2019山东烟台中考数学解析
- 格式:doc
- 大小:2.45 MB
- 文档页数:21
【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,⼭东烟台2019年中考将于6⽉中旬陆续开始举⾏,⼭东烟台中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年⼭东烟台中考数学试卷及答案信息。
考⽣可点击进⼊⼭东烟台中考频道《、》栏⽬查看⼭东烟台中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取⼭东烟台中考数学试卷答案信息,特别整理了《2019⼭东烟台中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⼭东烟台中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
2019年中考数学试题含答案及名家点评山东烟台一、选择题(本题共12小题,每小题3分,满分36分)1.(山东烟台)﹣3的绝对值等于( ) A.﹣3 B. 3C.±3D.﹣思路分析:根据绝对值的性质解答即可.解:|﹣3|=3.故选B.名家点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(山东烟台)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.思路分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.名家点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(山东烟台)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.全市生产总值(GDP)达5613亿元.该数据用科学记数法表示为( ) A.5.613×1011元B.5.613×1012元C.56.13×1010元D.0.5613×1012元思路分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将5613亿元用科学记数法表示为:5.613×1011元.故选;A.名家点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是( ) A.B.C.D.思路分析:根据主视图是从正面看到的图形判定则可.解:从正面看,主视图为.故选:C.名家点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键.5.(山东烟台)按如图的运算程序,能使输出结果为3的x,y的值是( ) A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9思路分析:根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.解:由题意得,2x﹣y=3,A、x=5时,y=7,故本选项错误;B、x=3时,y=3,故本选项错误;C、x=﹣4时,y=﹣11,故本选项错误;D、x=﹣3时,y=﹣9,故本选项正确.故选D.名家点评:本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.6.(山东烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( ) A.28°B.52°C.62°D.72°思路分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选C.名家点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.(山东烟台)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为( ) A. 1.5B.3C. 3.5D. 4.5思路分析:根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.解:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.名家点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.8.(山东烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A.﹣1或5B.1C.5D.﹣1思路分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.名家点评:本题考查了一元二次方程ax2+bx+c=0(a"`0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.9.(山东烟台)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…。
山东省烟台市2019年中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)2.(3分)(2019•烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图B3.(3分)(2019•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法B6.(3分)(2019•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A ′的坐标是( )7.(3分)(2019•烟台)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那8.(3分)(2019•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2019个正方形,则需要操作的次数是()9.(3分)(2019•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则=10.(3分)(2019•烟台)如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是()11.(3分)(2019•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()=12.(3分)(2019•烟台)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()==NC=二、填空题(本题共6小题,每小题3分,满分18分)13.(3分)(2019•烟台)分解因式:a2b﹣4b3=b(a+2b)(a﹣2b).14.(3分)(2019•烟台)不等式的最小整数解是x=3.,15.(3分)(2019•烟台)如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD=.==5.16.(3分)(2019•烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E 是CD的中点,BD=12,则△DOE的周长为15.17.(3分)(2019•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB 的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.18.(3分)(2019•烟台)如图,正方形ABCD的边长为4,点E在BC上,四边形EFGB 也是正方形,以B为圆心,BA长为半径画,连结AF,CF,则图中阴影部分面积为4π.三、解答题(本大题共8个小题,满分46分)19.(6分)(2019•烟台)先化简,再求值:,其中x满足x2+x﹣2=0.•,=20.(6分)(2019•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)=6CD==6﹣≈21.(7分)(2019•烟台)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.22.(9分)(2019•烟台)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题.(1)本次参与调查的学生共有400人,m=15%,n=35%;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.P==23.(8分)(2019•烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.)得,每个超市苹果总量为:=600﹣24.(2019•烟台)如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E 为上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.(1)求证:CB=CF;(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.GAO======25.(10分)(2019•烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B 重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系式QE=QF;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.26.(2019•烟台)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=ax2+bx+c的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(﹣,0),以0C为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C 不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.对应边成比例得到=,,BE=.=,数学试卷==+t﹣。
2019年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的、1、(3分)﹣8的立方根是()A、2B、﹣2C、±2D、﹣22、(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A、B、C、D、3、(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A、主视图和左视图B、主视图和俯视图C、左视图和俯视图D、主视图、左视图、俯视图4、(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A、B、C、D、无法确定5、(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A、1.5×10﹣9秒B、15×10﹣9秒C、1.5×10﹣8秒D、15×10﹣8秒6、(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A、有两个不相等的实数根B、有两个相等的实数根C、没有实数根D、无法确定7、(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计、由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41、后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A、平均分不变,方差变大B、平均分不变,方差变小C、平均分和方差都不变D、平均分和方差都改变8、(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A、15°B、45°C、15°或30°D、15°或45°9、(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A、128B、256C、512D、102410、(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A、B、C、D、11、(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y >0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A、2B、3C、4D、512、(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A、B、πC、πD、π二、填空题(本大题共6个小题,每小题3分,满分18分)13、(3分)|﹣6|×2﹣1﹣cos45°=、14、(3分)若关于x的分式方程﹣1=有增根,则m的值为、15、(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为、16、(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为、17、(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是、18、(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为、三、解答题(本大题共7个小题,满分66分)19、(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值、20、(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目、小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图、(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率、21、(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作、某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位、(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22、(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由、23、(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N、当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化、将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8cm、(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距、(结果精确到十分位)参考数据表计算器按键顺序计算结果(已取近似值)2.656.811.240.350.9374149494124、(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD、①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1、将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD 为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长、25、(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD、(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D 四个备选答案,其中有且只有一个是正确的、1、(3分)﹣8的立方根是()A、2B、﹣2C、±2D、﹣2题目分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可、试题解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2、故选:B、点评:本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方、由开立方和立方是互逆运算,用立方的方法求这个数的立方根、注意一个数的立方根与原数的性质符号相同、2、(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A、B、C、D、题目分析:根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解、试题解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误、故选:C、点评:本题考查了中心对称图形与轴对称图形的概念、轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合、3、(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A、主视图和左视图B、主视图和俯视图C、左视图和俯视图D、主视图、左视图、俯视图题目分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案、试题解答:解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A、点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左边看得到的图形是左视图、4、(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A、B、C、D、无法确定题目分析:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数、试题解答:解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B、点评:本题考查了概率,熟练掌握概率公式是解题的关键、5、(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A、1.5×10﹣9秒B、15×10﹣9秒C、1.5×10﹣8秒D、15×10﹣8秒题目分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定、试题解答:解:所用时间=15×0.000 000 001=1.5×10﹣8、故选:C、点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定、6、(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A、有两个不相等的实数根B、有两个相等的实数根C、没有实数根D、无法确定题目分析:由b+c=5可得出c=5﹣b,根据方程的系数结合根的判别式可得出△=(b ﹣6)2+24,由偶次方的非负性可得出(b﹣6)2+24>0,即△>0,由此即可得出关于x 的一元二次方程3x2+bx﹣c=0有两个不相等的实数根、试题解答:解:∵b+c=5,∴c=5﹣b、△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24、∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根、故选:A、点评:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键、7、(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计、由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41、后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A、平均分不变,方差变大B、平均分不变,方差变小C、平均分和方差都不变D、平均分和方差都改变题目分析:根据平均数,方差的定义计算即可、试题解答:解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B、点评:本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型、8、(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A、15°B、45°C、15°或30°D、15°或45°题目分析:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线;(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,即可求解、试题解答:解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA 的角平分线,则∠BOC=15°或45°,故选:D、点评:本题考查的是复杂作图,主要要理解作图是在作角的平分线,同时要考虑以OP 为边作∠POC=15°的两种情况,避免遗漏、9、(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A、128B、256C、512D、1024题目分析:由“杨辉三角”的规律可知,令a=b=1,代入(a+b)9计算可得所有项的系数和、试题解答:解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512故选:C、点评:本题考查了“杨辉三角”展开式中所有项的系数和的求法,需要知道取值代入即可求得、10、(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A、B、C、D、题目分析:可证明四边形ABCD是菱形,由面积可求出BD长,连接AC,过点D作DF ⊥BE于点E,求出菱形的边长CD=5,由勾股定理可求出CF、DF长,则sin∠DCE的值可求出、试题解答:解:连接AC,过点D作DF⊥BE于点F,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=、故选:A、点评:本题考查菱形的判定与性质、平行四边形的性质、解直角三角形、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定,正确作出辅助线思考问题、11、(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x﹣10234y50﹣4﹣30下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y >0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A、2B、3C、4D、5题目分析:先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的增减性可对⑤进行判断、试题解答:解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称轴为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误、故选:B、点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程、也考查了二次函数的性质、12、(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A、B、πC、πD、π题目分析:根据圆周角定理求得∠ACB=90°,进而证得△ADC∽△CEB,求得∠ABC =30°,根据切线的性质求得∠ACD=30°,解直角三角形求得半径,根据圆周角定理求得∠AOC=60°,根据弧长公式求得即可、试题解答:解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D、点评:本题考查了切线的性质,圆周角定理,直角三角函数,30°角的直角三角形的性质等,求得∠ABC=30°是解题的关键、二、填空题(本大题共6个小题,每小题3分,满分18分)13、(3分)|﹣6|×2﹣1﹣cos45°=2、题目分析:直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案、试题解答:解:原式=6×﹣×=3﹣1=2、故答案为:2、点评:此题主要考查了实数运算,正确化简各数是解题关键、14、(3分)若关于x的分式方程﹣1=有增根,则m的值为3、题目分析:增根是化为整式方程后产生的不适合分式方程的根、所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值、试题解答:.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3、故答案为3、点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值、15、(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为(﹣5,﹣1)、题目分析:分别延长B1B、O1O、A1A,它们相交于点P,然后写出P点坐标即可、试题解答:解:如图,P点坐标为(﹣5,﹣1)、故答案为(﹣5,﹣1)、点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心、位似图形的性质有两个图形必须是相似形;对应点的连线都经过同一点;对应边平行或共线、16、(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为x≤1、题目分析:将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;试题解答:解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;点评:本题考查一次函数的交点于一元一次不等式;将一元一次不等式的解转化为一次函数图象的关系是解题的关键、17、(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是45°、题目分析:根据折叠的轴对称性,180°的角对折3次,求出每次的角度即可;试题解答:解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°、点评:本题考查轴对称的性质;能够通过折叠理解角之间的对称关系是解题的关键、18、(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为π﹣2、题目分析:连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC =2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH=,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算、试题解答:解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB ﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2、故答案为π﹣2、点评:本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角、也考查了等边三角形的性质和扇形面积公式、三、解答题(本大题共7个小题,满分66分)19、(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值、题目分析:根据分式的混合运算法则把原式化简,根据分式有意义的条件选择一个整数代入计算即可、试题解答:解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==、点评:本题考查的是分式的化简求值、分式有意义的条件,掌握分式的混合运算法则是解题的关键、20、(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目、小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图、(1)五届艺术节共有40个班级表演这些节目,班数的中位数为7,在扇形统计图中,第四届班级数的扇形圆心角的度数为81°;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率、题目分析:(1)先计算出第一届、第二届和第三届参加班级所占的百分比为45%,再用18除以45%得到五届艺术节参加班级表演的总数;接着求出第四届和第五届参加班级数,利用中位数的定义得到班数的中位数;在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%;(2)补全折线统计图;(3)画树状图展示所有12种等可能的结果数,找出该班选择A和D两项的结果数,然后概率公式计算、试题解答:解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==、点评:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率、也考查了统计图、21、(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作、某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位、(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?题目分析:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论、试题解答:解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:、答:计划调配36座新能源客车6辆,该大学共有218名志愿者、(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=、又∵m,n均为正整数,∴、答:需调配36座客车3辆,22座客车5辆、点评:本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程、22、(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由、题目分析:(1)通过“连直径、证垂直”的方法,证明∠BAP=∠OP A,即可求解;(2)CF=CE=AC﹣AE=﹣2=2﹣2,即可求解、试题解答:解:(1)连接OP,则∠P AO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=2,∠OAP=∠P AB,∴∠BAP=∠OP A,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣2=2﹣2,=,故:点F是线段BC的黄金分割点、点评:本题考查了圆的切线的性质与证明、黄金分割的应用,题目的关键是明确黄金分割所涉及的线段的比、23、(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N、当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化、将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8cm、(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距、(结果精确到十分位)参考数据表计算器按键顺序计算结果(已取近似值)2.656.811.240.350.93741494941题目分析:(1)如图,过点P作PH⊥OA于点H、设OH=x,则HM=10﹣x,由勾股定理得122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H、在Rt△OPH中,,OH=11.244(cm),,PH=4.2(cm),HN=(cm),ON=OH+HN=11.244+6.8=18.044(cm),MN=ON﹣OM=18.044﹣10=8.044(cm)电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)、试题解答:解:(1)如图,过点P作PH⊥OA于点H、设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H、在Rt△OPH中,,OH=11.244(cm),,。
2019年山东省烟台市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2B.3C.4D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8cm.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣2【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左边看得到的图形是左视图,可得答案.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定【分析】由b+c=5可得出c=5﹣b,根据方程的系数结合根的判别式可得出△=(b﹣6)2+24,由偶次方的非负性可得出(b﹣6)2+24>0,即△>0,由此即可得出关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变【分析】根据平均数,方差的定义计算即可.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为()A.15°B.45°C.15°或30°D.15°或45°【分析】(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线;(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,即可求解.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128B.256C.512D.1024【分析】由“杨辉三角”的规律可知,令a=b=1,代入(a+b)9计算可得所有项的系数和.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512故选:C.10.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.【分析】可证明四边形ABCD是菱形,由面积可求出BD长,连接AC,过点D作DF⊥BE于点E,求出菱形的边长CD=5,由勾股定理可求出CF、DF长,则sin∠DCE的值可求出.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2B.3C.4D.5【分析】先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的增减性可对⑤进行判断.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称轴为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π【分析】根据圆周角定理求得∠ACB=90°,进而证得△ADC∽△CEB,求得∠ABC=30°,根据切线的性质求得∠ACD=30°,解直角三角形求得半径,根据圆周角定理求得∠AOC=60°,根据弧长公式求得即可.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=2.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为3.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为(﹣5,﹣1).【分析】分别延长B1B、O1O、A1A,它们相交于点P,然后写出P点坐标即可.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是45°.【分析】根据折叠的轴对称性,180°的角对折3次,求出每次的角度即可;【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为π﹣2.【分析】连接OB,作OH⊥BC于H,如图,利用等边三角形的性质得AB=BC=AC=2,∠ABC=60°,再根据三角形内切圆的性质得OH为⊙O的半径,∠OBH=30°,再计算出BH=CH=1,OH=BH =,然后根据扇形的面积公式,利用阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O进行计算.【解答】解:连接OB,作OH⊥BC于H,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O =3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.【分析】根据分式的混合运算法则把原式化简,根据分式有意义的条件选择一个整数代入计算即可.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有40个班级表演这些节目,班数的中位数为7,在扇形统计图中,第四届班级数的扇形圆心角的度数为81°;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.【分析】(1)先计算出第一届、第二届和第三届参加班级所占的百分比为45%,再用18除以45%得到五届艺术节参加班级表演的总数;接着求出第四届和第五届参加班级数,利用中位数的定义得到班数的中位数;在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%;(2)补全折线统计图;(3)画树状图展示所有12种等可能的结果数,找出该班选择A和D两项的结果数,然后概率公式计算.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.【分析】(1)通过“连直径、证垂直”的方法,证明∠BAP=∠OP A,即可求解;(2)CF=CE=AC﹣AE=﹣2=2﹣2,即可求解.【解答】解:(1)连接OP,则∠P AO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=2,∠OAP=∠P AB,∴∠BAP=∠OP A,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣2=2﹣2,=,故:点F是线段BC的黄金分割点.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8cm.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表【分析】(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,PH=4.2(cm),HN=(cm),ON=OH+HN=11.244+6.8=18.044(cm),MN=ON﹣OM=18.044﹣10=8.044(cm)电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm).【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:AD⊥BD;②若AC=BC=,DC=CE=,则线段AD的长为4;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.【分析】【问题探究】(1)①由“SAS”可证△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②过点C作CF⊥AD于点F,由勾股定理可求DF,CF,AF的长,即可求AD的长;【拓展延伸】(2)分点D在BC左侧和BC右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)【分析】(1)由已知求出D点坐标,将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时此时圆心N到BD的距离最小,圆心角∠DNB最大,则,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵圆N与y轴相切,∴圆心N在D点下方,∴0<t<3,∴t=9﹣2.。
山东省烟台市2019年中考数学真题试题(含解析)一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.(3分)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣22.(3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图4.(3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为()A.B.C.D.无法确定5.(3分)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为()A.1.5×10﹣9秒B.15×10﹣9秒C.1.5×10﹣8秒D.15×10﹣8秒6.(3分)当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.(3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.(3分)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N 为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC 的度数为()A.15°B.45°C.15°或30°D.15°或45°9.(3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…则(a+b)9展开式中所有项的系数和是()A.128 B.256 C.512 D.102410.(3分)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A.B.C.D.11.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上两点,则x1<x2,其中正确的个数是()A.2 B.3 C.4 D.512.(3分)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π二、填空题(本大题共6个小题,每小题3分,满分18分)13.(3分)|﹣6|×2﹣1﹣cos45°=.14.(3分)若关于x的分式方程﹣1=有增根,则m的值为.15.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A (﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.16.(3分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.17.(3分)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是.18.(3分)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.三、解答题(本大题共7个小题,满分66分)19.(6分)先化简(x+3﹣)÷,再从0≤x≤4中选一个适合的整数代入求值.20.(8分)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有个班级表演这些节目,班数的中位数为,在扇形统计图中,第四届班级数的扇形圆心角的度数为;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.21.(9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?22.(9分)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,⊙O经过点A,P(1)求证:BC是⊙O的切线;(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.23.(10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康,现测得OP的长为12cm,OM为10cm,支柱PQ为8m.(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)参考数据表24.(11分)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.25.(13分)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F 的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)2019年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:B.2.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.3.【解答】解:将正方体①移走后,主视图不变,俯视图变化,左视图不变,故选:A.4.【解答】解:设正六边形边长为a,则灰色部分面积为3×=,白色区域面积为a×=,所以正六边形面积为a2,镖落在白色区域的概率P==,故选:B.5.【解答】解:所用时间=15×0.000 000 001=1.5×10﹣8.故选:C.6.【解答】解:∵b+c=5,∴c=5﹣b.△=b2﹣4×3×(﹣c)=b2+12c=b2﹣12b+60=(b﹣6)2+24.∵(b﹣6)2≥0,∴(b﹣6)2+24>0,∴△>0,∴关于x的一元二次方程3x2+bx﹣c=0有两个不相等的实数根.故选:A.7.【解答】解:∵小亮的成绩和其他39人的平均数相同,都是90分,∴该班40人的测试成绩的平均分为90分,方差变小,故选:B.8.【解答】解:(1)以O为圆心,以任意长为半径作弧,交OA,OB于点M,N,分别以点M,N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,则OP为∠AOB的平分线,(2)两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则为作∠POB或∠POA的角平分线,则∠BOC=15°或45°,故选:D.9.【解答】解:由“杨辉三角”的规律可知,(a+b)9展开式中所有项的系数和为(1+1)9=29=512 故选:C.10.【解答】解:连接AC,过点D作DF⊥BE于点E,∵BD平分∠ABC,∴∠ABD=∠DBC,∵▱ABCD中,AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠ABD,∴AB=BC,∴四边形ABCD是菱形,∴AC⊥BD,OB=OD,∵DE⊥BD,∴OC∥ED,∵DE=6,∴OC=,∵▱ABCD的面积为24,∴,∴BD=8,∴==5,设CF=x,则BF=5+x,由BD2﹣BF2=DC2﹣CF2可得:82﹣(5+x)2=52﹣x2,解得x=,∴DF=,∴sin∠DCE=.故选:A.11.【解答】解:设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;抛物线的对称性为直线x=2,所以②正确;∵抛物线与x轴的交点坐标为(0,0),(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则x2<x1<2或2<x1<x2,所以⑤错误.故选:B.12.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.二、填空题(本大题共6个小题,每小题3分,满分18分)13.【解答】解:原式=6×﹣×=3﹣1=2.故答案为:2.14.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.15.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).16.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.【解答】解:在折叠过程中角一直是轴对称的折叠,∠AOB=22.5°×2=45°;故答案为45°;18.【解答】解:连接OB,作OD⊥BC于D,如图,∵△ABC为等边三角形,∴AB=BC=AC=2,∠ABC=60°,∵⊙O是△ABC的内切圆,∴OH为⊙O的半径,∠OBH=30°,∵O点为等边三角形的外心,∴BH=CH=1,在Rt△OBH中,OH=BH=,∵S弓形AB=S扇形ACB﹣S△ABC,∴阴影部分面积=3S弓形AB+S△ABC﹣S⊙O=3(S扇形ACB﹣S△ABC)+S△ABC﹣S⊙O=3S扇形ACB﹣2S△ABC﹣S⊙O=3×﹣2××22﹣π×()2=π﹣2.故答案为π﹣2.三、解答题(本大题共7个小题,满分66分)19.【解答】解:(x+3﹣)÷=(﹣)÷=•=,当x=1时,原式==.20.【解答】解:(1)第一届、第二届和第三届参加班级所占的百分比为1﹣22.5%﹣=45%,所以五届艺术节参加班级表演的总数为(5+7+6)÷45%=40(个);第四届参加班级数为40×22.5%=9(个),第五届参加班级数为40﹣18﹣9=13(个),所以班数的中位数为7(个)在扇形统计图中,第四届班级数的扇形圆心角的度数为360°×22.5%=81°;故答案为40,7,81°;(2)如图,(3)画树状图为:共有12种等可能的结果数,其中该班选择A和D两项的结果数为2,所以该班选择A和D两项的概率==.21.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.22.【解答】解:(1)连接OP,则∠PAO=∠APO,而△AEP是由△ABP沿AP折叠而得:故AE=AB=4,∠OAP=∠PAB,∴∠BAP=∠OPA,∴AB∥OP,∴∠OPC=90°,∴BC是⊙O的切线;(2)CF=CE=AC﹣AE=﹣4=2﹣2,=,故:点F是线段BC的黄金分割点.23.【解答】解:(1)如图,过点P作PH⊥OA于点H.设OH=x,则HM=10﹣x,由勾股定理得OP2﹣OH2=PH2,MP2﹣HM2=PH2,∴OP2﹣OH2=MP2﹣HM2,即122﹣x2=82﹣(10﹣x)2,解得x=9,即OH=9(cm),∴cos∠AOB===0.75,由表可知,∠AOB为41°;(2)过点P作PH⊥OA于点H.在Rt△OPH中,,OH=11.244(cm),,∴PH=4.2(cm),∴HN=(cm),∴ON=OH+HN=11.244+6.8=18.044(cm),∴MN=ON﹣OM=18.044﹣10=8.044(cm)∵电脑台面的角度可达到六档调节,相邻两个卡孔的距离相同,∴相邻两个卡孔的距离为8.044÷(6﹣1)≈1.6(cm)答:相邻两个卡孔的距离约为1.6cm.24.【解答】解:【问题探究】(1)∵△ABC和△DEC均为等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案为:AD⊥BD②如图,过点C作CF⊥AD于点F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴AF==3∴AD=AF+DF=4故答案为:4【拓展延伸】(2)若点D在BC右侧,如图,过点C作CF⊥AD于点F,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∵CD=,CE=1∴DE==2∵∠ADC=∠BEC,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=DF+AF=3若点D在BC左侧,∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.∴∠ACD=∠BCE,∴△ACD∽△BCE∴∠ADC=∠BEC,∴∠CED=∠CDF∵CD=,CE=1∴DE==2∵∠CED=∠CDF,∠DCE=∠CFD=90°∴△DCE∽△CFD,∴即∴CF=,DF=∴AF==∴AD=AF﹣DF=225.【解答】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3,∵D在y=上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣x+∴N(,0),F(0,);(3)设P(0,t),N(r,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;∴PN=ND,∴r=,∴t2﹣6t﹣4r+13=0,易求BD的中点为(,),直线BD的解析式为y=﹣3x+9,∴BD的中垂线解析式y=x+,N在中垂线上,∴t=r+,∴t2﹣18t+21=0,∴t=9+2或t=9﹣2,∵0<t<3,∴t=9﹣2,∴P(0,9﹣2);。
2019年山东烟台中考数学试卷注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题〔此题共12个小题,每题3分,总分值36分〕每题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1、的值是〔〕A、4B、2C、﹣2D、±22、如图是几个小正方体组成的一个几何体,这个几何体的俯视图是〔〕A、B、C、D、3、不等式组的解集在数轴上表示正确的选项是〔〕A、B、C、D、4、如图,所给图形中是中心对称图形但不是轴对称图形的是〔〕A、B、C、D、5、二次函数y=2〔x﹣3〕2+1、以下说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为〔3,﹣1〕;④当x<3时,y随x的增大而减小、那么其中说法正确的有〔〕A、1个B、2个C、3个D、4个6、如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为〔4,0〕,D点坐标为〔0,3〕,那么AC 长为〔〕A、4B、5C、6D、不能确定7、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的〔〕A、平均数B、众数C、中位数D、方差8、以下一元二次方程两实数根和为﹣4的是〔〕A、x2+2x﹣4=0B、x2﹣4x+4=0C、x2+4x+10=0D 、x 2+4x ﹣5=09、一个由小菱形组成的装饰链,断去了一部分,剩下部分如下图,那么断去部分的小菱形的个数可能是〔〕A 、3B 、4C 、5D 、610、如图,⊙O 1,⊙O ,⊙O 2的半径均为2cm ,⊙O 3,⊙O 4的半径均为1cm ,⊙O 与其他4个圆均相外切,图形既关于O 1O 2所在直线对称,又关于O 3O 4所在直线对称,那么四边形O 1O 4O 2O 3的面积为〔〕A 、12cm 2B 、24cm 2C 、36cm 2D、48cm211、如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1、假设将横板AB 换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,那么以下结论正确的选项是〔〕A.h2=2h1B.h2=1.5h1C.h2=h1D、h2=h112、如图,矩形ABCD中,P为CD中点,点Q为AB上的动点〔不与A,B重合〕、过Q作QM⊥PA于M,QN⊥PB于N、设AQ的长度为x,QM与QN的长度和为y、那么能表示y与x 之间的函数关系的图象大致是〔〕A、B、C、D、【二】填空题〔此题共6个小题,每题3分,总分值18分〕13、计算:tan45°+cos45°= 、14、在▱ABCD中,点A〔﹣1,0〕,B〔2,0〕,D〔0,1〕、那么点C的坐标为、15、如图为2018年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,那么一个内角为度〔不取近似值〕16、如下图的圆面图案是用相同半径的圆与圆弧构成的、假设向圆面投掷飞镖,那么飞镖落在黑色区域的概率为。
2019山东烟台市中考数学试题及答案2019年山东烟台市中考数学试卷(考试时间120分钟,满分120分。
)注意:1.答题前,必须把考号和姓名写在密封线内;2.在试卷上作答,不得将答案写到密封线内3.沉着、冷静,相信你一定会发挥的更好!一、选择题(本大题共10个小题,每小题3 分,共30分):以下每小题都给出代号为A、B、C、D的四个答案,其中只有一项是正确,把正确答案的代号填在表内。
1.已知点P(3,-2)与点Q关于x轴对称,则Q点的坐标为()A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)2.如图(1),在等腰直角△ABC中,B=90°,将△ABC绕顶点A 逆时针方向旋转60°后得到△AB’C’则等于()A.60°B.105°C.120° D.135°3.下列四个函数中,y随x增大而减小的是()A.y=2x B.y=―2x+5 C.y=― D.y=―x2+2x―14.据“保护长江万里行”考察队统计,仅2019年长江流域废水排放量已达163.9亿吨!治长江污染真是刻不容缓了!请将这个数据用四舍五入法,使其保留两个有效数字,再用科学记数法表示出来是()A.亿吨B.亿吨C.亿吨D.亿吨5.直线经过第二、三、四象限那么下列结论正确的是()A.B.点(a,b)在第一象限内C.反比例函数当x0时函数值y随x增大而减小D.抛物线y=ax2+bx+c的对称轴过二、三象限6、如图,CD是斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于()A.25° B.30° C.45° D.60°7.如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=53°,且cos53°=,AB=4,则AD的长为()A.3 B.C.D.8.2019年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形。
2019年山东省烟台市初中毕业、升学考试数学(满分120分,考试时间120分钟)一、选择题(本题共12小题,每小题3分,满分36分)每个小题都给出标号为A、B、C、D四个备选答案,其中有且只有一个是正确的.1.(2019山东烟台,1,3分)8-的立方根是().A.2 B.2-C.2±D.22-【答案】B【解析】8-的立方根382=-=-.【知识点】求实数的立方根.2.(2019山东烟台,2,3分)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是().A.B.C.D.【答案】C【解析】选项A是中心对称图形不是轴对称图形,选项B是轴对称图形不是中心对称图形,选项C既是中心对称图形又是轴对称图形,选项D是轴对称图形不是中心对称图形.【知识点】轴对称图形和中心对称图形的认识.3.(2019山东烟台,3,3分)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是().A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】将小正方体①移走后,该几何体的主视图和左视图没有发生变化,俯视图中小正方体①的投影会没有.【知识点】认识简单几何体的三视图.4.(2019山东烟台,4,3分)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为().A.25B.12C.35D.无法确定【答案】B【解析】利用图形的对称性,可以看出在正六边形镖盘中白色区域与阴影区域的面积相等,所以飞镖落在白色区域的概率为12.【知识点】概率的初步.5. (2019山东烟台,5,3分)某种计算机完成一次基本运算的时间为1纳秒(ns ),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( ).A .91.510-⨯秒B .91510-⨯秒C .81.510-⨯秒D .81510-⨯秒 【答案】C【解析】该计算机完成15次基本运算,所用时间为15纳秒(即91510-⨯秒),用科学记数法表示为81.510-⨯秒. 【知识点】科学记数法的表示.6. (2019山东烟台,6,3分)当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定 【答案】A【解析】因为5b c +=,所以5c b =-,因为()2224343(5)6240b c b b b ∆=-⨯⨯=-⨯⨯-=-+>,所以该一元二次方程有两个不相等的实数根. 【知识点】一元二次方程的实数根的判定.7. (2019山东烟台,7,3分)某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差241s =.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( ).A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变 【答案】B【解析】由于小亮补测的成绩为90分,与平均分相同,所以该班40人的测试成绩的平均分不变,因为39人的数据与40人的数据相比,增加的成绩与平均分一致,在方差的计算公式中,分母变大(39变成40),分子没有变,所以方差变小.【知识点】平均分和方差的计算.8. (2019山东烟台,8,3分)已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA ,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ). A .15︒ B .45︒ C .15︒或30︒ D .15︒或45︒ 【答案】D【解析】由题目可以得出OP 为AOB ∠的平分线,所以1302AOP BOP AOB ∠=∠=∠=︒,又因为15POC ∠=︒,考虑到点C 有可能在AOP ∠内也有可能在BOP ∠内,所以当点C 在AOP ∠内时BOC ∠45BOP POC =∠+∠=︒,当点C 在BOP ∠内时BOC ∠15BOP POC =∠-∠=︒.【知识点】尺规作图(作已知角的平分线)和数学思想方法(分类讨论).9. (2019山东烟台,9,3分)南宋数学家杨辉在其著作《详解九章算法》中揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角” . 0()1a b +=1()a b a b+=+222()2a b a ab b+=++33223()33a b a a b ab b+=+++4432234()464a b a a b a b ab b+=++++554322345()510105a b a a b a b a b ab b+=+++++…则9()a b+展开式中所有项的系数和是().A.128 B.256 C.512 D.1024【答案】C【解析】由题目可以得出OP为AOB∠的平分线,所以1302AOP BOP AOB∠=∠=∠=︒,又因为15POC∠=︒,考虑到点C有可能在AOP∠内也有可能在BOP∠内,所以当点C在AOP∠内时BOC∠45BOP POC=∠+∠=︒,当点C在BOP∠内时BOC∠15BOP POC=∠-∠=︒.【知识点】尺规作图(作已知角的平分线)和数学思想方法(分类讨论).10.(2019山东烟台,10,3分)如图,面积为24的□ABCD中,对角线BD平分ABC∠,过点D作DE BD⊥交BC的延长线于点E,6DE=,则sin DCE∠的值为().A.2425B.45C.34D.1225FA DB C M【答案】A【思路分析】先判断出四边形ABCD的高,然后利用三角函数的定义求得答案.【解题过程】连接AC,交BD于点F,过点D作DM CE⊥,垂足为M,因为四边形ABCD是平行四边形,所以F是BD的中点,AD//BC,所以DBC ADB∠=∠,因为BD是ABC∠的平分线,所以ABD DBC∠=∠,所以ABD ADB∠=∠,第10题答图所以AB AD =, 所以□ABCD 是菱形, 所以AC BD ⊥,又因为DE BD ⊥, 所以AC//DE ,因为AC//DE ,F 是BD 的中点, 所以C 是BE 的中点, 所以132CF DE ==, 因为四边形ABCD 是菱形, 所以26AC FC ==,2ABCD AC BDS ⨯=菱形, 所以222486ABCDS BD AC⨯===菱形, 所以142BF BD ==, 在Rt △BFD 中,由勾股定理得225BC BF CF +=,因为四边形ABCD 是菱形, 所以5DC BC ==, 因为ABCD S BC DM =⨯菱形 所以245ABCDS DM BC==菱形, 在Rt △DCM 中,24sin 25DM DCE DC ∠==. 【知识点】平行四边形的性质、菱形的判定、三角函数的计算和勾股定理.11.(2019山东烟台,11,32y ax bx c =++的y 与x 的部分对应值如下表:x-1 0 2 3 4y5-4-3 04x <时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若1(,2)A x ,2(,3)B x 是抛物线上两点,则12x x <.其中正确的个数是( ).A .2B .3C .4D .5 【答案】B【思路分析】根据二次函数的部分对应值在平面直角坐标系中描点、连线,根据图像进行结论的判定,从而求得答案.【解题过程】先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确,由图象(或表格)可以看出抛物线与x 轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线2x =且抛物线与x 轴的两个交点间的距离为4,所以结论②和④正确,有抛物线的图象可以看出当04x <<时,0y <,所以结论③错误,由图象可以看出当抛物线上的点的纵坐标为2或3时,对于的点均有两个,若1(,2)A x ,2(,3)B x 是抛物线上两点,既有可能12x x <,也有可能12x x >,所以结论⑤错误.【知识点】二次函数的图象(抛物线)的性质. 12.(2019山东烟台,12,3分)如图,AB 是O e 的直径,直线DE 与O e 相切于点C ,过点A ,B 分别作AD DE ⊥,BE DE ⊥,垂足为点D ,E ,连接AC ,BC .若3AD =,3CE =,则»AC 的长为( ). A .233 B .33π C .32π D .233π CODEBA【答案】D【思路分析】先证明△ADC ∽△CED ,再根据相似三角形的性质得到AC 与边CD 的比值,根据圆周角定理的推论,得到90ACB ∠=︒,利用锐角三角函数计算出60CAB ∠=︒,最终计算出O e 的半径和»AC 所对的圆心角,利用弧长公式从而求得答案. 【解题过程】连接OC ,因为AD DE ⊥,BE DE ⊥,所以90ADC CEB ∠=∠=︒ 所以90DAC ACD ∠+∠=︒ 因为AB 是O e 的直径,所以90ACB ∠=︒,所以90BCE ACD ∠+∠=︒, 所以BCE DAC ∠=∠, 在△ADC 与△CED ,因为90ADC CEB ∠=∠=︒,BCE DAC ∠=∠ 所以△ADC ∽△CED , 所以33BC CE AC AD ===在Rt △ACB 中,sin 3BCBAC AC∠== 所以60BAC ∠=︒, 又因为OA OC =,所以△AOC 是等边三角形, 所以60ACO ∠=︒,因为直线DE 与 O e 相切于点C ,第12题答图所以OC DE ⊥,因为AD DE ⊥,OC DE ⊥, 所以AD//OC ,所以60DAC ACO ∠=∠=︒,所以9030ACD DAC ∠=︒-∠=︒, 所以223AC AD ==, 所以△AOC 是等边三角形,所以23OA AC ==,60AOC ∠=︒,所以»AC 的长为602323ππ⨯⨯=.【知识点】圆的切线的性质、相似三角形的判定和性质、圆周角定理的推论、等边三角形的判定和性质、弧长的计算、锐角三角函数.二、填空题(本大题共6个小题,每小题3分,满分18分). 13.(2019山东烟台,13,3分)1622cos 45--⨯-︒= . 【答案】2【解析】112622cos 456231222--⨯-︒=⨯-⨯=-=. 【知识点】实数的计算、简单的锐角三角函数值、负数指数幂、绝对值、二次根式. 14.(2019山东烟台,14,3分)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为 . 【答案】3【解析】因为分式方程33122x m x x +-=--中最简公分母为(2)x -,而这个分式方程有增根,故这个方程的增根为2x =,将原分式方程化为整式方程,得3(2)3x x m --=+,将2x =代入上式,解得3m =.【知识点】分式方程的计算、分式方程增根的含义.15.(2019山东烟台,15,3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO 的顶点坐标分别为(2,1)A --,(2,3)B --,(0,0)O ,111A B O 的顶点坐标为1(1,1)A -,1(1,5)B -,1(5,1)O ,△ABO 与111A B O 是以点P 为位似中心的位似图形,则P 点的坐标为 .【答案】(5,1)--【解析】连接1AA ,1OO ,它们的交点即为点P ,通过读图,可得P 点的坐标为(5,1)--. 【知识点】图形的位似和图形与坐标.16.(2019山东烟台,16,3分)如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为 . 【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-.【知识点】一次函数的图象、一次函数与一元一次不等式. 17.(2019山东烟台,17,3分)小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .【答案】22.5︒【解析】在解本题的过程中,可以找一张正方形的纸片进行如题操作,通过测量,来得到答案,也可以利用图形的轴对称的性质,直接得到AOB ∠的度数是22.5︒. 【知识点】图形的轴对称. 18.(2019山东烟台,18,3分)如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形.已知O e 是△ABC 的内切圆,则阴影部分的面积为 .【答案】5233π-【思路分析】通过计算扇形的面积、△ABC 的面积和三角形内切圆的面积,通过图形的组合,最终求得答案. 【解题过程】23234ABCS== 260223603ABCS ππ⨯==扇形,△ABC 的内切圆半径为3132ABCS=(2+2+2),2333ABC Sππ⎛=⨯= ⎝⎭的内切圆,所以阴影部分的面积为()3=ABC ABC ABC ABC S SS S -+-的内切圆扇形()5233π-. 【知识点】三角形的面积、扇形的面积、三角形的内切圆、等边三角形性质. 三、解答题(本大题共7个小题,满分66分). 19.(2019山东烟台,19,6分)先化简2728(3)33x xx x x -+-÷--,再从0≤x ≤4中选一个适合的整数代入求值. 【思路分析】对小括号内的分式进行同分,再将除法转化为乘法,通过分解因式,然后约分,得到最终的代数式,注意从0≤x ≤4中选整数时,注意除了要考虑要使最终化简的代数式有意义,还需要考虑式原代数式有意义.【解题过程】2728(3)33x xx x x -+-÷-- 2(3)(3)73)3328x x x x x x x +--⎡⎤=-⨯⎢⎥---⎣⎦(4)(4)332(4)x x x x x x +--=⨯--42x x+=因为23028020x x x x -≠⎧⎪-≠⎨⎪≠⎩,所以x 不能取0, 3,4,考虑到0≤x ≤4中选一个整数,故x 只能取1或2,①当1x =时,原式145212+==⨯②当2x =时, 原式243222+==⨯ 注意:①与②只写一种即可.【知识点】分式的化简求值. 20.(2019山东烟台,20,8分)十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏"、“歌曲联唱”、“民族舞蹈”等节目.小颍对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有 个班级表演这些节目,班数的中位数为 .在扇形统计图中,第四届班级数的扇形圆心角的度数为 ; (2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、"民乐演奏”、“歌曲联唱"、“民族舞蹈”分别用A ,B ,C ,D 表示) .利用树状图或表格求出该班选择A 和D 两项的概率. 【思路分析】本题要结合两幅图表进行计算,先算出总的班级数,然后在计算各个分量,完成(1)和(2),第(3)小题是一种不放回抽样,既可以用树状图也可以列表,通过分析和计算,得出事件的概率. 【解题过程】(1)由折线统计图,可以看出第一届、第二届、第三届艺术节表演节目的班级数量分别为5,7,6,所以第一、二、三届艺术节表演节目的总班级数为18;由扇形统计图可求得,第五届艺术节表演节目的班级数占五届艺术节表演节目的总班级数的117360,所以五届艺术节表演这些节目的总班级数为11718(122.5%)360÷--40=,所以第四届艺术节表演节目的班级数量为4022.5%9⨯=,第五届艺术节表演节目的班级数量为1174013360⨯=,所以扇形统计图中,第四届班级数的扇形圆心角的度数为36022.5%81⨯=度,五届艺术节表演这些节目的班级数依次为5,7,6,9,13,所以班数的中位数为7. 综上可知,(1)的答案为40,7,81度.(2)由(1)中的计算,可知第四届艺术节表演节目的班级数量为9,第五届艺术节表演节目的班级数量为13,据此,可以将折线统计图补全.(3)列表法:A B C D A / (B ,A )(C ,A ) (D ,A ) B (A ,B ) / (C ,B )(A , B ) C (A ,C ) (B ,C ) / (D ,C )D(A ,D )(B ,D )(C ,D )/从上表可以看出,共有12种等可能结果其中该班选择A 和D 两项的共有2种. ∴P (该班选择A 和D 两项的)= 21126= 树状图法:从上图可以看出,共有12种等可能结果其中该班选择A 和D 两项的共有2种. ∴P (该班选择A 和D 两项的)=21126= 【知识点】扇形统计图和折线统计图的认识、利用树状图或表格求简单事件的概率. 21.(2019山东烟台,21,9分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配 36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆? 【思路分析】根据题目列一元一次方程或者二元一次方程组可求得第(1)问,根据已知列出二元一次方程,通过检验,获得问题的答案. 【解题过程】(1)方法1:解:设计划调配36座新能源客车x 辆,该大学共有y 名志愿者.由题意,得36222(4)2x yx y +=⎧⎨+-=⎩,解得6218x y =⎧⎨=⎩所以计划调配36座新能源客车6辆,该大学共有218名志愿者.方法2:解:设计划调配36座新能源客车x 辆.由题意,得36222(4)2x x +=+-,解得6x =, 所以该大学共有(3662)218⨯+=名志愿者所以计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)解:设36座和22座两种车型各需m ,n 辆.由题意,得3622218m n +=,且m ,n 均为非负整数,CB A CDBDA D C AB DA B C开始经检验,只有35mn=⎧⎨=⎩符合题意.所以36座和22座两种车型各需3,5辆.【知识点】一元一次方程与实际问题、二元一次方程组与实际问题.22.(2019山东烟台,22,9分)如图,在矩形ABCD中,2CD=,4AD=,点P在BC上,将ABP沿AP折叠,点B恰好落在对角线AC上的E点,O为AC上一点,Oe经过点A,P.(1)求证:BC是Oe的切线.(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.【思路分析】根据图形轴对称的性质,可知折叠前后的两个图形全等,利用“知切点,连半径,证垂直”可以求证出BC是Oe的切线,从而解得第(1)问;第(2)中,设CF=x,在直角三角形ACD中利用勾股定理列一个方程,即可求得FC的长,从而可以验证点F是否为线段BC的黄金分割点.【解题过程】(1)证明:连接OP,ABOE因为四边形ABCD为矩形,所以90B∠=︒,因为△APE是由△ABP折叠得到,所以△APE≌△ABP,所以BAP EAP∠=∠,因为OA OP=,所以APO EAP∠=∠,所以BAP APO∠=∠,所以AB//OP,所以90OPC B∠=∠=︒,所以OP BC⊥,所以BC是Oe的切线.(2)解:点F是线段BC的黄金分割点,理由如下:设CF=x,则CE=x,因为四边形ABCD为矩形,第22题答图所以90D ∠=︒,2,4AB CD BC AD ====,因为△APE 是由△ABP 折叠得到, 所以△APE ≌△ABP , 所以2AE AB ==,所以2AC AE EC x =+=+,在Rt △ADC 中,由勾股定理得,222AC CD AD =+,即222(2)24x +=+,解得252x =--(舍去)或252x =-,所以252FC =-,因为2525142FC BC --==, 所以点F 是线段BC 的黄金分割点.【知识点】矩形的性质定理、直线与圆的位置关系、黄金分割、图形的轴对称、全等三角形的性质、勾股定理. 23.(2019山东烟台,23,10分)如图所示,一种适用于笔记本电脑的铝合金支架,边OA ,OB 可绕点O 开合,在OB 边上有一固定点P ,支柱PQ 可绕点P 转动,边OA 上有六个卡孔,其中离点O 最近的卡孔为M ,离点O 最远的卡孔为N .当支柱端点Q 放入不同卡孔内,支架的傾斜角发生変化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得OP 的长为12 cm ,OM 为10cm ,支柱PQ 为8cm .(1)当支柱的端点Q 放在卡孔M 处时,求AOB ∠的度数.(2)当支柱的端点Q 放在卡孔N 处时,20.5AOB ∠=︒,若相邻两孔的距离相等,求此间距.(结果精确到十分位).【思路分析】通过作辅助线,构造直角三角形,利用勾股定理和锐角三角函数解决问题. 【解题过程】(1)解:当支柱的端点Q 放在卡孔M 处时,作出该支架的截面图如图(1),OAQ (M )PE B过点P 作PE OA ⊥,垂足为E ,此时,12OP =,10OM OQ ==,8PQ =, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒,设OE x =,所以10EQ OQ OE x =-=-, 在Rt △OPE 中,由勾股定理得,222PE OP PE =-2212x =-,在Rt △PEQ 中,由勾股定理得,222PE PQ EQ =-228(10)x =--, 所以2222128(10)x x -=--,解得9x =,所以9OE =,在Rt △OPE 中,9cos 0.4512OE AOB OP ∠===, 由参考数据表,可得,41AOB ∠=︒.(2)解:当支柱的端点Q 放在卡孔N 处时,作出该支架的截面图如图(2),OAQ (N )PF B过点P 作PE OA ⊥,垂足为F ,第23题答图(1)第23题答图(2)此时,12OP =,ON OQ =,8PQ =,20.5AOB ∠=︒, 因为PE OA ⊥,所以90OEP PEQ ∠=∠=︒, 在Rt △OPE 中,sin PEAOB OP∠=, 所以sin sin 20.5120.45 4.2PE OP AOB OP =⨯∠=⨯︒=⨯=, 在Rt △PEQ 中,由勾股定理得,22228 4.246.36 6.8FQ PQ PE =-=-==,在Rt △OPE 中,由勾股定理得,222212 4.2126.3611.24OF OP PE =-=-==2212x =-,所以11.24 6.818.04ON OF FQ =+=+=,所以18.04101.655ON OM d --==≈, 所以相邻两孔的距离为1.6cm .【知识点】勾股定理、锐角三角函数、一元一次方程、计算器的使用. 24.(2019山东烟台,24,11分) 【问题探究】(1)如图1,△ABC 和△DEC 均为等腰直角三角形,90ACB DCE ∠=∠=︒,点B ,D 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系: ;②若10AC BC ==,2DC CE ==,则线段AD 的长为 .【拓展延伸】(2)如图2,△ABC 和△DEC 均为直角三角形,90ACB DCE ∠=∠=︒,21AC =,7BC =,3CD =,1CE =,将△DEC 绕点C 在平面内顺时针旋转,设旋转角BCD ∠为α(0360)α︒≤≤︒,作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.【思路分析】第(1)问中,利用SAS 判定两个三角形(△ACD 与△BCE )全等,利用全等三角形的性质得到最应角相等,利用有两个角互余的三角形是直角三角形得到△ABD 是直角三角形,所以AD 与BD 之间的位置关系为垂直,在Rt △ABD 中利用勾股定理列一个方程,从而求得AD 的长;第(2)问中,利用旋转的性质可以判定△ACD 与△BCE 相似,然后利用有两个角互余的三角形是直角三角形得到△ABD 是直角三角形,所以AD 与BD 之间的位置关系为垂直,在Rt △ABD 中利用勾股定理列一个方程,从而求得AD 的长,注意需要对不同的位置进行分类讨论. 【解题过程】(1)本题的答案是 ①AD BD ⊥ ②4 探究过程如下:①因为△ABC 和△DEC 均为等腰直角三角形,90ACB DCE ∠=∠=︒ 所以CA CB =,CD CE =,ACB BCD DCE BCD ∠+∠=∠+∠ 所以ACD BCE ∠=∠, 在△ACD 与△BCE 中,因为CA CB =,ACD BCE ∠=∠,CD CE =,所以△ACD ≌△BCE ,所以CAD CBE ∠=∠, 因为90ACB ∠=︒所以90CAD DAB ABC ∠+∠+∠=︒, 所以90CBE DAB ABC ∠+∠+∠=︒即90DAB DBA ∠+∠=︒ 所以90ADB ∠=︒, 所以AD BD ⊥.②由①可得△ACD ≌△BCE , 所以AD BE =,在Rt △DCE 中,由勾股定理得,2222(2)(2)2DE CE CD =+=+=,在Rt △ACD 中,由勾股定理得,2222(10)(10)25AB AC BC =+=+=,设AD x =,则BE x =,所以2BD BC DE x =-=-, 在Rt △ABD 中,由勾股定理得,222AB AD BD =+,即 222(25)(2)x x =+-解得4x =或2x =-(舍去),所以4AD =,即线段AD 的长为4.(2)解:情况1:当0180α︒≤≤︒时,点B ,D ,E 在同一直线上时的图形如图(1)所示,ACD因为ACB DCE ∠=∠所以ACB BCD DCE BCD ∠+∠=∠+∠ 所以ACD BCE ∠=∠, 因为2137AC BC ==33DC CE ==, 所以AC DCBC CE=在△ACD 与△BCE 中, 因为AC DCBC CE=,ACD BCE ∠=∠, 所以△ACD ∽△BCE ,所以CAD CBE ∠=∠,3AD ACBE BC== 所以3AD BE =因为90ACB ∠=︒所以90CAD DAB ABC ∠+∠+∠=︒, 所以90CBE DAB ABC ∠+∠+∠=︒即90DAB DBA ∠+∠=︒ 所以90ADB ∠=︒,在Rt △DCE 中,由勾股定理得,22221(3)2DE CE CD =+=+=,在Rt △ACD 中,由勾股定理得,2222(21)(7)27AB AC BC =+=+=,设BE x =,则33AD BE x ==, 所以2BD BC DE x =-=-, 在Rt △ABD 中,由勾股定理得,222AB AD BD =+,即 222(27)3)(2)x x =+-解得3x =或2x =-(舍去),第24题答图(1)所以333AD BE ==即当0180α︒≤≤︒时,点B ,D ,E 在同一直线上时,线段AD 的长为33 情况2:当180360α︒<≤︒时,点B ,D ,E 在同一直线上时的图形如图(2)所示,ACDE因为90ACB DCE ∠=∠=︒所以ACB ACE DCE ACE ∠-∠=∠-∠ 所以ACD BCE ∠=∠, 因为2137AC BC ==331DC CE ==, 所以AC DCBC CE=在△ACD 与△BCE 中, 因为AC DCBC CE=,ACD BCE ∠=∠, 所以△ACD ∽△BCE ,所以CAD CBE ∠=∠,3AD ACBE BC== 所以3AD BE =因为90ACB ∠=︒所以90CAD DAB ABC ∠+∠+∠=︒, 所以90CBE DAB ABC ∠+∠+∠=︒即90DAB DBA ∠+∠=︒ 所以90ADB ∠=︒,在Rt △DCE 中,由勾股定理得,22221(3)2DE CE CD =+=+=,在Rt △ACD 中,由勾股定理得,2222(21)(7)27AB AC BC =+=+=,设BE x =,则33AD BE x ==, 所以2BD BC DE x =+=+, 在Rt △ABD 中,由勾股定理得,222AB AD BD =+,第24题答图(2)即 222(27)(3)(2)x x =++解得2x =或3x =-(舍去),所以323AD BE ==,即当180360α︒<≤︒时,点B ,D ,E 在同一直线上时,线段AD 的长为23. 综上可知,线段AD 的长为33或23.【知识点】全等三角形的判定和性质、相似三角形的判定和性质、一元二次方程、直角三角形的性质与判定、图形的旋转. 25.(2019山东烟台,25,13分)如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(1,0)A -,B 两点,与y 轴交于点C ,过点C 作CD y ⊥轴交抛物线与另一个点D ,作DE x ⊥轴,垂足为点E .双曲线6(0)y x x=>经过点D ,连接MD ,BD . (1)求抛物线的解析式.(2)点N ,F 分别是x 轴,y 轴上的两点,当M ,D ,N ,F 为顶点的四边形周长最小时,求出点N ,F 的坐标; (3)动点P 从点O 出发,以每秒1个单位长度的速度沿OC 方向运动,运动时间为t 秒,当t 为何值时,BPD ∠的度数最大?(请直接写出结果)【思路分析】第(1)问中,利用反比例函数的性质,可知矩形OEDC 的面积为6,,利用抛物线的表达式可以求出点C 的坐标,从而得到OC 的长,利用矩形OEDC 的面积可以求出CD 的长,进而确定点D 的坐标,将点D 和点A 的坐标代入抛物线的表达式,就可以求出抛物线的表达式中的待定系数的值,从而得到抛物线的表达式;第(2)问中,利用点的对称性和两点之间线段最短,作点D 关于x 轴的对称点H ,作点M 关于y 轴的对称点I ,连接HI ,交x 轴于点N ,交y 轴于点F ,此时M ,D ,N ,F 为顶点的四边形周长最小,利用一次函数,可以求出点N ,F 的坐标;第(3)问中,利用圆周角的性质,可以知道,当以BD 为弦的圆与直线CD 相切时BPD ∠的度数最大,利用圆心到切点的距离等于半径,列方程即可求出t 的值. 【解题过程】(1)当0x =时 20033y a b =⨯+⨯+=所以3OC =,(0,3)C ,因为CD y ⊥轴,DE x ⊥轴,CO EO ⊥, 所以四边形OEDC 为矩形,又因为双曲线6(0)y x x=>经过点D , 所以6OEDC S =矩形, 所以2OEDCS CD OC==矩形,所以(2,3)D将点(1,0)A -、(2,3)D 代入抛物线23y ax bx =++得 304233a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩所以抛物线的表达式为223y x x =-++.(2)解:作点D 关于x 轴的对称点H ,作点M 关于y 轴的对称点I ,如图(1)由图形轴对称的性质可知FM FI =,ND NH =,所以四边形MDNF 的周长MD DN FN FM MD NH FN FI =+++=+++,因为MD 是定值,所以当NH FN FI ++最小时,四边形MDNF 的周长最小,因为两点之间线段最短,所以当I 、F 、N 、H 在同一条直线上时NH FN FI ++最小 所以当I 、F 、N 、H 在同一条直线上时,四边形MDNF 的周长最小,连接HI ,交x 轴于点N ,交y 轴于点F , 因为抛物线的表达式为223y x x =-++,所以点M 的坐标为(1,4),第25题答图(1)由轴对称的性质可得,(1,4)I -,(2,3)H -, 设直线HI 的表达式为y mx n =+, 所以423m n m n -+=⎧⎨+=-⎩,解得7353m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以直线HI 的表达式为7533y x =-+, 当0x =时,53y =, 当0y =时,75033x =-+,所以57x =,所以5(0,)3F ,5(,0)7N ,所以当M ,D ,N ,F 为顶点的四边形周长最小时,5(0,)3F ,5(,0)7N .(3)解:本题的答案为9215-.解题分析:如图(2),当两点A 、B 距离是定值,直线CD 是一条固定的直线,点P 在直线CD 上移动,由下图可以看出只有当过A 、B 的圆与直线CD 相切时APB ∠最大.所以可作T e 过点B 、D ,且与直线OC 相切,切点为P ,此时BPD ∠的度数最大, 由已知,可得OP t =, (0,)P t因为直线OC 与T e 相切, 所以TP OC ⊥,所以直线PT 的解析式为y t =第25题答图(2)第25题答图(3)版权均属于北京全品文教科技股份有限公司,未经本公司授权,不得转载、摘编或任意方式使用上述作品,否则坚决追究转载方法律责任 因为抛物线的表达式为223y x x =-++,所以点B 的坐标为(3,0),因为点B (3,0)、点(2,3)D可以求得直线BD 的垂直平分线的解析式为1233y x =+ 联立y t =与1233y x =+,得32x t =-,y t = 直线PT 与直线BD 的交点即为点M ,所以(32,)M t t -因为MB MC =,可得2232(323)(0)t t t -=--+-解得9215t =-9215t =+(舍去) 所以当9215t =-,BPD ∠的度数最大.【知识点】二次函数(抛物线)的图象和性质、反比例函数(双曲线)的图象和性质、最短路径问题、一次函数的图象和性质、直线与圆的位置关系、勾股定理.。