【配套K12】九年级数学下册第1章解直角三角形1.3解直角三角形第3课时方位角与仰角俯角问题同步练习
- 格式:doc
- 大小:580.00 KB
- 文档页数:5
第一章直角三角形的边角关系5 三角函数的应用课时1 解直角三角形在方向角,仰角、俯角中的应用1.结合实际问题,弄清方位角的概念,通过解直角三角形,获得用数学知识解决实际问题的经验.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.3.通过把实际问题转化为数学问题的过程,感受数学与生活的联系,增强学生的数学应用意识;在学习过程中通过小组合作交流,培养学生的合作交流能力与数学表达能力.体会三角函数在解决问题过程中的作用,发展学生的数学应用意识和解决问题的能力.根据题意,了解有关术语,准确地画出示意图.课前5分钟:学生欣赏电影《泰坦尼克号》3D版预告片视频.如图1-5-6,泰坦尼克号(RMS Titanic)是一艘奥林匹克级游轮,于1912年4月处女航时撞上冰山后沉没.“泰坦尼克号”为Titanic常用的翻译,Titan是希腊神话中的泰坦星,象征着力量和庞大.电影《泰坦尼克号》更是叙述了一段浪漫、凄美的爱情故事.泰坦尼克号的沉没让人感到遗憾,如果舵手能够分清方向、准确计算距离,也许“泰坦尼克号”的结局会是美丽的.同学们,如果你是船长,怎样才能利用我们所学的知识来避免这样的灾难呢?本节课我们将一起探讨这个问题.【探究1】如图1-5-7,海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,图1-5-7开始在A岛南偏西55°方向的B处,往东行驶20海里后,到达该岛的南偏西25°方向的C处.之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.处理方式:首先我们可将小岛A确定,货轮B在小岛A的南偏西55°方向的B处,根据“上北下南,左西右东”,B在A的“下偏左”55°位置.C在B的正东方,即C在B的右边.且在A的南偏东25°方向处,即C在A的“下偏左”25°位置.图1-5-8【探究2】如图1-5-8,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50 m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)处理方式:(自主解决问题)(鼓励学生展示自己的解题过程)例1如图1-5-9,荆河公园管理处计划在公园里建一个以A为喷泉中心,且半径为15 m的圆形喷水池.公园里已建有B,C两个休息亭,BC是一条长50 m的人行道,已测得∠ABC=45°,∠ACB=30°.(1)若要在人行道BC上安装喷泉用水控制阀门E,使它到喷泉中心A的距离最短,请你在BC上画出该点E的位置.(2)通过计算,你认为该圆形喷水池会影响人行道的通行吗?图1-5-9(积极思考,先独立完成,后集体交流展示)变式:如图1-5-10某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4 m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01 m)图1-5-10 图1-5-11处理方式:学生对于具体的问题通过自主思考、小组交流、学生展讲、教师点拨后基本能形成比较好的解题思路.学生书写过程不规范,教师给出规范的步骤.根据图1-5-11回答下列问题:(1)若AC代表原楼梯长,则楼高、楼梯在地面上的长度分别是什么?40°的角是哪个角?(2)在楼梯改造过程中,楼高是否发生了变化?例2如图1-5-12,水库大坝的截面是梯形ABCD,其中AD∥BC,坝顶AD=6 m,坡长CD=8 m,坡底BC=30 m,∠ADC=135°.图1-5-12(1)求∠ABC的度数;(2)如果坝长100 m,那么修筑这个大坝共需多少土石料(结果精确到0.01m3)?(积极思考,先独立完成,后集体交流展示)我们可以按照下面两图所示的方法构造直角三角形解决问题.图1-5-13 图1-5-14你能独立完成解答过程吗?例3如图1-5-14,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5 m,在点C上方2 m处加固另一条钢缆ED,那么钢缆ED的长度为多少?例4如图1-5-15,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.(1)B处是否会受到台风的影响?请说明理由.(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(参考数据:2≈1.4,3≈1.7)图1-5-15结合实际情景抽象出几何图形,利用直角三角形的边角关系解决实际问题.学生被情境吸引,迫切想获得新知.通过“触礁”问题的解决,引导学生分析问题,初步掌握数学建模的方法,然后再放手让学生自主解决问题.。
第1章解直角三角形
第3课时方位角与仰角、俯角问题
知识点1 方向角问题
图1-3-24
1.如图1-3-24,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2海里的点A 处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB是( )
A.2海里 B.2sin55°海里
C.2cos55°海里 D.2tan55°海里
2.2017·泸州如图1-3-25,海中一渔船在A处且与小岛C相距70 n mile,若该渔船由西向东航行30 n mile到达B处,此时测得小岛C位于B的北偏东30°方向上.求该渔船此时与小岛C之间的距离.
图1-3-25
3.如图1-3-26,一艘海监船以30海里/时的速度向正北方向航行,海监船在A处时,测得岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时岛C与该船距离最短.
(1)请在图中作出该船在点B处的位置;
(2)求岛C与B处之间的距离(结果保留根号).
图1-3-26
知识点2 仰角与俯角问题
4.如图1-3-27,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( )
A .100 3 m
B .50 2 m
C .50 3 m D.100 33 m
1-3-27
1-3-28
5.如图1-3-28,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120 m ,这栋高楼BC 的高度为( )
A .40 3 m
B .80 3 m
C.120 3 m D.160 3 m
6.天封塔历史悠久,是宁波著名的文化古迹.如图1-3-29,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度CD为51米,A,B两点在CD的两侧,且点A,D,B在同一水平线上,求A,B之间的距离.(结果保留根号)
图1-3-29
7.2017·广安如图1-3-30,线段AB,CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥AD,垂足分别为A,D.从D点测得B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.
(1)求甲、乙两建筑物之间的距离AD;
(2)求乙建筑物的高CD.
图1-3-30
8.2017·重庆如图1-3-31,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)( )
A.5.1米 B.6.3米 C.7.1米 D.9.2米
1-3-31
1-3-32
9.高考英语听力测试期间,需要杜绝考点周围的噪声.如图1-3-32,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?________(填“需要”或“不需要”).(3取1.732)
10.课本作业题第2题变式2017·绍兴如图1-3-33,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30 m.
(1)求∠BCD的度数;
(2)求教学楼的高BD(结果精确到0.1 m,参考数据:tan20°≈0.36,tan18°≈0.32).
图1-3-33
11.创新学习某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不
易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他俩带着测倾器和皮尺来测量这个距离.测量方案如下:如图1-3-34,首先,小军站在“聚贤亭”的A处,用测倾器测得“乡思柳”顶端M的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米;然后,小军在A处蹲下,用测倾器测得“乡思柳”顶端M的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上所测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452)
图1-3-34。