新人教A版选修2-32019-2020年高中数学模块综合评价(一)(含解析)
- 格式:doc
- 大小:257.68 KB
- 文档页数:10
模块综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B.由(2x -1)x =0可得x =12或x =0.因为“x =12或x =0”是“x =0”的必要不充分条件,所以“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“对任意的x ∈R ,2x 3-3x 2+1≤0”的否定是( ) A .不存在x 0∈R ,2x 30-3x 20+1≤0 B .存在x 0∈R ,2x 30-3x 20+1≤0 C .存在x 0∈R ,2x 30-3x 20+1>0 D .对任意的x ∈R ,2x 3-3x 2+1>0解析:选C.先变换量词,再否定结论,即“存在x 0∈R ,2x 30-3x 20+1>0”. 3.下列命题中是假命题的是( )A .∀x ∈⎝⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R ,3x>0 D .∃x 0∈R ,lg x 0=0解析:选B.因为sin x 0+cos x 0=2sin ⎝⎛⎭⎪⎫x 0+π4≤2,所以B 错误,选B.4.已知空间四边形ABCD ,连接AC 、BD ,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B .CG → C.BC →D .12BC → 解析:选A.如图所示.因为G 是CD 的中点,所以12(BD →+BC →)=BG →,所以AB →+12(BD →+BC →)=AG →.5.与双曲线y 25-x 2=1共焦点,且过点(1,2)的椭圆的标准方程为( )A.x 28+y 22=1 B .x 210+y 22=1 C.x 22+y 28=1 D .y 210+x 24=1 解析:选C.由题知,焦点在y 轴上,排除A ,B ,将(1,2)代入C ,D 可得C 正确.故选C.6.抛物线y =ax 2的准线方程是y =2,则a 的值为( ) A.18 B .-18C .8D .-8解析:选B.由y =ax 2得x 2=1a y ,所以1a =-8,所以a =-18.7.已知条件p :x 2+2x -3>0,条件q :5x -6>x 2,则綈p 是綈q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.设满足条件綈p 的集合为P ,满足条件綈q 的集合为Q ,则P ={x |-3≤x ≤1},Q ={x |x ≥3或x ≤2},所以P Q ,故綈p 是綈q 的充分不必要条件.8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析:选A.由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,所以b a =12,故双曲线x 2a 2-y 2b2=1的渐近线方程为y =±12x .9.已知命题p :若方程ax 2+x -1=0有实数解,则a ≥-14且a ≠0;命题q :函数y =x2-2x 在[0,3]上的最大值与最小值之和为2.则下列为真命题的是( )A .p 且qB .p 且綈qC .p 或綈qD .p 或q解析:选D.由于当a =0时,方程ax 2+x -1=0有实数解x =1,故p 是假命题;函数y =x 2-2x 在[0,3]上的最小值为-1,最大值为3,最大值与最小值之和为2,故q 是真命题,在四个选项中,只有p 或q 是真命题.10.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4x B .y 2=±8x C .y 2=4xD .y 2=8x解析:选B.由已知可得,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫a4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .11.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°解析:选B.由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD →=CD → 2=1,由cos 〈AB →,CD →〉=AB →·CD→|AB →|·|CD →|=12,得〈AB →,CD →〉=60°,故直线a ,b 所成的角为60°.12.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1,F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 2解析:选D.由椭圆的几何性质得a -c ≤|PF 1|≤a +c ,|PF 1|+|PF 2|=2a ,所以|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2,当且仅当|PF 1|=|PF 2|时取等号. |PF 1|·|PF 2|=|PF 1|·(2a -|PF 1|)=-|PF 1|2+2a |PF 1|=-(|PF 1|-a )2+a 2≥-c 2+a 2=b 2,所以|PF 1|·|PF 2|的最大值与最小值之差为a 2-b 2=c 2.二、填空题:本题共4小题,每小题5分.13.已知点A (-1,-2)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,过点F 且与x 轴垂直的直线与抛物线交于M ,N 两点,则|MN |=________.解析:因为点A (-1,-2)在抛物线C :y 2=2px (p >0)的准线上,所以-p2=-1,p =2,抛物线的方程为y 2=4x ,焦点F (1,0),当x =1时,y =±2,则M (1,2),N (1,-2)或N (1,2),M (1,-2),所以|MN |=2-(-2)=4.答案:414.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的一个法向量;④AP →∥BD →.其中正确的是________(填序号).解析:因为AB →·AP →=-2-2+4=0,所以AB →⊥AP →,即AP ⊥AB ,①正确;因为AP →·AD →=-4+4=0,所以AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的一个法向量,③正确;由③可得AP →⊥BD →,④错误.答案:①②③15.若命题“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________. 解析:因为∃x 0∈R ,2x 20-3ax 0+9<0为假命题,所以∀x ∈R ,2x 2-3ax +9≥0为真命题,所以Δ=9a 2-4×2×9≤0,即a 2≤8,所以-22≤a ≤2 2.答案:[-22,22]16.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线x 2=4y 的准线所围成的三角形的面积为2,则该双曲线的离心率为________.解析:依题意,得双曲线的渐近线方程是y =±b ax ,抛物线的准线方程是y =-1,因此所围成的三角形的三个顶点坐标分别是⎝ ⎛⎭⎪⎫-a b ,-1,⎝ ⎛⎭⎪⎫a b,-1,(0,0),该三角形的面积等于2×12×a b ×1=a b =2,因此该双曲线的离心率e =ca=1+⎝ ⎛⎭⎪⎫b a 2=1+⎝ ⎛⎭⎪⎫122=52. 答案:52三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知命题p :方程x 22+y 2m=1表示焦点在y 轴上的椭圆;命题q :∀x ∈R ,4x 2-4mx +4m -3≥0.若(綈p )∧q 为真,求m 的取值范围.解:p 真时,m >2.q 真时,4x 2-4mx +4m -3≥0在R 上恒成立.Δ=16m 2-16(4m -3)≤0,解得1≤m ≤3.因为(綈p )∧q 为真,所以p 假,q 真.所以⎩⎪⎨⎪⎧m ≤2,1≤m ≤3,即1≤m ≤2.所以所求m 的取值范围为[1,2].18.(本小题满分12分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解:(1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2,因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0.因为OA ⊥OB , 所以OA →·OB →=0,即tx 0+2y 0=0, 解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20)x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2. 19.(本小题满分12分)如图,在四面体P ABC 中,PA ,PB ,PC 两两垂直,PA =PB =2,PC =4,E 是AB 的中点,F 是CE 的中点.(1)建立适当的直角坐标系,写出点B ,C ,E ,F 的坐标; (2)求BF 与平面ABP 所成的角的余弦值.解:(1)以PA 所在直线为x 轴,PB 所在直线为y 轴,PC 所在直线为z 轴,P 为原点建立如图所示的空间直角坐标系,则B 点坐标为(0,2,0),C 点坐标为(0,0,4),A 点坐标为(2,0,0). 因为E 为AB 的中点,所以E (1,1,0).因为F 为CE 的中点,所以F ⎝ ⎛⎭⎪⎫12,12,2. (2)连接PE ,设G 为PE 的中点,连接FG ,BG ,则G ⎝ ⎛⎭⎪⎫12,12,0. 因为PA ,PB ,PC 两两互相垂直,所以PC ⊥平面ABP . 因为F ,G 分别为CE ,PE 的中点, 所以FG ∥PC ,所以FG ⊥平面ABP . 故∠FBG 为BF 与平面ABP 所成的角. 又因为cos ∠FBG =cos 〈BF →,BG →〉, BF →=⎝⎛⎭⎪⎫12,-32,2,BG →=⎝⎛⎭⎪⎫12,-32,0.所以cos 〈BF →,BG →〉=BF →·BG →|BF →||BG →|=52652=6513,即BF 与平面ABP 所成的角的余弦值为6513. 20.(本小题满分12分)如图,在四棱锥P ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平面PAC ;(2)若PA =4,求平面PBC 与平面PDC 所成角的余弦值. 解:(1)证明:因为底面ABCD 是菱形,所以BD ⊥AC .又PA ⊥平面ABCD ,所以BD ⊥PA .又PA ∩AC =A ,所以BD ⊥平面PAC . (2)以BD 与AC 的交点O 为坐标原点,OB ,OC 所在直线为x 轴,y 轴,过点O 且垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系.由已知可得,AO =OC =3,OD =OB =1,所以P (0,-3,4),B (1,0,0),C (0,3,0),D (-1,0,0),PC →=(0,23,-4),BC →=(-1,3,0),CD →=(-1,-3,0).设平面PBC 的法向量为n 1=(x 1,y 1,z 1),平面PDC 的法向量为n 2=(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n 1·PC →=0,n 1·BC →=0,可得⎩⎨⎧23y 1-4z 1=0,-x 1+3y 1=0,令x 1=3,可得n 1=⎝ ⎛⎭⎪⎫3,1,32.同理,由⎩⎪⎨⎪⎧n 2·PC →=0,n 2·CD →=0,可得n 2=⎝ ⎛⎭⎪⎫-3,1,32, 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-519,又平面PBC 与平面PDC 所成的角为锐角,所以平面PBC 与平面PDC 所成角的余弦值为519.21.(本小题满分12分)如图,已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA →·TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解:(1)由题意得F (1,0),T (-1,0),当直线l 与x 轴垂直时,A (1,2),B (1,-2), 此时TA →·TB →=(2,2)·(2,-2)=0,这与TA →·TB →=1矛盾.故直线l 与x 轴不垂直.设直线l 的方程为y =k (x -1).① 将①代入y 2=4x 整理得k 2x 2-(2k 2+4)x +k 2=0.所以x 1+x 2=2k 2+4k2,x 1x 2=1.所以y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4, 所以TA →·TB →=(x 1+1,y 1)·(x 2+1,y 2) =x 1x 2+(x 1+x 2)+1+y 1y 2 =1+2k 2+4k 2+1-4=4k2=1.解得k =±2.故直线l 的斜率为±2. (2)因为y 1>0, 所以tan ∠ATF =y 1x 1+1=y 1y 214+1=4y 1+4y 1≤1. 当且仅当y 1=4y 1,即y 1=2时取等号.故∠ATF 的最大值为π4.22.(本小题满分12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,1),且离心率为32.(1)求椭圆E 的标准方程;(2)设直线l :y =12x +m 与椭圆E 交于A ,C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,求证|BN |为定值.解:(1)由题意,可知椭圆的焦点在x 轴上,且b =1,由椭圆的离心率e =ca=1-b 2a 2=32,得a =2, 所以椭圆E 的标准方程为x 24+y 2=1. (2)证明:设A (x 1,y 1),C (x 2,y 2),线段AC 的中点为M , 由⎩⎪⎨⎪⎧y =12x +m ,x 24+y 2=1,整理得x 2+2mx +2m 2-2=0,由Δ=(2m )2-4(2m 2-2)=8-4m 2>0,解得-2<m <2,则x 1+x 2=-2m ,x 1x 2=2m 2-2,y 1+y 2=12(x 1+x 2)+2m =m ,则M ⎝ ⎛⎭⎪⎫-m ,12m .|AC |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫122·4m 2-4×(2m 2-2)=10-5m 2.由l 与x 轴的交点N (-2m ,0),得|MN |=(-m +2m )2+⎝ ⎛⎭⎪⎫12m 2=54m 2. 所以|BN |2=|BM |2+|MN |2=14|AC |2+|MN |2=52,所以|BN |为定值.。
模块综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设z =10i3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i解析:选D.由z =10i 3+i =10i (3-i )(3+i )(3-i )=1+3i ,得z -=1-3i.2.实数的结构图如图所示,其中1,2,3三个方格中的内容分别为( )A .有理数、零、整数B .有理数、整数、零C .零、有理数、整数D .整数、有理数、零解析:选B.由实数的包含关系知B 正确.3.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想第n (n ∈N *)个等式应为( )A .9(n +1)+n =10n +9B .9(n -1)+n =10n -9C .9n +(n -1)=10n -9D .9(n -1)+(n -1)=10n -10解析:选B.等式的左边是9×(等式的序号-1)+等式的序号,故选B.4.三段论:“①所有的中国人都坚强不屈;②雅安人是中国人;③雅安人一定坚强不屈”,其中“大前提”和“小前提”分别是( )A .①②B .①③C .②③D .②①解析:选A.解本题的关键是透彻理解三段论推理的形式和实质:大前提是一个“一般性的命题”(①所有的中国人都坚强不屈),小前提是“这个特殊事例是否满足一般性命题的条件”(②雅安人是中国人),结论是“这个特殊事例是否具有一般性命题的结论”(③雅安人一定坚强不屈).故选A.5.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( )A.83B.32 C .-83D .-32解析:选D.z 1z 2=m +2i 3-4i =(m +2i )(3+4i )(3-4i )(3+4i )=(3m -8)+(6+4m )i 32+42.因为z 1z 2为实数,所以6+4m =0,所以m =-32.6.执行如图所示的程序框图,则输出的S 值是( )A .4 B.32 C.23D .-1解析:选D.根据程序框图的要求一步一步地计算判断.根据程序框图,程序执行的步骤为S =4,i =1<6;S =-1,i =2<6;S =23,i =3<6;S =32,i =4<6;S =4,i =5<6;S =-1,i =6<6不成立,输出S =-1.7.若关于x 的一元二次实系数方程x 2+px +q =0有一个根为1+i(i 为虚数单位),则p +q 的值是( )A .-1B .0C .2D .-2解析:选B.把1+i 代入方程得(1+i)2+p (1+i)+q =0,即2i +p +p i +q =0,即p +q +(p +2)i =0,因为p ,q 为实数,所以p +q =0.8.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵轴上的截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反解析:选A.当b >0时,两变量正相关,此时r >0;当b <0时,两变量负相关,此时r <0,所以选A.9.已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四边的距离分别记为h 1,h 2,h 3,h 4,若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk,类比以上性质,体积为V 的三棱锥的每个面的面积分别记为S 1,S 2,S 3,S 4,此三棱锥内任一点Q 到每个面的距离分别为H 1,H 2,H 3,H 4,若S 11=S 22=S 33=S 44=k ,则H 1+2H 2+3H 3+4H 4=( )A.4V kB.3VkC.2V kD.V k解析:选B.根据三棱锥的体积公式V =13Sh ,得:13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=V , 即S 1H 1+S 2H 2+S 3H 3+S 4H 4=3V , 所以H 1+2H 2+3H 3+4H 4=3V k.10.对于两个复数α=-12+32i ,β=-12-32i ,有下列四个结论:①αβ=1;②αβ=1;③|α||β|=1;④α3+β3=1,其中正确结论的个数为( )A .1B .2C .3D .4解析:选B.αβ=14+34=1.αβ=-12-32i.|α||β|=1.α3+β3=1+1=2,所以①③正确.11.若p =ab +cd ,q =ma +nc ·b m +dn(m ,n ,a ,b ,c ,d 均为正数),则p ,q 的大小为( )A .p ≥qB .p ≤qC .p >qD .不确定解析:选B.q =ab +mad n +nbcm+cd ≥ ab +2abcd +cd =ab +cd =p .12.函数f (x )在[-1,1]上是减函数,α,β是锐角三角形的两个内角,且α≠β,则下列不等式正确的是( )A .f (cos α)>f (sin β)B .f (sin α)>f (sin β)C .f (cos α)<f (cos β)D .f (sin α)<f (sin β)解析:选A.α,β是锐角三角形的两个内角,这就意味着α,β为锐角,另外第三个角π-(α+β)为锐角.所以0<α<π2,0<β<π2,π2<α+β<π.所以π2>β>π2-α>0.所以0<cos β<cos ⎝ ⎛⎭⎪⎫π2-α=sin α<1,1>sin β>sin ⎝ ⎛⎭⎪⎫π2-α=cos α>0.又因为f (x )在[-1,1]上为减函数, 所以f (sin β)<f (cos α).二、填空题:本题共4小题,每小题5分.13.已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.解析:a -i 2+i =(a -i )(2-i )(2+i )(2-i )=(2a -1)-(a +2)i 5=2a -15-a +25i 为实数,则a +25=0,a =-2.答案:-214.某考察团对中国10个城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若A 城市居民人均消费水平为7.765千元,估计该城市人均消费额占人均工资收入的百分比约为________(精确到1%).解析:因为y 与x 具有线性相关关系,满足回归方程y ^=0.66x +1.562,A 城市居民人均消费水平为y =7.765,所以可以估计该城市的职工人均工资水平x 满足7.765=0.66x +1.562,所以x ≈9.398,所以该城市人均消费额占人均工资收入的百分比约为7.7659.398×100%≈83%.答案:83%15.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, 推测当n ≥2时,有f (n )-f (n -1)=6(n -1).所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+[f (n -2)-f (n -3)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1. 又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +116.已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b =2;③c ≠0有且只有一个正确,则100a +10b +c 等于________.解析:因为三个关系中只有一个正确,分三种情况讨论:若①正确,则②③不正确,得到⎩⎪⎨⎪⎧a ≠2,b ≠2,c =0,由于集合{a ,b ,c }={0,1,2},所以解得a =b =1,c =0,或a =1,b =c =0,或b =1,a =c =0,与互异性矛盾;若②正确,则①③不正确,得到⎩⎪⎨⎪⎧b =2,a =2,c =0,与互异性矛盾;若③正确,则①②不正确,得到⎩⎪⎨⎪⎧c ≠0,a =2,b ≠2,则⎩⎪⎨⎪⎧a =2b =0,c =1,符合题意,所以100a +10b +c =201.答案:201三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知复数z =1+i ,求实数a ,b ,使az +2b z -=(a +2z )2. 解:因为z =1+i ,所以az +2b z -=(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2),解得⎩⎪⎨⎪⎧a 1=-2,b 1=-1,或⎩⎪⎨⎪⎧a 2=-4,b 2=2.所以a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)某大学远程教育学院网上学习流程如下:(1)学生凭录取通知书到当地远程教育中心报到,交费注册,领取网上学习注册码. (2)网上选课,课程学习,完成网上平时作业,获得平时作业成绩.(3)预约考试,参加期末考试获得期末考试成绩,获得综合成绩,成绩合格获得学分,否则重修.试画出该远程教育学院网上学习流程图. 解:某大学远程教育学院网上学习流程图如下:19.(本小题满分12分)某学生对其亲属30人的饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主)(1)根据以上数据完成下列2×2列联表:(2)出简要分析.解:(1)2×2列联表如下:(2)因为K 2的观测值k =12×18×20×10=10>6.635,所以在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关. 20.(本小题满分12分)在锐角三角形ABC 中,已知3b =23a sin B ,且cos B =cos C ,求证:△ABC 是正三角形.证明:因为△ABC 为锐角三角形,所以A ,B ,C ∈⎝⎛⎭⎪⎫0,π2.由正弦定理及条件可得3sin B =23sin A sin B . 因为sin B ≠0, 所以sin A =32,所以A =π3. 又cos B =cos C 且B ,C ∈⎝⎛⎭⎪⎫0,π2,所以B =C .又B +C =2π3,所以B =C =π3.所以△ABC 是正三角形.21.(本小题满分12分)已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=23,且-3a 2,1a 3,1a 4成等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n ·log 3(1-S n +1)=1,求适合方程b 1b 2+b 2b 3+…+b n b n +1=2551的正整数n 的值.解:(1)设数列{a n }的公比为q , 由-3a 2,1a 3,1a 4成等差数列,得-3+1q2=2q,解得q =13或q =-1(舍),所以a n =2×⎝ ⎛⎭⎪⎫13n.(2)因为S n +1=23⎝ ⎛⎭⎪⎫1-13n +11-13=1-13n +1,得log 3(1-S n +1)=log 313n +1=-n -1,所以b n =-1n +1, b n b n +1=1(n +1)(n +2)=1n +1-1n +2,b 1b 2+b 2b 3+…+b n b n +1=12-13+13-14+…+1n +1-1n +2=12-1n +2,由题意得12-1n +2=2551,解得n =100.22.(本小题满分12分)某地电影院为了了解当地影迷对票价的看法,进行了一次调研,得到了票价x (单位:元)与渴望观影人数y (单位:万人)的结果如下表:(1)若y 与x (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.(3)根据(2)中的线性回归方程,若票价为x元,则渴望观影人数为(-0.07x+6.65)万人,可预测票房收入为z=x(-0.07x+6.65)=-0.07x2+6.65x,易得,当x=47.5时,z取得最大值,即票价定为47.5元时,能获得最大票房收入.。
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·山西大学附中月考)某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有()A.510种B.105种C.50种D.3 024种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有510种可能的下车方式,故选A.【答案】 A2.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】 B3.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)^=7.19x+73.93,用此方程预测儿子10岁的身对年龄(单位:岁)的线性回归方程y高,有关叙述正确的是()A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右^=7.19x+73.93,得y^=145.83,但这种预测不一定【解析】将x=10代入y准确.实际身高应该在145.83 cm 左右.故选D.【答案】 D4.随机变量X的分布列如下表,则E(5X+4)等于()A.16 B.11 C.2.2【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】 A5.正态分布密度函数为f(x)=12 2πe-(x-1)28,x∈R,则其标准差为()A.1 B.2 C.4 D.8【解析】根据f(x)=1σ2πe-(x-μ)22σ2,对比f(x)=12 2πe-(x-1)28知σ=2.【答案】 B6.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)=0.010表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99.9%C.变量X与变量Y没有关系的概率为99%D.变量X与变量Y有关系的概率为99%【解析】由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y 有关系的概率为99%.【答案】 D7.三名教师教六个班的数学,则每人教两个班,分配方案共有()A.18种B.24种C.45种D.90种【解析】不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C26·C24·C22=90(种).【答案】 D8.已知⎝ ⎛⎭⎪⎫1x -x n 的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于( )A .15B .-15C .20D .-20【解析】 由题意知n =6,T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r ·(-x )r=(-1)r C r 6x 32r -6,由32r -6=0,得r =4, 故T 5=(-1)4C 46=15,故选A. 【答案】 A9.设随机变量ξ~B (n ,p ),若E (ξ)=2.4,D (ξ)=1.44,则参数n ,p 的值为( ) 【导学号:97270066】A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 【解析】 由二项分布的均值与方差性质得 ⎩⎪⎨⎪⎧ np =2.4,np (1-p )=1.44,解得⎩⎪⎨⎪⎧n =6,p =0.4,故选B. 【答案】 B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是( )A.16B.18C.112D.124【解析】 由2个6,1个3,1个9这4个数字一共可以组成A 44A 22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P =112.【答案】 C11.有下列数据:x 1 2 3 Y35.9912.01A .y =3×2x -1B .y =log 2xC .y =3xD .y =x 2【解析】 当x =1,2,3时,代入检验y =3×2x -1适合.故选A. 【答案】 A 12.图1(2016·孝感高级中学期中)在如图1所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,若各保险匣之间互不影响,则当开关合上时,电路畅通的概率是( )A.551720B.29144C.2972D.2936【解析】 “左边并联电路畅通”记为事件A ,“右边并联电路畅通”记为事件B .P (A )=1-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=56.P (B )=1-15×16=2930.“开关合上时电路畅通”记为事件C . P (C )=P (A )·P (B )=56×2930=2936,故选D. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2016·石家庄二模)利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程x 2-x +a =0无实根的概率为________.【解析】 ∵方程无实根,∴Δ=1-4a <0,∴a >14, ∴所求概率为34. 【答案】 3414.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.【解析】 由下图可以看出P (550<X <600)=P (400<X <450)=0.3.【答案】 0.315.(2015·重庆高考)⎝ ⎛⎭⎪⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).【解析】 ∵T r +1=C r 5·(x 3)5-r ·⎝ ⎛⎭⎪⎫12x r =C r 5·x 15-3r ·⎝ ⎛⎭⎪⎫12r·x -r 2=⎝ ⎛⎭⎪⎫12r ·C r 5·x 30-7r 2(r=0,1,2,3,4,5),由30-7r 2=8,得r =2,∴⎝ ⎛⎭⎪⎫122·C 25=52.【答案】 52 16.图2将一个半径适当的小球放入如图2所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________. 【导学号:97270067】【解析】 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.【答案】 34三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)6男4女站成一排,求满足下列条件的排法: (1)任何2名女生都不相邻有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?【解】 (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47=604 800(种)不同排法.(2)法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18A 88)=2 943 360(种)排法.法二:无条件排列总数A 1010-⎩⎪⎨⎪⎧甲在首,乙在末A 88,甲在首,乙不在末A 99-A 88,甲不在首,乙在末A 99-A 88,甲不在首,乙不在末,共有A 1010-2A 99+A 88=2 943 360(种)排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有A 1010A 33=604 800(种).(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A 1010=1 814 400(种)排法.18.(本小题满分12分)某年级的一次信息技术测验成绩近似服从正态分布N (70,102),如果规定低于60分为不及格,求:(1)成绩不及格的学生人数占总人数的比例; (2)成绩在80~90分内的学生人数占总人数的比例.【解】 (1)设学生的得分为随机变量X ,X ~N (70,102),则μ=70,σ=10. 分数在60~80之间的学生的比例为 P (70-10<X ≤70+10)=0.683, 所以不及格的学生的比例为12×(1-0.683)=0.158 5,即成绩不及格的学生人数占总人数的15.85%. (2)成绩在80~90分内的学生的比例为12[P (70-2×10<X ≤70+2×10)]-12[P (70-10<X ≤70+10)]=12(0.954-0.683)=0.135 5.即成绩在80~90分内的学生人数占总人数的13.55%.19.(本小题满分12分)口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则(1)第一次取出的是红球的概率是多少?(2)第一次和第二次取出的都是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的也是红球的概率是多少?【解】 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球. (1)第一次取出红球的概率 P (A )=4×56×5=23. (2)第一次和第二次取出的都是红球的概率P (A ∩B )=4×36×5=25. (3)在第一次取出红球的条件下,第二次取出的也是红球的概率为 P (B |A )=P (A ∩B )P (A )=2523=35.20.(本小题满分12分)已知⎝ ⎛⎭⎪⎫x -2x n 的展开式中,第4项和第9项的二项式系数相等.(1)求n ;(2)求展开式中x 的一次项的系数.【解】 (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为 T k +1=C k 11(x )11-k ⎝⎛⎭⎪⎫-2x k=(-2)k C k11x 11-3k 2. 令11-3k2=1,得k =3.此时T 3+1=(-2)3C 311x =-1 320x , 所以展开式中x 的一次项的系数为-1 320. 21.(本小题满分12分)对于表中的数据:(1)作散点图,你从直观上得到什么结论? (2)求线性回归方程.【解】 (1)如图,x ,y 具有很好的线性相关性. (2)因为x =2.5,y =5,∑4i =1x i y i =60,∑4i =1x 2i =30,∑4i =1y 2i =120.04. 故b ^=60-4×2.5×530-4×2.52=2,a^=y -b ^ x =5-2×2.5=0, 故所求的回归直线方程为 y ^=2x .22.(本小题满分12分)(2016·丰台高二检测)“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:男性 女性 总计 爱好 10 不爱好 8 总计30已知在这30人中随机抽取1人抽到爱好运动的员工的概率是815.(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.【解】(1)k=30×(10×8-6×6)216×14×16×14≈1.158<3.841,所以没有把握认为爱好运动与性别有关.(2)X的取值可能为0,1,2.P(X=0)=C28C214=413,P(X=1)=C16C18C214=4891,P(X=2)=C26C214=1591.所以X的分布列为:X的数学期望为E(X)=0×413+1×4891+2×1591=67.。
模块综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.“(2x-1)x=0”是“x=0"的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B.由(2x-1)x=0可得x=错误!未定义书签。
或x=0。
因为“x=错误!未定义书签。
或x=0”是“x=0”的必要不充分条件,所以“(2x-1)x=0”是“x=0”的必要不充分条件.2.命题“对任意的x∈R,2x3-3x2+1≤0”的否定是()A.不存在x0∈R,2x错误!未定义书签。
-3x错误!+1≤0B.存在x0∈R,2x错误!未定义书签。
-3x错误!+1≤0C.存在x0∈R,2x错误!-3x错误!+1>0D.对任意的x∈R,2x3-3x2+1〉0解析:选C。
先变换量词,再否定结论,即“存在x0∈R,2x错误!-3x错误!+1>0".3.下列命题中是假命题的是()A.∀x∈错误!,x>sin xB.∃x0∈R,sin x0+cos x0=2C.∀x∈R,3x〉0D.∃x0∈R,lg x0=0解析:选B。
因为sin x0+cos x0=错误!未定义书签。
sin错误!未定义书签。
≤错误!,所以B错误,选B.4.已知空间四边形ABCD,连接AC、BD,设G是CD的中点,则错误!+错误!未定义书签。
(错误!+错误!未定义书签。
)等于()A。
错误!ﻩ B.错误!C.错误!D.错误!错误!解析:选A.如图所示.因为G是CD的中点,所以错误!未定义书签。
(错误!+错误!)=错误!未定义书签。
,所以错误!未定义书签。
+\f(1,2)(错误!未定义书签。
+错误!)=错误!.5.与双曲线\f(y2,5)-x2=1共焦点,且过点(1,2)的椭圆的标准方程为()A。
错误!未定义书签。
+y 22=1 ﻩ B.x 210+y22=1 C。
2019-2020年高中数学模块综合质量测评新人教A 版选修一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析: 利用复数乘法的运算法则及复数的几何意义求解.∵z =i(2-i)=2i -i 2=1+2i ,∴复数z 在复平面内的对应点为(1,2),在第一象限. 答案: A2.设有一个回归方程y ∧=6-6.5x ,变量x 每增加一个单位时,变量y ∧平均( ) A .增加6.5个单位 B .增加6个单位 C .减少6.5个单位D .减少6个单位解析: y ∧=6-6.5x 的斜率为-6.5,故x 每增加一个单位,y ∧就减少6.5个单位. 答案: C3.下列框图中,可作为流程图的是( )解析: 流程图具有动态特征,只有答案C 符合. 答案: C4.下列推理正确的是( )A .如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖B .因为a >b ,a >c ,所以a -b >a -cC .若a ,b 均为正实数,则lg a +lg b ≥lg a ·lg bD .若a 为正实数,ab <0,则a b +ba =-⎝⎛⎭⎫-a b+-b a ≤-2⎝⎛⎭⎫-a b ·⎝⎛⎭⎫-b a =-2解析: A 中推理形式错误,故A 错;B 中b ,c 关系不确定,故B 错;C 中lg a ,lg b 正负不确定,故C 错.答案: D5.设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z 1=z 2 B .若z 1=z 2,则z 1=z 2 C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22解析: 结合复数的模、共轭复数及复数的运算等判断求解. A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题; B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题. 答案: D6.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,且n ∈N ),a 1=a ,a 2=b ,记S n =a 1+a 2+…+a n ,则下列选项中正确的是( )A .a 100=-a ,S 100=2b -aB .a 100=-b ,S 100=2b -aC .a 100=-b ,S 100=b -aD .a 100=-a ,S 100=b -a解析: a 3=a 2-a 1=b -a ,S 3=a 1+a 2+a 3=2b ; a 4=a 3-a 2=-a ,S 4=S 3+a 4=2b -a ; a 5=a 4-a 3=-b ,S 5=S 4+a 5=b -a ; a 6=a 5-a 4=a -b ,S 6=S 5+a 6=0; a 7=a 6-a 5=a ,S 7=S 6+a 7=a . 通过观察可知a n ,S n 都是6项一重复,所以由归纳推理得a 100=a 4=-a ,S 100=S 4=2b -a ,故选A. 答案: A7.三点(3,10),(7,20),(11,24)的线性回归方程是( )A.y ∧=5-17xB.y ∧=-5.75x +1C.y ∧=17-5x D.y ∧=5.75+1.75x解析: 由三点(3,10),(7,20),(11,24),可得x =3+7+113=7,y =10+20+243=18,即样本中心点为(7,18),∴b =3×10+7×20+11×24-7×18×332+72+112-72×3=1.75,a =18-1.75×7=5.75,所以y ∧=1.75x +5.75. 答案: D8.由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形,根据“三段论”推理出一个结论,则作为大前提、小前提、结论的分别为( )A .②①③B .③①②C .①②③D .②③①解析: ①是结论形式,③是小前提. 答案: D9.阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( ) A .S <8 B .S <9 C .S <10D .S <11 解析: 根据程序框图,i =2,S =2×2+1=5,不满足条件;i =3,S =2×3+2=8,不满足条件;i =4,S =2×4+1=9,此时输出i =4,所以填S <9.答案: B10.下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c =a c +b c (c ≠0)”D .“(ab )n =a n ·b n ”类推出“(a +b )n =a n +b n ”解析: 对于A :“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B :“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C :将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +bc ”是正确的;对于D :“(ab )n =a n b n ”类推出“(a +b )n =a n+b n ”是错误的,如(1+1)2=12+12.答案: C11.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是(假定体形与身体关节构造合格与否相互之间没有影响)( )A.1320 B .15C.14D .25解析: 设“儿童体型合格”为事件A ,“身体关节构造合格”为事件B ,则P (A )=15,P (B )=14.又A ,B 相互独立,则A ,B 也相互独立,则P (A B )=P (A )P (B )=45×34=35,故至少有一项合格的概率为P =1-P (A B )=25,故选D. 答案: D12.为考察数学成绩与物理成绩的关系,在高二随机抽取了300名学生.得到下面列联表:数学物理 85~100分85分以下合计 85~100分 37 85 122 85分以下 35 143 178 合计72228300现判断数学成绩与物理成绩有关系,则判断的出错率为( ) A .0.5% B .1% C .2% D .5%附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828解析: 代入公式得K 2的观测值 k =300×37×143-35×85272×228×122×178≈4.514>3.841查表可得.答案: D二、填空题(本大题共4小题,每小题4分,共16分.请把正确的答案填在题中的横线上) 13.完成反证法证题的全过程.已知:设a 1,a 2,…,a 7是1,2,…,7的一个排列. 求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数. 证明:假设p 为奇数,则____________均为奇数. 因奇数个奇数之和为奇数,故有奇数=_______________=_______________=0. 但奇数≠偶数,这一矛盾说明p 为偶数.解析: 由反证法的一般步骤可知.关键推出矛盾.答案: a 1-1,a 2-2,...,a 7-7 (a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)14.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 解析: 由复数相等的定义求得a ,b 的值,即得复数.由(a +i)(1+i)=b i 可得(a -1)+(a +1)i =b i ,因此a -1=0,a +1=b ,解得a =1,b =2,故a +b i =1+2i. 答案: 1+2i15.下面结构图是________结构图,根据结构图可知,集合的基本运算有________,________,________.答案: 知识 并集 交集 补集16.把正偶数数列{2n }的各项从小到大依次排成如图的三角形数阵,记M (r ,t )表示该数阵中第r 行的第t 个数,则数阵中的数2 012对应于________.解析: 设由每一行的第一个数构成数列{a n },则4-2=2×2-2,8-4=2×3-2,14-8=2×4-2,…,a n -a n -1=2n -2. 以上各式相加可得a n =n 2-n +2.令n 2-n +2≤2 012,解不等式可得n 的最大值为45,所以2 012在第45行,第45行的第一个数为a 45=452-45+2=1 982.因为2 012-1 982=30,30÷2=15,所以2 012为第16个数. 答案: (45,16)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知复数z 1=2-3i ,z 2=15-5i2+i 2,求:(1)z 1z 2;(2)z 1z 2.解析: 因为z 2=15-5i 2+i 2=15-5i3+4i=15-5i 3-4i3+4i3-4i=25-75i25=1-3i ,所以 (1)z 1z 2=(2-3i)(1-3i)=-7-9i. (2)z 1z 2=2-3i1-3i =2-3i 1+3i 1-3i1+3i=11+3i 10=1110+310i.18.(本小题满分12分)某自动化仪表公司组织结构如下: (1)董事会下设总经理;(2)总经理分管甲、乙两副总经理、办公室、财务部、开发部;(3)副总甲负责销售部,副总乙负责生产部、品管部、采购部,而品管部又下设三个车间. 试绘出该公司组织的结构图. 解析: 结构图如图所示:19.(本小题满分12分)若a +b +c =1,且a ,b ,c 为非负实数, 求证:a +b +c ≤ 3. 证明: 要证a +b +c ≤3, 只需证(a +b +c )2≤3,展开得a +b +c +2(ab +bc +ca )≤3, 又因为a +b +c =1, 所以即证ab +bc +ca ≤1. 因为a ,b ,c 为非负实数,所以ab ≤a +b 2,bc ≤b +c 2,ca ≤c +a2.三式相加得ab +bc +ca ≤2a +b +c2=1,所以ab +bc +ca ≤1成立.所以a +b +c ≤3.20.(本小题满分12分)调查某桑场采桑员和辅助工桑毛虫皮炎发病情况结果如下表:采桑 不采桑 合计 患者人数 18 12 健康人数 5 78 合计利用2×2列联表的独立性检验估计“患桑毛虫皮炎病与采桑”是否有关?认为两者有关系会犯错误的概率是多少?解析: 由题意知,a =18,b =12,c =5,d =78,所以a +b =30,c +d =83,a +c =23,b +d =90,n =113.所以k =n ad -bc 2a +bc +d a +cb +d=113×18×78-5×12230×83×23×90≈39.6>10.828.所以患桑毛虫皮炎病与采桑有关系.认为两者有关系会犯错误的概率是0.1%.21.(本小题满分13分)已知等式:sin 25°+cos 235°+sin 5°cos 35°=34,sin 215°+cos 245°+sin 15°cos 45°=34,sin 230°+cos 260°+sin 30°·cos 60°=34,…,由此归纳出对任意角度θ都成立的一个等式,并予以证明.解析: sin 2θ+cos 2(θ+30°)+sin θcos(θ+30°)=34.证明如下:sin 2θ+cos 2(θ+30°)+sin θcos(θ+30°) =sin 2θ+⎝⎛⎭⎫32cos θ-12sin θ2+sin θ⎝⎛⎭⎫32cos θ-12sin θ=sin 2θ+34cos 2θ+14sin 2θ-12sin 2θ=34.22.(本小题满分13分)某市5年中的煤气消耗量与使用煤气户数的历史资料如下:年份 xx xx xx xx xx x 用户(万户) 1 1.1 1.5 1.6 1.8 y (万立方米)6791112(1)检验是否线性相关; (2)求回归方程;(3)若市政府下一步再扩大两千煤气用户,试预测该市煤气消耗量将达到多少? 解析: (1)作出散点图(如图),观察呈线性正相关.(2)x =1+1.1+1.5+1.6+1.85=75,y =6+7+9+11+125=9,∑i =15x 2i =12+1.12+1.52+1.62+1.82=10.26, ∑i =15x i y i =1×6+1.1×7+1.5×9+1.6×11+1.8×12=66.4,∴b =∑i =15x i y i -5x y∑i =15x 2i -5x2=66.4-5×75×910.26-5×4925=17023,a =y -b x =9-17023×75=-3123,∴回归方程为y =17023x -3123.(3)当x =1.8+0.2=2时, 代入得y =17023×2-3123=30923≈13.4.∴煤气量约达13.4万立方米..。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
综合质量评估第一至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·莱芜高二检测)下列四个命题中,真命题为( )A.2是偶数且是无理数B.有些梯形内接于圆C.空间中的两个向量可能不共面D.?x∈R,x2-x-1≠0【解析】选 B.2是有理数,故A错误;空间任何两个向量都共面,故C错误;由x2-x-1=0得x=,存在x=使x2-x-1=0,故D错误;而等腰梯形一定内接于圆,故B正确.2.“x2=4”是“x=2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选 B.由于x=2?x2=4,而x2=4x=2,所以“x2=4”是“x=2”的必要而不充分条件.3.(2016·安阳高二检测)命题p:“?x∈,2x2-x-m>0”,命题q:“?x0∈,log2x0+m>0”.若“p∧q”为真命题,则实数m的取值范围为( )A.m<1B.m>-1C.-1<m<1D.-1≤m≤1【解析】选C.由“p∧q”为真命题知p,q都是真命题,命题p是真命题,即m<2x2-x,对x∈恒成立,得m<1;命题q是真命题,即?x0∈,-m<log2x0,只要-m<(log2x0)max=1,即m>-1.由p,q均为真命题知-1<m<1.4.双曲线-=1上P点到左焦点的距离是6,则点P到右焦点的距离是( )A.12B.14C.16D.18【解析】选 B.设双曲线-=1的左、右焦点分别为F1,F2,由双曲线的定义知||PF1|-|PF2||=2a=8,又|PF1|=6,所以|PF2|=14.【补偿训练】已知双曲线的渐近线方程为y=±x,焦点坐标为(-4,0),(4,0),则双曲线方程为( ) A.-=1 B.-=1C.-= 1D.-=1【解析】选 D.由已知得双曲线的焦点在x轴上,设其标准方程为-=1(a>0,b>0),由题意得解得a2=4,b2=12,所以双曲线方程为-=1.5.(2016·聊城高二检测)对?k∈R,方程x2+ky2=1所表示的曲线不可能是( ) A.两条直线 B.圆C.椭圆或双曲线D.抛物线【解析】选 D.根据方程特征只含x2,y2项,知它不可能表示抛物线.6.(2016·青岛高二检测)已知空间向量a=(1,n,2),b=(-2,1,2),若2a-b与b垂直,则|a|= ( )A. B. C. D.。
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的) 1.设直线的方程是Ax +By =0,从1,2,3,4,5这五个数中每次取两个不同的数作为A ,B 的值,则所得不同直线的条数是( )A .20B .19C .18D .16解析:考虑有两种重复情况,易得不同直线的条数N =A 25-2=18. 答案:C2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.答案:A3.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( )A .24B .48C .72D .120解析:A 参加时参赛方案有C 34A 12A 33=48(种),A 不参加时参赛方案有A 44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35,若X 与Y 有关系的可信程度为90%,则c =( )A .4B .5C .6D .7 解析:列2×2列联表可知:当c =5时,K 2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c =5时,X 与Y 有关系的可信程度为90%, 而其余的值c =4,c =6,c =7皆不满足. 答案:B5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( )A.3516B.358C.354D .105解析:二项展开式的通项为T k +1=C k8(x )8-k⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k ,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358. 答案:B6.ξ,η为随机变量,且η=a ξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( ) A .2,0.2 B .1,4 C .0.5,1.4D .1.6,3.4解析:由E (η)=E (a ξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足. 答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.答案:B8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( ) A .(2,4] B .(0,2] C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由题意得E (ξ)=13×(1+2+3)=2,所以D (ξ)=23,D (3ξ+5)=32×D (ξ)=6,故选A.答案:A10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:A .99%的可能性B .99.75%的可能性C .99.5%的可能性D .97.5%的可能性解析:由题意可知a =16,b =28,c =20,d =8,a +b =44,c +d =28,a +c =36,b +d =36,n =a +b +c +d =72.代入公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2=72×(16×8-28×20)244×28×36×36≈8.42.由于K 2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A ,B 两个沿海城市受台风袭击的概率相同,已知A 市或B 市至少有一个受台风袭击的概率为0.36,若用X 表示这一天受台风袭击的城市个数,则E (X )=( )A .0.1B .0.2C .0.3D .0.4解析:设A ,B 两市受台风袭击的概率均为p ,则A 市或B 市都不受台风袭击的概率为(1-p )2=1-0.36,解得p =0.2或p =1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32,P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.连续掷两次骰子,设得到的点数分别为m 、n ,则直线y =m nx 与圆(x -3)2+y 2=1相交的概率是( )A.518 B.59 C.536 D.572解析:由直线y =mnx 与圆(x -3)2+y 2=1相交得⎪⎪⎪⎪⎪⎪3m n 1+⎝ ⎛⎭⎪⎫m n 2<1,整理得-24<m n <24,考虑到m ,n 为正整数,故应使直线的斜率大于0且小于或等于13,当m =1时,n =3,4,5,6;当m =2时,n =6,共有5种情况,而掷两次骰子得到点数的所有情况有36种,故概率为536.答案:C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X 的均值为________个,方差为________.解析:由题意可知X ~B (100,98.5%), 所以E (ξ)=np =100×98.5%=98.5,D (ξ)=np (1-p )=100×98.5%×1.5%=1.477 5.答案:98.5 1.477516.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎝ ⎛⎭⎪⎫x -2x 2n(n ∈N *)的展开式中第五项的系数的与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 32的项;(3)求展开式中系数最大的项和二项式系数最大的项.解:由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则C 4n (-2)4C 2n (-2)2=10,化简得n 2-5n -24=0, 解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1.(2)通项公式T r +1=C r8(x )8-r⎝ ⎛⎭⎪⎫-2x 2r=C r 8(-2)r x 8-r 2-2r ,令8-r 2-2r =32,则r =1. 故展开式中含x 32的项为T 2=-16x 32.(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r ,C r +18·2r +1,若第r +1项的系数绝对值最大,则⎩⎪⎨⎪⎧C r -18·2r -1≤C r8·2r,C r +18·2r +1≤C r 8·2r ,解得5≤r ≤6. 又T 6的系数为负,所以系数最大的项为T 7=1 792x -11由n =8知第5项二项式系数最大, 此时T 5=1 120x -6.18.(本大题满分12分)五位师傅和五名徒弟站一排. (1)五名徒弟必须排在一起共有多少种排法? (2)五名徒弟不能相邻共有多少种排法? (3)师傅和徒弟相间共有多少种排法?解:(1)先将五名徒弟看作一人与五位师傅排列有A 66种排法,五名徒弟在内部全排列有A 55种,据乘法原理排法共有A 66A 55=86 400(种).(2)先将五位师傅全排列有A 55种排法,再将五名徒弟排在五位师傅产生的六个空位上有A 56种排法,据乘法原则,排法共计A 56A 55=86 400(种).(3)先将五位师傅排列有A 55种排法,再将五名徒弟排在五位师傅产生的六个空位中前五位或后五位上有2A 55种排法,据乘法原理排法共有2A 55A 55=28 800(种).19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y ∑ni =1 x 2i -nx 2, a ^=y -b ^x ,其中x ,y 为样本平均值.解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y =1n ∑n i =1 y i =2010=2, 又l xx =∑ni =1 x 2i -nx 2=720-10×82=80,l xy =∑ni =1 x i y i -nxy =184-10×8×2=24,由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.下面临界值表供参考:⎝⎛⎭⎪⎫参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710.(2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关.22.(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23,每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ). 解:(1)记事件A 为“甲第一轮猜对”, 记事件B 为“乙第一轮猜对”, 记事件C 为“甲第二轮猜对”, 记事件D 为“乙第二轮猜对”,记事件E 为“‘星队’至少猜对3个成语”. 由题意,E =ABCD +ABCD +ABCD +ABCD +ABCD , 由事件的独立性与互斥性,P (E )=P (ABCD )+P (ABCD )+P (ABCD )+P (ABCD )+P (ABCD )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )·P (D )=34×23×34×23+2×⎝ ⎛14×23×34×23+34×⎭⎪⎫13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为:所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.。
姓名,年级:时间:选修2-3 学期综合测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的有()①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A.①② B.②③ C.③④ D.①③答案B解析回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B。
2.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或4答案D解析任意两个同学之间交换纪念品共要交换C错误!=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学有4人;如果涉及同一个人,则收到4份纪念品的同学有2人,答案为D。
3.(错误!x-1)5的展开式中第3项的系数是()A.-20错误! B.20 C.-20 D.20错误!答案D解析T r+1=C错误!·(错误!x)5-r·(-1)r,令r=2,则T3=C错误!·(错误! x)3·(-1)2=10×2错误!x3,即第3项系数为20错误!。
4.设随机变量X服从二项分布X~B(n,p),则错误!等于()A.p2B.(1-p)2C.1-p D.以上都不对答案B解析因为X~B(n,p),(D(X))2=[np(1-p)]2,(E(X))2=(np)2,所以D X2E X2=[np1-p]2np2=(1-p)2.故选B.5.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率()A.(2,4] B.(0,2]C.[-2,0)D.(-4,4]答案C解析此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.6.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11。
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i2+i(i 为虚数单位)的虚部是( )A .15B .15iC .25iD .25解析:选D 因为i 2+i =i (2-i )(2+i )(2-i )=15+25i ,所以复数i 2+i 的虚部为25,故选D.2.已知复数z =(2+i)(a +2i 3)在复平面内对应的点在第四象限,则实数a 的取值范围是( )A .(-∞,-1)B .(4,+∞)C .(-1,4)D .(-4,-1)解析:选C 复数z =(2+i)(a +2i 3)=(2+i)(a -2i)=2a +2+(a -4)i ,其在复平面内对应的点(2a +2,a -4)在第四象限,则2a +2>0,且a -4<0,解得-1<a <4,则实数a 的取值范围是(-1,4).故选C.3.用反证法证明“若a +b +c <3,则a ,b ,c 中至少有一个小于1”,应( ) A .假设a ,b ,c 至少有一个大于1 B .假设a ,b ,c 都大于1 C .假设a ,b ,c 至少有两个大于1D .假设a ,b ,c 都不小于1解析:选D 假设a ,b ,c 中至少有一个小于1不成立,即a ,b ,c 都不小于1,故选D. 4.设a =⎠⎛01x-13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a 、b 、c 的大小关系是( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a解析:选A 由题意可得a =⎠⎛01x-13d x =x1-+13-13+1⎪⎪⎪1=32x 32⎪⎪⎪1=32;b =1-⎠⎛01x 12d x =1-x 3232⎪⎪⎪1=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3d x =x 44⎪⎪⎪10=14.综上,a >b >c . 5.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③①②C .①②③D .②③①解析:选B 该三段论应为:一次函数的图象是一条直线(大前提),y =2x +5是一次函数(小前提),y =2x +5的图象是一条直线(结论).6.已知点列:P 1(1,1),P 2(1,2),P 3(2,1),P 4(1,3),P 5(2,2),P 6(3,1),P 7(1,4),P 8(2,3),P 9(3,2),P 10(4,1),P 11(1,5),P 12(2,4),…,则P 60的坐标为( )A .(3,8)B .(4,7)C .(4,8)D .(5,7)解析:选D 横纵坐标之和为2的有1个,横纵坐标之和为3的有2个,横纵坐标之和为4的有3个,横纵坐标之和为5的有4个.因此横纵坐标之和为2,3,…,11的点共有1+2+3+…+10=55个, 横纵坐标之和为12的有11个.因此P 60为横纵坐标之和为12的第5个点,即为(5,7),故选D .7.函数f(x)=ax 3+bx 2+cx +d 的图象如图,则函数y =ax 2+32bx +c 3的单调递增区间是( )A .(-∞,-2] B.⎣⎢⎡⎭⎪⎫12,+∞C .[-2,3]D.⎣⎢⎡⎭⎪⎫98,+∞ 解析:选D 由题图可知d =0.不妨取a =1,∵f (x )=x 3+bx 2+cx ,∴f ′(x )=3x 2+2bx +c .由图可知f ′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18.∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y′>0,∴y =x 2-94x -6的单调递增区间为⎣⎢⎡⎭⎪⎫98,+∞.故选D.8.如图,在平面直角坐标系xOy 中,圆x 2+y 2=r 2(r>0)内切于正方形ABCD ,任取圆上一点P ,若OP ―→=m OA ―→+n OB ―→ (m ,n ∈R),则14是m 2,n 2的等差中项.现有一椭圆x 2a 2+y 2b 2=1(a >b >0)内切于矩形ABCD ,任取椭圆上一点P ,若OP ―→=m OA ―→+n OB ―→(m ,n ∈R),则m 2,n 2的等差中项为( )A.14B.12C.22D .1解析:选A 图,设P (x ,y ),由x 2a 2+y 2b2=1知A (a ,b ),B (-a ,b ),由OP ―→=m OA ―→+n OB ―→可得⎩⎪⎨⎪⎧x =(m -n )a ,y =(m +n )b ,代入x 2a 2+y 2b2=1可得(m -n )2+(m +n )2=1,即m 2+n 2=12,所以m 2+n 22=14,即m 2,n 2的等差中项为14.9.已知函数f (x )=x 3-ax 在(-1,1)上单调递减,则实数a 的取值范围为( ) A .(1,+∞) B .[3,+∞) C .(-∞,1]D .(-∞,3]解析:选B ∵f (x )=x 3-ax ,∴f ′(x )=3x 2-a .又f (x )在(-1,1)上单调递减,∴3x 2-a ≤0在(-1,1)上恒成立,∴a ≥3,故选B.10.设函数f (x )在R 上可导,f (x )=x 2f ′(2)-3x ,则f (-1)与f (1)的大小关系是( ) A .f (-1)=f (1) B .f (-1)>f (1) C .f (-1)<f (1)D .不确定解析:选B 因为f (x )=x 2f ′(2)-3x ,所以f ′(x )=2xf ′(2)-3,则f ′(2)=4f ′(2)-3,解得f ′(2)=1,所以f (x )=x 2-3x ,所以f (1)=-2,f (-1)=4,故f (-1)>f (1).11.若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,4] C .(0,+∞)D .[4,+∞)解析:选B 由2x ln x ≥-x 2+ax -3,得a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x(x>0),则h ′(x )=(x +3)(x -1)x2.当x ∈(0,1)时,h ′(x )<0,函数h (x )单调递减;当x ∈(1,+∞)时,h ′(x )>0,函数h (x )单调递增,所以h (x )min =h (1)=4.所以a ≤h (x )min =4.故a 的取值范围是(-∞,4].12.定义在R 上的偶函数f (x )的导函数为f ′(x ),若对任意的实数x ,都有2f (x )+xf ′(x )<2恒成立,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围为( )A .{x |x ≠±1}B .(-∞,-1)∪(1,+∞)C .(-1,1)D .(-1,0)∪(0,1)解析:选 B 构造函数g (x )=x 2f (x )-x 2,x ∈R ,则g ′(x )=2xf (x )+x 2f ′(x )-2x =x [2f(x)+xf′(x)-2].由题意得2f (x )+xf ′(x )-2<0恒成立,故当x <0时,g ′(x )>0,函数g (x )单调递增;当x >0时,g ′(x )<0,函数g (x )单调递减.因为x 2f (x )-f (1)<x 2-1,所以x 2f (x )-x 2<f (1)-1,即g (x )<g (1),当x >0时,解得x >1; 当x <0时,因为f (x )是偶函数,所以g (x )是偶函数,同理解得x <-1.故实数x 的取值范围为(-∞,-1)∪(1,+∞).故选B.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.已知复数z =(1+i)(1+2i),其中i 是虚数单位,则z 的模是________. 解析:∵z =(1+i)(1+2i)=1+2i +i +2i 2=3i -1, ∴|z |=32+(-1)2=10. 答案:10 14.已知f (x )=xx 2+1,则曲线y =f (x )在点(1,f (1))处的切线方程是________.解析:f (x )=xx 2+1的导数为f ′(x )=1-x2(1+x 2)2,在点(1,f (1))处的切线的斜率为f ′(1)=0,切点为⎝ ⎛⎭⎪⎫1,12,所以在点(1,f (1))处的切线方程为y =12.答案:y =1215.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为______元时利润最大,利润的最大值为______元.解析:设商场销售该商品所获利润为y 元,则y =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), 则y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0, 解得p =30或p =-130(舍去). 则p ,y ,y ′变化关系如下表:故当p =30时,y 取极大值为23 000元.又y =-p 3-150p 2+11 700p -166 000在[20,+∞)上只有一个极值,故也是最值.所以该商品零售价定为每件30元,所获利润最大为23 000元.答案:30 23 00016.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的产品,其中第1堆只有一层,就一个球;第2、3、4、…堆最底层(第一层)分别按下图①②③所示方式固定摆放,其余堆类推,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)=________,f (n )=________(用含n 的式子表示).解析:设第n 堆第一层乒乓球数为g (n ),则g (1)=1,g (2)=1+2,g (3)=1+2+3,…, 则g (n )=1+2+3+…+n =n (n +1)2=n 2+n2.所以f (3)=g (1)+g (2)+g (3) =1+(1+2)+(1+2+3)=10.f (n )=g (1)+g (2)+g (3)+…+g (n )=12(12+1)+12(22+2)+…+12(n 2+n ) =12[(12+22+…+n 2)+(1+2+3+…+n )] =12⎣⎢⎡⎦⎥⎤n (n +1)(2n +1)6+n (n +1)2=n (n +1)(n +2)6.答案:10n (n +1)(n +2)6三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)(1)计算⎝ ⎛⎭⎪⎫1+i 22+5i 3+4i ;(2)复数z =x +y i(x ,y ∈R)满足z +2i z =3+i ,求复数z . 解:(1)原式=2i 2+5i (3-4i )(3+4i )(3-4i )=i +5i (3-4i )32+42=i +4+3i 5=45+85i. (2)(x +y i)+2i(x -y i)=3+i , 即(x +2y )+(2x +y )i =3+i ,即⎩⎪⎨⎪⎧x +2y =3,2x +y =1,解得⎩⎪⎨⎪⎧x =-13,y =53.∴z =-13+53i.18.(本小题12分)设a ,b ,c 均为大于1的正数,且ab =10,求证:log a c +log b c ≥4lgc .证明:法一:∵ab =10,∴lg a +lg b =lg ab =1,则log a c +log b c =lg c lg a +lg c lg b =lg c (lg a +lg b )lg a ·lg b =lg clg a ·lg b .∵a >1,b >1, ∴lg a >0,lg b >0, 则lg a ·lg b ≤⎝⎛⎭⎪⎫lg a +lg b 22=14,1lg a lg b≥4, 又c >1,lg c >0. ∴lg clg a ·lg b≥4lg c即log a c +log b c ≥4lg c .法二:要证log a c +log b c ≥4lg c , 只需证lg c lg a +lg c lg b ≥4lg c .又因为c >1,所以lg c >0, 故只需证1lg a +1lg b ≥4,即证lg a +lg b lg a ·lg b ≥4.又因为ab =10,所以lg a +lg b =lg(ab )=1, 故只需证1lg a ·lg b ≥4.又因为lg a >0,lg b >0, 所以0<lg a ·lg b ≤⎝ ⎛⎭⎪⎫lg a +lg b 22=⎝ ⎛⎭⎪⎫122=14,则1lg a ·lg b≥4成立.所以原不等式成立, 即log a c +log b c ≥4lg c .19.(本小题12分)已知函数f (x )=13x 3-ax +b 在y 轴上的截距为1,且曲线上一点P ⎝⎛⎭⎪⎫22,y 0处的切线斜率为13.(1)求曲线在P 点处的切线方程; (2)求函数f (x )的极大值和极小值.解:(1)因为函数f (x )=13x 3-ax +b 在y 轴上的截距为1,所以b =1.又y ′=x 2-a ,所以⎝⎛⎭⎪⎫222-a =13,所以a =16, 所以f (x )=13x 3-16x +1,所以y 0=f ⎝ ⎛⎭⎪⎫22=1,故点P ⎝ ⎛⎭⎪⎫22,1,所以切线方程为y -1=13⎝⎛⎭⎪⎫x -22,即2x -6y +6-2=0.(2)由(1)可得f ′(x )=x 2-16,令f ′(x )=0,得x =±66. 当x 变化时,f (x ),f ′(x )变化情况如下表:有极小值为f ⎝⎛⎭⎪⎫66=1-654. 20.(本小题12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a .(1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ),得m ≤xln x在(1,+∞)上恒成立.令g (x )=x ln x ,则g ′(x )=ln x -1(ln x )2,当x ∈(1,e)时,g ′(x )<0; 当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).21.(本小题12分)(2019·全国卷Ⅱ)已知函数f (x )=(x -1)ln x -x -1.证明: (1)f (x )存在唯一的极值点;(2)f (x )=0有且仅有两个实根,且两个实根互为倒数. 证明:(1)f (x )的定义域为(0,+∞),f ′(x )=x -1x +ln x -1=ln x -1x.因为y =ln x 在(0,+∞)上单调递增,y =1x在(0,+∞)上单调递减,所以f ′(x )在(0,+∞)上单调递增.又f ′(1)=-1<0,f ′(2)=ln 2-12=ln 4-12>0,故存在唯一x 0∈(1,2),使得f ′(x 0)=0. 又当x <x 0时,f ′(x )<0,f (x )单调递减; 当x >x 0时,f ′(x )>0,f (x )单调递增, 所以f (x )存在唯一的极值点. (2)由(1)知f (x 0)<f (1)=-2, 又f (e 2)=e 2-3>0,所以f (x )=0在(x 0,+∞)内存在唯一根x =α. 由α>x 0>1得1α<1<x 0.又f ⎝ ⎛⎭⎪⎫1α=⎝ ⎛⎭⎪⎫1α-1ln 1α-1α-1=f (α)α=0,故1α是f(x)=0在(0,x0)内的唯一根.所以f(x)=0有且仅有两个实根,且两个实根互为倒数.22.(本小题12分)两县城A和B相距20 km,现计划在两县城外以AB为直径的半圆弧AB上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B的总影响度为对城A与对城B的影响度之和.记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在AB的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数f(x);(2)讨论(1)中函数的单调性,并判断AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响最小?若存在,求出该点到城A的距离;若不存在,说明理由.解:(1)根据题意∠ACB=90°,|AC|=x km,|BC|=400-x2 km,且建在C处的垃圾处理厂对城A的影响度为4x2,对城B的影响度为k400-x2,因此,总影响度y=4x2+k400-x2(0<x<20).又垃圾处理厂建在AB的中点时,对城A和城B的总影响度为0.065,故有4 (102+102)2+k400-(102+102)2=0.065,解得k=9,故y=f(x)=4x2+9400-x2(0<x<20).(2)f′(x)=-8x3+18x(400-x2)2=18x4-8×(400-x2)2x3(400-x2)2=(x3+800)(10x2-1 600)x3(400-x2)2.令f′(x)=0,解得x=410或x=-410(舍去).所以当x∈(0,410)时,f′(x)<0,f(x)为减函数;当x∈(410,20)时,f′(x)>0,f(x)为增函数.故在x=410处,函数f(x)取得极小值,也是最小值.即垃圾场离城A的距离为410 m 时,对城A和城B的总影响最小.。
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.答案:A3.从A ,B ,C ,D ,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( )A .24B .48C .72D .120解析:A 参加时参赛方案有C 34A 12A 33=48(种),A 不参加时参赛方案有A 44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35,若X 与Y 有关系的可信程度为90%,则c =( )A .4B .5C .6D .7 解析:列2×2列联表可知:当c =5时,K 2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c =5时,X 与Y 有关系的可信程度为90%, 而其余的值c =4,c =6,c =7皆不满足. 答案:B5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( )A.3516B.358C.354D .105解析:二项展开式的通项为T k +1=C k8(x )8-k⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=a ξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (a ξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.答案:B8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:A .99%的可能性B .99.75%的可能性C .99.5%的可能性D .97.5%的可能性解析:由题意可知a =16,b =28,c =20,d =8,a +b =44,c +d =28,a +c =36,b+d =36,n =a +b +c +d =72.代入公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2=72×(16×8-28×20)244×28×36×36≈8.42.由于K 2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A ,B 两个沿海城市受台风袭击的概率相同,已知A 市或B 市至少有一个受台风袭击的概率为0.36,若用X 表示这一天受台风袭击的城市个数,则E (X )=( )A .0.1B .0.2C .0.3D .0.4解析:设A ,B 两市受台风袭击的概率均为p ,则A 市或B 市都不受台风袭击的概率为(1-p )2=1-0.36,解得p =0.2或p =1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32,P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝ ⎛⎭⎪⎫1x 3(-x )3=-20.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C n n x n, 由题意知m +n =19,m ,n ∈N *,所以x 2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值.所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81. 18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y ,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370,E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×6+3×3=2.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X =2)=56×15=16,P (X=3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×6+3×3=2.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i=184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y ∑ni =1 x 2i -nx 2, a ^=y -b ^x ,其中x ,y 为样本平均值.解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y =1n ∑n i =1 y i =2010=2, 又l xx =∑ni =1 x 2i -nx 2=720-10×82=80,l xy =∑ni =1 x i y i -nxy =184-10×8×2=24,由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝ ⎛⎭⎪⎫参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710.(2)2×2列联表如下:K 2=4020×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关.22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率. (3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18, 所以随机变量X 的数学期望E (X )=40×18=5.。