7.3图形的平移1
- 格式:doc
- 大小:415.00 KB
- 文档页数:4
图形的平移关于两条平行直线反射(轴对称)的复合(叠加)是一个平移,那么关于两条相交直线反射(轴对称)的叠加将如何呢?还是通过一个具体的例子感受一下吧!动手操作如图,m ,n 是两条相交直线,交点是O ,画出ΔABC关于直线m 的对称图形ΔA 'B 'C ',及ΔA 'B 'C '关于直线n 的对称图形ΔA ″B ″C ″,观察ΔABC 与ΔA ″B ″C ″有什么位置关系,能否通过某个变换而相互得到.作出图形,不难发现,ΔABC 与ΔA ″B ″C ″全等,这可以从图形上看出,也可以严格地证明(因为,翻折前后的图形是全等形,经过两次翻折后的图形与原来的当然还是全等形.)两个图形不可以通过平移而相互得到(因为平移前后图形中对应线段的方向相同,而右图中AB 与A ″B ″方向显然不同),那么能否通过旋转而相互得到呢?旋转中心又是哪个点呢?你可以凭感觉估计出这个点,也可以通过逻辑分析(根据旋转的概念,旋转中心到对应点的距离相等,因此,旋转中心在AA ″与BB ″的垂直平分线上,作出两条垂直平等分线不难确定这个可能的旋转中心).亲自做过后,惊讶地发现,这个点是O.旋转中心真的是O 吗?旋转角度等于多少呢?假设旋转中心是O ,看看是否所有对应点对O 的张角都相同就可以了.如图,可以发现,∠A O A″=∠A OA'+∠A'O A″=2∠MOA'+2∠A'ON=2∠MON ,同理∠BOB ″=∠COC ″=2∠MON.因此,确实ΔA ″B ″C ″可以由ΔABC 绕O 点旋转而得到,旋转角为两条直线夹角的两倍.结论 关于两条相交直线的反射的叠加(复合)是一个旋转,旋转角等于两条反射轴夹角的2倍.当然,有兴趣的你,还可以研究:任意一个旋转是否都可以看成两个反射的叠加?如果可以,这样的反射具有什么要求?这样的两个反射是否唯一?反射、平移、旋转还有很多内在的联系,如经过平移、旋转、反射后的图形都和原来的图形全等,而且任意两个全等的图形都可以由上面的这三个变换叠加而成,正因为如此,数学上称这三个变换为最基本的全等变换.不信,你随便画两个全等的图形,或者在桌面上放两个全等的图片,试着通过这三个变换将其中一个变为另一个.做出来了吗?如果没有做出来,可以参考下面的方法:先平移,使某对对应点重合;然后绕这个重合的点旋转,使得某条对应边重合;这时如果两个图形还没有重合,则沿着刚才那条重合的边翻折其中一个图形就可以与另一个图形完全重合了.B''B。
7.3 图形的平移一、 探索新知利用生活中常见平移事例(如商城电梯运动、打气筒活塞运动等),说明下列基本概念。
平移的概念:平移的性质:(1) 。
(2) 。
了解:平行线之间距离的定义:如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
二、范例点睛例1、把图中的三角形ABC (可记为△ABC )向右平移6个格子,画出所得的△'''C B A 。
度量△ABC 与△'''C B A 的边,角的大小,你发现什么呢?回答下列问题:(1)经过平移的图形与原来的图形的对应线段 ,对应角 ,图形的形状和大小都 ;(2)平移的对应点所连线段 。
变式训练:将△ABC 经过平移得到△A ′B ′C ′,则△A ′B ′C ′的形状与此△ABC 的形状大小都 。
(1)线段BC 与B ′C ′的关系是 (位置关系和数量关系); (2)线段AB 与A ′B ′的关系是 (位置关系和数量关系); (3)若AC=5,则A ′C ′= ,若∠ABC=60°,则∠A ′B ′C ′= ; (4)若△ABC 周长为30,则△A ′B ′C ′周长为 ; (5)若△ABC 面积为S ,则△A ′B ′C ′面积为 。
例2、已知四边形ABCD .⑴ 将其沿箭头方向平移,其平移的距离为线段AB 的长度;BCA⑵写出平移前后对应线段的位置关系和数量关系.三、随堂演练1、请将下图中的三角形沿着北偏东80°方向平移4cm .四、课堂小结平移最主要抓两点:平移的方向、平移的距离(易错:平移距离说成线段AB ,实质是线段AB 的长度)ABCD作业设计一、填空题1、已知:在△ABC 中,AB=5cm ,∠B= 72°,若将△ABC 向下平移7cm 得到 △A ′B ′C ′,则A ′B ′=_______cm ,AA ′=_______cm ,∠B ′=________°.2、 如下左图,小船经过平移到了新的位置,你发现缺少了什么吗?请补上.3、如下右图,根据图中的数据,计算阴影部分的面积为_________.二、选择题4、对于平移后,对应点所连的线段,下列说法正确的是 ( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上。
7.3图形的平移、对称(折叠)、旋转与位似1.[跨学科试题]下面四种化学仪器示意图中,是轴对称图形的是(B)2.(2021·江苏苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A'O'B,则下列四个图形中正确的是 (B)3.如图,△OAB的边OB在x轴的正半轴上,O是原点,点B的坐标为(3,0),把△OAB沿x轴向右平移2个单位长度,得到△CDE,连接AC,DB.若△DBE的面积为3,则图中阴影部分的面积为(D)B.1A.12C.2D.324.(2021·浙江嘉兴)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是(D)A.等腰三角形B.直角三角形C.矩形D.菱形5.如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是(A)A.1∶2B.1∶4C.1∶3D.1∶96.(2022·黑龙江大庆)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点E处.若∠1=56°,∠2=42°,则∠A的度数为(C)A.108°B.109°C.110°D.111°7.[HK版教材九上P110 C组复习题第1题改编]如图,在边长为1的正方形网格中,正方形ABCD和正方形OEFG是位似图形,点F的坐标是(1,1),点C的坐标是(4,4),则它们的位似中心的坐标是(-2,-2)或(4 3,43 ).【解析】分两种情况讨论:①当位似图形在位似中心同侧时,连接DG,AO交于一点M(-2,-2),该点即为位似中心;②当位似图形在位似中心异侧时,连接DE,AF交于一点N(43,43),该点即为位似中心.综上所述,位似中心的坐标为(-2,-2)或(43,4 3 ).8.正方形网格中的每个小正方形的边长均为1个单位长度,△ABC各顶点的位置如图所示.将△ABC平移,使点A移到点D的位置,E,F分别是B,C的对应点.(1)画出平移后的△DEF;(2)在AB上找一点P,连接CP,使得线段CP平分△ABC的面积.解:(1)如图所示,△DEF即为所求.(2)如图所示,线段CP即为所求.9.(2022·合肥蜀山区二模)如图,平面直角坐标系中的△ABC的三个顶点坐标分别为A(-5,0),B(-1,-4),C(-1,0),M为线段AB的中点.(1)点M关于y轴的对称点M1的坐标为(3,-2).(2)画出△ABC关于点O的中心对称图形△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(3)再将点M1沿y轴正方向平移,在平移过程中,直接写出当平移的距离d在什么范围时,点M1在△A1B1C1的内部(不包括边界).解:(2)如图所示,△A1B1C1即为所求.(3)观察图形可知2<d<4.10.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连接AA'.(1)判断四边形ACC'A'的形状,并说明理由;,求CB'的长.(2)在△ABC中,∠B=90°,AB=8,cos ∠BAC=45解:(1)四边形ACC'A'是菱形.理由:由平移的性质可得AA'=CC',且AA'∥CC',∴四边形ACC'A'是平行四边形,∠AA'C=∠A'CB'.由题意,得CD平分∠ACB',∴∠ACA'=∠A'CB',∴∠ACA'=∠AA'C,∴AA'=AC,∴四边形ACC'A'是菱形.(2)在Rt△ABC中,∠B=90°,AB=8,cos ∠BAC=ABAC =45,∴AC=10,∴BC=√AC2−AB2=√102−82=6,∴B'C'=BC=6.由(1)得四边形ACC'A'是菱形,∴CC'=AC=10,∴CB'=CC'-B'C'=10-6=4.11.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2023次得到正方形OA2023B2023C2023.如果点A的坐标为(1,0),那么点B2023的坐标为(C)A.(1,-1)B.(0,-√2)C.(√2,0)D.(-1,1)【解析】∵四边形OABC是正方形,且OA=1,∴点B的坐标为(1,1).连接OB.由勾股定理,得OB=√2,由旋转得OB=OB1=OB2=OB3=…=√2.∵每次将正方形绕点O逆时针旋转45°,∴点B1的坐标为(0,√2),点B2的坐标为(-1,1),点B3的坐标为(-√2,0),……,且规律是8次一循环.∵2023÷8=252……7,∴点B2023的坐标为(√2,0).12.[开放题]如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位长度后的图形;(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.图1图2解:(1)如图1所示,△ABC和△A'B'C'即为所求.(答案不唯一)(2)如图2所示,△DEP和△D'E'P即为所求.(答案不唯一)图1图213.(2022·四川广元)在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD,BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为135°.(2)将线段CA绕点C顺时针旋转α.①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连接BE.用等式表示线段AD,CE,BE之间的数量关系,并证明.图1图2解:(2)①依题意补全图形如图1.由旋转的性质知CD=CA=CB,∠ACD=α,∠BCD=90°+α,∴∠ADC=90°-α2,∠BDC=45°-α2,∴∠ADB=∠ADC-∠BDC=45°.②√2CE=2BE-AD.证明:如图2,过点C作CG⊥CE,交EB的延长线于点G.∵BC=CD,CE平分∠BCD,∴CE垂直平分BD,∴BE=DE.由①知∠ADB=45°,∴∠EBD=45°,∴∠FEB=45°,∴∠G=45°,∴CE=CG,EG=√2CE.易知△ACE≌△BCG(SAS),∴AE=BG.∵EG=BE+BG=BE+AE=BE+DE-AD=2BE-AD,∴√2CE=2BE-AD.图1图2。
7.3 图形的平移知识点一、平移的概念1、平移的定义:在平面内,把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。
2、平移的两个要素:(1)平移方向;(2)平移距离。
3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。
4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A.若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。
B.若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。
C.具体给出从某点P到另一点P’的方向为平移方向,线段PP’的长度为平移距离。
D.给出具体方位(如向东或者西北等)和移动长度(如10cm)(2)图形平移后,平移方向与平移距离的确定。
图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。
例:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化,进而得出即可.【解答】解:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.知识点二、平移的性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。
平移后的图形与原图形①对应线段平行(或在同条一直线上)且相等;②对应点连线平行(或在同一条直线上)且相等;③图形的形状与大小都不变(全等);④图形的顶点字母的排列顺序的方向不变。
2019年精选初中数学七年级下册7.3 图形的平移苏科版巩固辅导第二十四篇第1题【单选题】下列图案,分别是奥迪、奔驰、三菱、大众汽车的车标,其中可以看作由“基本图案”经过平移得到的是( )A、B、C、D、【答案】:【解析】:第2题【单选题】将左图案剪成若干小块,再分别平移后能够得到①、②、③中的( )A、0个B、1个C、2个D、3个【答案】:【解析】:第3题【单选题】如图所示,将周长为8的△ABC沿BC方向平移1个单位长度得到△DEF,则四边形ABFD的周长为( )A、6B、8C、10D、12【答案】:【解析】:第4题【单选题】如图,AB∥EF,C是EF上一个动点,当点C的位置变化时,△ABC的面积将( )A、变大B、变小C、不变D、变大变小要看点C向左还是向右移动【答案】:【解析】:第5题【单选题】如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A、(-2,-4)B、(-2,4)C、(2,-3)D、(-1,-3)【答案】:【解析】:第6题【单选题】下图中所给图形只用平移可以得到的是( ) A、B、C、D、【答案】:【解析】:第7题【单选题】在平面直角坐标系中,有一条线段AB,已知点A(﹣3,0)和B(0,4),平移线段AB得到线段A1B1 .若点A的对应点A1的坐标为(0,﹣1),则线段AB平移经过的区域(四边形ABB1A1)的面积为( )A、12B、15C、24D、30【答案】:【解析】:第8题【填空题】如图,将△ABC水平向右平移了acm后,得到△A'B'C',已知BC = 6cm,B C'=17cm,那么a = ______cm.【答案】:【解析】:第9题【填空题】如图,直线a与直线c交于点A,∠1=50°,将直线a向上平移后与直线c交于点B,则∠2=______度.A、130【答案】:【解析】:第10题【填空题】如图,在?ABCD中,AD=7,AB=2有误,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC 方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为______.【答案】:【解析】:第11题【填空题】将平面直角坐标系中的点A(﹣1,2)向右平移3个单位,得到点A1 ,则点A1的坐标为______【答案】:【解析】:第12题【解答题】如图,已知AD∥BC,AB∥EF,CD∥EG,且点E和点F,H,G分别在直线AD,BC上,EH平分∠FEG,∠A=∠D∠110°,线段EH的长是否是两条平行线AD,BC之间的距离?为什么?【答案】:【解析】:第13题【解答题】如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【答案】:【解析】:第14题【综合题】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.画出△ABC向上平移6个单位得到的△A1B1C1;以点C为位似中心,在网格中画出△A2B2C2 ,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【答案】:【解析】:第15题【综合题】如图在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.最新教育资料精选△ABC的面积为______;将△ABC经过平移后得到△A′B′C′ ,图中标出了点B的对应点B′ ,补全△A′B′C′;若连接AA′ ,BB′ ,则这两条线段之间的关系是______;在图中画出△ABC的高CD .【答案】:【解析】:11/ 11。
7.3 图形的平移一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位4.(2017•铜仁)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S25.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm27.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.39.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.2010.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.814.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是.16.(2017•安丘市模拟)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.17.(2017•龙岩一模)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB 方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是;(3)试求出△ABC的面积.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.参考答案与解析一.选择题1.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【分析】根据平移的性质即可得出结论.【解答】解:平移后的图形与原来的图形的对应点连线平行或在同一条直线上且相等.故选C.【点评】本题考查了平移的性质,牢记“连接各组对应点的线段平行且相等”是解题的关键.2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.【分析】把一个图形整体沿某一直线方向移动,得到的新图形与原图形的形状和大小完全相同.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.【点评】本题主要考查了平移的性质,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.3.如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向上平移2个单位【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了坐标与图形变化﹣平移,利用对应点的平移规律确定图形的平移规律是解题的关键.4.(2017•铜仁市)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【分析】根据平行线间的距离相等可知△ABC,△PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.6.如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A.18cm2B.21cm2C.27cm2D.30cm2【分析】根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.【解答】解:∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ABED的面积=6×(1+3)=24cm2,∴△ABC纸片扫过的面积=6×(2+3)=30cm2,故选D.【点评】考查了平移的性质,本题的关键是得出四边形ACED的面积是三个△ABC 的面积.然后根据已知条件计算.7.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.8.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上.若BF=14,EC=6.则BE的长度是()A.2 B.4 C.5 D.3【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=6,∴BE=(14﹣6)=4.故选B.【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.9.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.5 B.10 C.15 D.20【分析】设点A到BC的距离为h,根据平移的性质可得AD=CF=2BC,然后求出CE=BC,再根据梯形的面积公式列式计算即可得解.【解答】解:设点A到BC的距离为h,=BC•h=5,则S△ABC∵△ABC沿BC方向平移的距离是边BC长的两倍,∴AD=CF=2BC,AD∥BF,∴CE=BC,∴四边形ACED的面积=(CE+AD)h=(BC+2BC)h=3×BC•h=3×5=15.故选C.【点评】本题考查了平移的性质,三角形的面积,熟记性质并确定出梯形的上、下底边的与BC的关系是解题的关键.10.如图,将△ABE向右平移2cm得到△DCF.如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16 cm B.18 cm C.20 cm D.21 cm【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【解答】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选C.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB 的面积大小变化情况是()A.增大B.减小C.不变D.不确定【分析】根据平移的性质得到AA′∥BC,从而说明△A′CB的底边BC的长度不变,高不变,确定正确的选项.【解答】解:∵把△ABC沿BC方向平移,得到△A′B′C′,∴AA′∥BC,∴△A′CB的底边BC的长度不变,高不变,∴△A′CB的面积大小变化情况是不变,故选C.【点评】本题考查了平移的性质,解题的关键是了解平移前后对应点的连线平行且相等,难度不大.12.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形中,其中两个可以由另外两个平移得到,则还需要涂黑的小正方形序号是()A.①或②B.③或④C.⑤或⑥D.①或⑨【分析】根据平移的定义解答即可.【解答】解:根据题意可涂黑①和⑨,涂黑①时,可将左上和左下两个黑色正方形向右平移1个单位即可得;涂黑⑨时,可将左上和左下两个黑色正方形向右平移2个单位、再向下平移1个单位可得;故选:D.【点评】本题主要考查平移设计图案,熟练掌握平移的定义和性质是解题的关键.13.如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A.5 B.6 C.7 D.8【分析】根据平移的性质可得DF=AC,AD=CF=1,再根据周长的定义列式计算即可得解.【解答】解:∵△ABC沿BC方向向右平移1个单位得到△DEF,∴DF=AC,AD=CF=1,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+CF+AD=4+1+1=6.故选B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.24 B.40 C.42 D.48【分析】根据平移的性质得S△ABC =S△DEF,BE=6,DE=AB=10,则可计算出OE=DE﹣DO=6,再利用S阴影部分+S△OEC=S梯形ABEO+S△OEC得到S阴影部分=S梯形ABEO,然后根据梯形的面积公式求解.【解答】解:∵△ABC沿着点B到C的方向平移到△DEF的位置,平移距离为6,∴S△ABC =S△DEF,BE=6,DE=AB=10,∴OE=DE﹣DO=6,∵S阴影部分+S△OEC=S梯形ABEO+S△OEC,∴S阴影部分=S梯形ABEO=×(6+10)×6=48.故选D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.二.填空题15.如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是5.【分析】根据平移的性质可得BE=CF,然后列式其解即可.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=4,∴BE=(14﹣4)=5.故答案为:5【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE=CF是解题的关键.16.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为2.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,∴平移距离=8÷4=2.故答案为:2.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.18.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为3.【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=BC=3,于是得到AA′=3.【解答】解:∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=BC=3,∴AA′=3.故答案为3.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.19.如图,矩形ABCD中,AB=5,BC=7,则图中五个小矩形的周长之和为24.【分析】运用平移的观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(5+7)=24.故答案为:24.【点评】本题考查了平移的性质,矩形性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三.解答题20.如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC的各顶点都在网格的格点上,若记点A的坐标为(﹣1,3),点C的坐标为(1,﹣1).(1)请在图中找出x轴、y轴及原点O的位置;(2)把△ABC向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是(a+3,b﹣2);(3)试求出△ABC的面积.【分析】(1)利用A点坐标得出x轴、y轴及原点O的位置;(2)利用平移的性质得出平移后的△A1B1C1,进而得出点P的对应点P1的坐标;(3)利用△ABC所在矩形面积减去周围三角形面积得出即可.【解答】解:(1)如图所示:O点即为所求;(2)如图所示:△A1B1C1,即为所求;P1(a+3,b﹣2);故答案为:(a+3,b﹣2);=4×5﹣×5×2﹣×2×3﹣×2×4=8.(3)S△ABC【点评】此题主要考查了平移变换以及三角形面积求法等知识,利用平移的性质得出对应点位置是解题关键.21.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【分析】(1)根据平行线的性质,以及等量代换证明∠ADC+∠C=180°,即可证得AD∥BC;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,又由∠DBE=∠ABC,即可求得∠DBE的度数.(3)首先设∠ABD=∠DBF=∠BDC=x°,由直线AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得∠BEC与∠ADB的度数,又由∠BEC=∠ADB,即可得方程:x°+40°=80°﹣x°,解此方程即可求得答案.【解答】证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.【点评】此题考查了平行线的性质与平行四边形的性质.此题难度适中,解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B 是否在边AE上.【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S 的值,根据图形可得出点B的位置.【解答】解:(1)如图所示;(2)由图可知,S=5×4﹣×4×1﹣×2×4﹣×2×5=20﹣2﹣4﹣5=9.根据图形可知,点B不在AE边上.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.。
画平移后的图形城西小学郭永梅一、教学目标1.让学生学会识别和判断一个简单图形在方格纸上平移的方向和距离,能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
2.感受平移运动的特点,发展空间观念。
二、教学重难点重点:能按要求画出简单的平面图形平移后的图形,会根据平移前后的图形判断平移的方向和距离。
难点:认识图形的平移变换,探索它的基本性质,建立直观的空间观念。
三、教学准备课件四、教学过程(一)、复习导入。
回忆生活中的平移现象(1)平移的过程中,图形的形状和大小是否发生了变化?(2)平移后的图形的位置是根据什么确定的?(二)、探究新知。
1.探究平移的方向和距离。
师:画出平移后的图形,再数一数,填一填。
(出示教材86页例3情景图)师:读图找出已知条件和所求问题分别是什么?生:图中给出了已知图形和图形平移后的虚线图形,要求先画出图形,再判断出图形平移的方向和平移的距离。
师:你是怎样理解“平移的方向”的?生:“平移的方向”,是指给出的图形平移的方向。
一般有向上平移、向下平移、向左平移和向右平移。
师:“平移的距离”是指什么?生:“平移的距离”是指已知图形中的某个关键点,从起始位置到终止位置所移动的方格数量。
师:平移时,物体本身方向不会发生改变。
师:图中给出的已知图形先向上平移5个方格,你是怎样知道的?生:可以选图形中最底端的横线,看平移后移到哪儿,平移前后这组线中间有几格,图形就平移了几格。
(如下图)师:看图形平移前后的一组对应线,这组对应线中间有几个方格,图形就平移了几个方格。
大家还有其他的方法吗?生:还可以选图形最顶端的这个点,看看它平移后的位置,然后数一数这两个点之间有几格,图形就平移了几格。
(如下图)师:看图形平移前后的一组对应点,这组对应点中间有几个方格,图形就平移了几个方格。
除了上面这组对应线(点)以外,我们还可以找到其他的对应线(点),自己试着找一找,看看是不是向上平移了5格?师:利用找对应点(线)的方法,自己判断图形是不是向右平移了7格。
个人复备第1题
3.如图,在长方形ABCD中,对角线AC与BD相交于点O,画出△
AOB
平移后的三角形,其平移方向为射线AD的方向,平移的距离为线段AD的长。
课内练习
1.在平面内,将一个图形沿着某个__________移动一定的_________,叫做
图形的平移。
2.图形的平移只改变图形的______,不改变图形的_____、______。
3.图形平移的决定因素:平移的_______和_______。
平移方向是图形上的某一点到它_____点的方向;平移距离是图形上的某一点
到它对应点的连线_________。
4.观察下列四个图形,其中与另外三种不同的是()
A B C D
5.下列说法中正确的是()
A 一个图形经过平移后,与原图形成轴对称
B 如果两个图形成轴对称,那么一个图形可由另一个图形经过平移变换得
到
C 一个图形经过平移后,它的性质都发生了变化
D 图形的平移由平移的方向和距离决定
6.平移改变的是图形的()
A 位置
B 大小
C 形状
D 位置、大小和形状
☆7.如图,长方形的长为32m,宽为20m,小路(阴影部分)
宽为2m ,求阴影部分的面积。
8.如图,按箭头方向及位置将四边形ABCD作平移运动,作出平移后的图
形。
个人复备
课堂小结: 课堂作业:课本P18 习题第1、2
课外作业: 同步导学P15---16
1. 一个图形平移后得到另一个图形,图形的_______发生了变化,但图形的______和_______是不变的。
2.如果三角形ABC 沿着北偏东300的方向移动了2cm ,那么三角形ABC 的一
条边AB 边上一点P向_____________移动了_________cm 。
☆3.把一个1×1的正方形小方格,至少通过_________次平移能得4×4大的正方形网格。
4.在下列说法中:①△ABC 在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC 在平移过程中,周长不变;④△ABC 在平移过程中,面积不变。
其中正确的有____________________。
5.下列运动属于平移的是( )
A 冷水加热过程中,小气泡上升为大气泡
B 急刹车时,汽车在地面上的滑动
C 随手抛出的彩球的运动
D 随风飘动的风筝在空中的运动
6.下列图形中,由图(1)平移得到的图形是( )
(1)
A B C D
个人复备
个人复备。