴影区域)的面积是 ( )A .12(2-sin 1cos 1)R 2B .12R 2sin 1cos 1 C .12R 2 D .(1-sin 1cos 1)R 2[解析] ∵l =4R -2R =2R ,∴α=lR =2.∵S 弓形=S 扇形-S △=12|α|R 2-12(2R sin α2)·(R cos α2) =12×2×R 2-R 2sin1·cos1=R 2(1-sin1cos1). [答案] D4.下列表示中不正确的是 ( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是{α|α=π2+k π,k ∈Z } C .终边在坐标轴上角的集合是{α|α=k π2,k ∈Z}D .终边在直线y =x 上角的集合是{α|α=π4+2k π,k ∈Z }[解析] 对于A ,终边在x 轴上角的集合是{α|α=k π,k ∈Z},故A 正确;对于B ,终边在y 轴上的角的集合是{α|α=π2+k π,k ∈Z},故B 正确;对于C ,终边在x 轴上的角的集合为{α|α=k π,k ∈Z},终边在y 轴上的角的集合为{α|α=π2+k π,k ∈Z},故合在一起即为{α|α=k π,k ∈Z}∪{α|α=π2+k π,k ∈Z}={α|α=kπ2,k ∈Z},故C 正确;对于D ,终边在直线y =x 上的角的集合是{α|α=π4+k π,k ∈Z},故D 不正确. [答案] D 二、填空题5.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B = . [解析] 如图所示,∴A ∩B =[-4,-π]∪[0,π].[答案] [-4,-π]∪[0,π]6.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是 .[解析] 设圆的半径为r ,外切正三角形边长为a ,则√32a ×13=r ,则r =√36a ,又弧长为a ,所以圆心角为:a r =√36a=√3=2√3.[答案] 2√3 三、解答题7.已知角α的终边与-253π的终边关于x 轴对称,求角k3在(-π,π)内的值. [解析] ∵253π与-253π的终边关于x 轴对称,且253π=8π+π3, ∴α与π3的终边相同.∴α=2k π+π3(k ∈Z ),α3=2kπ3+π9(k ∈Z ).∵-π<α3<π,∴-π<2kπ3+π9<π.当k =-1时,α3=-5π9∈(-π,π);当k =0时,α3=π9∈(-π,π); 当k =1时,α3=7π9∈(-π,π).∴在(-π,π)内α3的值有三个,它们分别是-5π9,π9和7π9.8.已知扇形AOB 的周长为8 cm .(1)若这个扇形的面积为3 cm 2,求该扇形的圆心角的大小; (2)求这个扇形的面积取得最大值时圆心角的大小和弦AB 的长度. [解析] (1)设该扇形AOB 的半径为r ,圆心角为θ,面积为S ,弧长为l . 由题意,得{l +2r =8,12lr =3,解得{r =1,l =6或{r =3,l =2.所以圆心角θ=l r =61=6或θ=l r =23,所以该扇形的圆心角的大小为23rad 或6rad .(2)θ=8-2r r,所以S =12·r 2·8-2r r=4r -r 2=-(r -2)2+4,所以当r =2,即θ=8-42=2时,S max =4cm 2.此时弦长AB =2×2sin1=4sin1(cm ).所以扇形面积最大时,圆心角的大小等于2rad ,弦AB 的长度为4sin1cm .。
第五章三角函数5.1任意角和弧度制5.1.1任意角基础过关练题组一对任意角概念的理解1.将射线OM绕端点O按逆时针方向旋转120°所得的角为()A.120°B.-120°C.60°D.240°2.已知角α在平面直角坐标系中如图所示,其中射线OA与y轴正半轴的夹角为30°,则α的值为()A.-480°B.-240°C.150°D.480°3.从13:00到14:00,时针转过的角为,分针转过的角为.题组二终边相同的角与区域角4.(2020北京通州高一上期末)在0°~360°范围内,与-80°角终边相同的角是()A.80°B.100°C.240°D.280°5.设α=-300°,则与α终边相同的角的集合为()A.{α|α=k·360°+300°,k∈Z}B.{α|α=k·360°+60°,k∈Z}C.{α|α=k·360°+30°,k∈Z}D.{α|α=k·360°-60°,k∈Z}6.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z7.与-2020°角终边相同的最小正角是.8.已知射线OA,OB如图.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.题组三象限角的判定10.-361°角的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限11.下列命题正确的是()A.终边在x轴的非正半轴上的角是零角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°(k∈Z),则α与β的终边相同12.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限角},D={θ|θ为小于90°的正角},则下列等式中成立的是()A.A=BB.B=CC.A=CD.A=D13.若α是第四象限角,则180°-α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角14.(多选)下列四个命题是真命题的有()A.-75°角是第四象限角B.225°角是第三象限角C.575°角是第二象限角D.-315°角是第一象限角15.若α=k·360°+45°,k∈Z,则α是第象限角.2能力提升练题组一对任意角概念的理解1.()若α与β的终边互为反向延长线,则有()A.α=β+180°B.α=β-180°C.α=-βD.α=β+(2k+1)·180°,k∈Z2.(多选)()下列条件中,能使α和β的终边关于y轴对称的是()A.α+β=90°B.α+β=180°C.α+β=k·360°+90°(k∈Z)D.α+β=(2k+1)·180°(k∈Z)题组二终边相同的角与区域角3.(2020河南光山第二高级中学高一期末,)与角-390°终边相同的最小正角是()A.-30°B.30°C.60°D.330°4.()终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}5.()集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角所表示的范围(阴影部分)是()6.()如果角α与x+45°的终边相同,角β与x-45°的终边相同,那么α与β的关系是()A.α+β=0°B.α-β=0°C.α+β=k·360°(k∈Z)D.α-β=k·360°+90°(k∈Z)7.()若角α满足180°<α<360°,角5α与α有相同的始边与终边,则角α=.8.()写出如图所示的阴影部分(包括边界)的角α的范围.题组三象限角的判定9.(2020四川宜宾高一期中,)2019°角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角的终边所在10.(多选)(2020重庆高一上月考,)设α是第三象限角,则α2的象限可能是(易错)A.第一象限B.第二象限C.第三象限D.第四象限11.()已知集合{α|α=k·90°+45°,k∈Z}.(1)该集合中有几种终边不相同的角?(2)该集合中有几个在-360°~360°范围内的角?(3)写出该集合中的第三象限角.12.()半径为1的圆的圆心位于坐标原点,点P从点A(1,0)出发,以逆时针方向匀速沿圆周旋转,已知点P在1s内转过的角度为θ(0°<θ<180°),经过2s到达第三象限,经过14s后又回到了出发点A处,求θ.答案全解全析基础过关练1.A按逆时针方向旋转形成的角是正角,所以射线OM绕端点O按逆时针方向旋转120°所得的角为120°.2.D由角α按逆时针方向旋转,可知α为正角.又旋转量为480°,∴α=480°.3.答案-30°;-360°解析经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.4.D与-80°角终边相同的角可表示成α=k·360°-80°,k∈Z,令k=1,得α=280°,故选D.5.B因为α=-300°=-360°+60°,所以角α的终边与60°角的终边相同,故选B.6.B解法一(特值法):令α=30°,β=150°,则α+β=180°.解法二(直接法):因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.7.答案140°解析与-2020°角终边相同的角的集合为{β|β=-2020°+k·360°,k∈Z},当k=6时,得到与-2020°角终边相同的最小正角,即β=-2020°+6×360°=140°.8.解析(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.9.解析由题意知,7θ=θ+k·360°,k∈Z,即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,由0°<θ<360°,得0°<k·60°<360°,k∈Z,∴0<k<6,k∈Z,即k=1,2,3,4,5,∴角θ的集合为{60°,120°,180°,240°,300°}.10.D因为-361°角的终边和-1°角的终边相同,所以它的终边落在第四象限,故选D.11.D终边在x轴的非正半轴上的角为k·360°+180°,k∈Z,零角为0°,所以A错误;480°角为第二象限角,但不是钝角,所以B错误;285°角为第四象限角,但不是负角,所以C错误;D正确.故选D.12.D直接根据角的分类进行求解,容易得到答案.13.C因为α是第四象限角,则角α应满足:k·360°-90°<α<k·360°,k∈Z,所以-k·360°<-α<-k·360°+90°,k∈Z,则-k·360°+180°<180°-α<-k·360°+270°,k∈Z,当k=0时,180°<180°-α<270°,故180°-α为第三象限角.14.ABD-75°=-360°+285°是第四象限角;225°=180°+45°是第三象限角;575°=360°+215°是第三象限角;-315°=-360°+45°是第一象限角,故A,B,D为真命题.15.答案一或三解析 ∵α=k ·360°+45°,k ∈Z,∴α2=k ·180°+22.5°,k ∈Z. 当k 为偶数,即k=2n,n ∈Z 时,α2=n ·360°+22.5°,n ∈Z,∴α2为第一象限角; 当k 为奇数,即k=2n+1,n ∈Z 时,α2=n ·360°+202.5°,n ∈Z,∴α2为第三象限角. 综上,α2是第一或第三象限角.能力提升练1.D α与β的终边互为反向延长线,则两角的终边相差180°的奇数倍,可得α=β+(2k+1)·180°,k ∈Z.2.BD 假设α,β为0°~180°内的角,如图所示,因为α,β的终边关于y 轴对称,所以α+β=180°,所以B 满足条件;结合终边相同的角的概念,可得α+β=k ·360°+180°=(2k+1)·180°(k ∈Z),所以D 满足条件,A 、C 都不满足条件.3.D 依题意,-390°+360°=-30°,-30°+360°=330°,故选D.4.D 直线y=-x 如图所示,由图可知,终边落在直线y=-x 上的所有角的集合是{α|α=k ·180°-45°,k ∈Z},故选D.5.C 依题意可知选C.6.D 由题意知α=(x+45°)+k 1·360°(k 1∈Z ),β=(x -45°)+k 2·360°(k 2∈Z),∴α-β=(k 1-k 2)·360°+90°=k ·360°+90°(k ∈Z). 7.答案 270° 解析 ∵角5α与α具有相同的始边与终边,∴5α=k ·360°+α,k ∈Z,得4α=k ·360°,k ∈Z,∴α=k ·90°,k ∈Z. 又180°<α<360°,∴α=270°.8.解析 (1)因为与45°角终边相同的角可写成45°+k ·360°,k ∈Z 的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k ·360°,k ∈Z 的形式,所以题图(1)中阴影部分的角α的范围可表示为{α|-150°+k ·360°≤α≤45°+k ·360°,k ∈Z}. (2)因为与45°角终边相同的角可写成45°+k ·360°,k ∈Z 的形式,与360°-60°=300°角终边相同的角可写成300°+k ·360°,k ∈Z 的形式,所以题图(2)中阴影部分的角α的范围为{α|45°+k ·360°≤α≤300°+k ·360°,k ∈Z}. 9.C 由题意,可知2 019°=360°×5+219°,所以2 019°角和219°角终边相同,又219°角是第三象限角,所以2 019°角是第三象限角,故选C.10.BD 解法一:如图所示,作各个象限的角平分线,标号Ⅲ所在的区域即为α2所在的区域,故选BD. 解法二:由α是第三象限角得180°+k ·360°<α<270°+k ·360°,k ∈Z, ∴90°+k · 180°<α2<135°+k ·180°,k ∈Z, 当k 为偶数时,设k=2n(n ∈Z),则90°+n ·360°<α2<135°+n ·360°(n ∈Z),∴α2为第二象限角; 当k 为奇数时,设k=2n+1(n ∈Z),则270°+n ·360°<α2<315°+n ·360°(n ∈Z), ∴α2为第四象限角. ∴α2为第二或第四象限角,故选BD. 易错警示 对象限角的运算,要将“周期”化为360°再进行判断,当“周期”是360°的约数时,要对整数k 进行分类讨论,解题时要防止遗漏导致错误.11.解析 (1)由k=4n,4n+1,4n+2,4n+3(n ∈Z),知在给定的角的集合中终边不相同的角共有四种.(2)由-360°≤k ·90°+45°<360°,得-92≤k<72. 又k ∈Z,故k=-4,-3,-2,-1,0,1,2,3.所以在给定的角的集合中在-360°~360°范围内的角共有8个.(3)给定的角的集合中第三象限角为k ·360°+225°,k ∈Z. 12.解析 ∵0°<θ<180°,且k ·360°+180°<2θ<k ·360°+270°,k ∈Z,∴一定有k=0,于是90°<θ<135°.又∵14θ=n ·360°(n ∈Z),∴θ=n ·180°7,n ∈Z,从而90°<n ·180°7<135°,n ∈Z,∴72<n<214,n ∈Z,∴n=4或5.当n=4时,θ=(7207)°;当n=5时,θ=(9007)°.。
5.1.1 任意角必备知识基础练1.下列命题中正确的是( )A.第一象限角小于第二象限角B.锐角一定是第一象限角C.第二象限角是钝角D.平角大于第二象限角2.440°角的终边落在( )A.第一象限 B.第二象限C.第三象限 D.第四象限3.终边在第四象限的角α的集合是( )A.{α|-90°<α<0°)B.{α|270°+k·360°<α<k·360°,k∈Z}C.{α|k·360°-90°<α<k·360°,k∈Z}D.{α|k·180°-90°<α<k·180°,k∈Z}4.已知点P在圆O上按顺时针方向每秒转30°,2秒钟后,OP转过的角等于( ) A.-60° B.-30°C.60° D.30°5.下列各角中,与-30°终边相同的角为( )A.210° B.-390°C.390° D.30°6.[2022·广东韶关田家炳中学高一期末](多选)下列四个角为第二象限角的是( ) A.-200°B.100° C.220°D.420°7.第24届冬季奥运会于2022年2月4日至2月20日在北京举行,中国运动员通过顽强拼搏,共获得9枚金牌,列金牌榜第三名,创造了冬奥会上新的辉煌.在冬奥会的比赛中有一位滑雪运动员做了一个空中翻腾五周的高难度动作,那么“空中翻腾五周”等于________度(不考虑符号).8.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中,角所表示的取值范围(阴影部分)正确的是________(填序号).关键能力综合练1.已知角α为锐角,则下列各角中为第四象限角的是( )A.α+90° B.α+180°C.α-90° D.α-180°2.与-525°角的终边相同的角可表示为( )A.525°-k·360°(k∈Z)B.185°+k·360°(k∈Z)C.195°+k·360°(k∈Z)D.-195°+k·360°(k∈Z)3.[2022·山东枣庄高一期末]与-390°角的终边相同的最小正角是( )A.-30°B.30° C.60° D.330°4.若角α,β的终边相同,则α-β的终边落在( )A.x轴的非负半轴上 B.x轴的非正半轴上C.x轴上 D.y轴的非负半轴上5.若α=45°+k·180°(k∈Z),则α的终边在( )A.第二或第三象限 B.第一或第三象限C.第二或第四象限 D.第三或第四象限6.(多选)下列条件中,能使α和β的终边关于y轴对称的是( )A.α+β=540° B.α+β=360°C.α+β=180° D.α+β=90°7.自行车大链轮有36齿,小链轮有24齿,当大链轮转过一周时,小链轮转过的角度是________度.8.若角α=2 022°,则与角α具有相同终边的最小正角为________,最大负角为________.9.在区间[0°,360°)内找出与下列各角终边相同的角α,并判断它是第几象限角:(1)-165°;(2)1 390°;(3)-567°26′.10.已知角β为以O为顶点,x轴为始边,逆时针旋转60°所成的角.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.核心素养升级练1.终边为第一象限和第三象限的平分线的角的集合是( )A.{α|α=45°+k·360°,k∈Z}B.{α|α=-135°+k·180°,k∈Z}C.{α|α=-135°+k·360°,k∈Z}D.{α|α=135°+k·180°,k∈Z}2.若角α的终边在函数y=-x的图象上,试写出角α的集合为________.3.如图所示,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上.5.1.1 任意角必备知识基础练1.答案:B解析:390°为第一象限角,120°为第二象限角,故A错误;因为0°<锐角<90°,所以锐角一定是第一象限角,故B正确;因为90°<钝角<180°,平角=180°,480°为第二象限角,故C、D错误.2.答案:A解析:因为440°=360°+80°,所以440°角的终边与80°角的终边相同,所以440°角的终边落在第一象限.3.答案:C解析:终边在第四象限的角α的集合是{α|k·360°-90°<α<k·360°,k∈Z}或{α|k·360°+270°<α<360°+k·360°,k∈Z}.4.答案:A解析:∵点P在圆O上按顺时针方向旋转,则OP转过的角为负角,又每秒转30°,∴2秒钟后,OP转过的角等于2×(-30°)=-60°.5.答案:B解析:与-30°终边相同的角的集合为:{α|α=-30°+k·360°,k∈Z},当k=-1时,得α=-390°.6.答案:AB解析:对于A选项,-200°=160°-360°,故-200°为第二象限角;对于B选项,100°是第二象限角;对于C选项,220°是第三象限角;对于D选项,420°=60°+360°,故420°为第一象限角.7.答案:1 800解析:“空中翻腾五周”等于5×360°=1 800°.8.答案:③解析:当k=0时,集合{α|45°≤α≤90°},当k=1时,集合{α|225°≤α≤270°},则可得出角所表示的取值范围为③.关键能力综合练1.答案:C解析:因为角α为锐角,所以90°<α+90°<180°,α+90°为第二象限角;180°<α+180°<270°,α+180°为第三象限角;-90°<α-90°<0°,α-90°为第四象限角;-180°<α-180°<-90°,α-180°为第三象限角.2.答案:C解析:-525°=195°-2×360°,所以-525°角的终边与195°角的终边相同,所以与-525°角的终边相同的角可表示为195°+k·360°(k∈Z).3.答案:D解析:与-390°角终边相同角的集合为{α|α=-390°+k·360°,k∈Z},当k=2时,取得最小正角为330°.4.答案:A解析:因为角α,β的终边相同,故α-β=k·360°,k∈Z.所以α-β的终边落在x轴的非负半轴上.5.答案:B解析:当k为奇数时,记k=2n+1,n∈Z,则α=225°+n·360°(n∈Z),此时α为第三象限角;当k为偶数时,记k=2n,n∈Z,则α=45°+n·360°(n∈Z),此时α为第一象限角.6.答案:AC解析:假设α,β为0°~180°内的角,如图所示:由α和β的终边关于y 轴对称,所以α+β=180°,根据终边相同角的概念,可得α+β=k ·360°+180°=(2k +1)180°,k ∈Z ,所以满足条件的为A 、C.7.答案:540解析:因为大链轮转过一周时,小链轮转36齿.而小链轮有24齿,故小链轮转3624=32周,一周为360°,故小链轮转过的角度为360°×32=540°. 8.答案:222° -138°解析:∵2 022°=5×360°+222°,∴与角α终边相同的角的集合为{α|α=222°+k ·360°,k ∈Z },∴最小正角是222°,最大负角是-138°.9.解析:(1)与-165°终边相同的角为-165°+k ·360°,k ∈Z ,当k =1时,为195°,∴在[0°,360°)内,与-165°终边相同的角是195°,它是第三象限角;(2)与1 390°终边相同的角可以表示为1 390°+k ·360°,k ∈Z ,当k =-3时,为310°,∴在[0°,360°)内,与1 390°终边相同的角是310°,它是第四象限角;(3)与-567°26′终边相同的角为-567°26′+k ·360°,k ∈Z ,当k =2时,为152°34′,∴在[0°,360°)内,与-567°26′终边相同的角是152°34′,它是第二象限角.10.解析:(1)依题意,角β的集合S ={β|β=60°+k ·180°,k ∈Z }.(2)在S ={β|β=60°+k ·180°,k ∈Z }中,取k =-2,得β=-300°,取k =-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.核心素养升级练1.答案:B解析:终边为第一象限的平分线的角的集合是{α|α=45°+k·360°,k∈Z} ①,终边为第三象限的平分线的角的集合是{α|α=-135°+k·360°,k∈Z} ②,由①②得{α|α=-135°+k·180°,k∈Z}.2.答案:{α|α=k·180°+135°,k∈Z}解析:函数y=-x的图象是第二、四象限的平分线,在0°~360°范围内,以第二象限平分线为终边的角为135°,以第四象限平分线为终边的角为315°,∴α的集合为{α|α=k·360°+135°或α=k·360°+315°,k∈Z}={α|α=k·180°+135°,k∈Z}.3.解析:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角为α=30°+k·360°或α=210°+k·360°,k∈Z,即α=30°+2k·180°或α=30°+(2k+1)·180°,k∈Z,所以终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.。