必修四第二章向量练习题
- 格式:docx
- 大小:670.57 KB
- 文档页数:12
人教版高一数学必修4第二章平面向量测试题(含答案)必修4第二章平面向量教学质量检测1.以下说法错误的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD的是()AB+CD)+BC;(AD+MB)+(BC+CM);MB+AD-BM;OC-OA+CD3.已知向量a=(3,4),向量b=(5,12),a与b夹角的余弦为:cosθ = (a·b) / (|a|·|b|)3×5+4×12) / (5×5+12×12)56 / 169所以选项C正确。
4.已知a、b均为单位向量,它们的夹角为60°,那么|a+ 3b| =a+3b|^2 = (a+3b)·(a+3b)a·a + 6a·b + 9b·b1 + 6cos60° + 913所以选项C正确。
5.已知ABCDEF是正六边形,且AB=a,AE=b,则BC=CD=DE=a-b,所以选项A正确。
6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5a-3b,则AD=BC+CD=-9a-4b,所以选项C正确。
7.设e1与e2是不共线的非零向量,且ke1+e2与e1+ke2共线,则有:ke1+e2 = λ(e1+ke2)k-λ)e1 + (1-λ)ke2 = 0由于e1和e2不共线,所以k-λ=0或1-λ=0,即k=λ或k=1/λ,所以选项C正确。
8.在四边形ABCD中,AB=DC,且AC·BD=0,所以四边形ABCD是矩形,所以选项A正确。
9.已知M(-2,7)、N(10,-2),点P是线段MN上的点,且PN=-2PM,则P点的坐标为:P = (1/3)M + (2/3)N = (1/3)(-2,7) + (2/3)(10,-2) = (6,1),所以选项C正确。
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .31+ B .312- C .3 D .13.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .34.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B . 1C .0D .-15.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,6.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒7.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b 方向上的投影是25,则实数m =( )A .2±B .2C .5±D .58.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( ) A .18-B .116-C .316-D .09.已知向量13,22AB ⎛⎫= ⎪ ⎪⎝⎭,5AC =,3AB BC ⋅=,则BC =( ) A .3B .32C .4D .4210.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-11.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-12.在ABC 中,D 是BC 边上的一点,F 是AD 上的一点,且满足2AD AB AC =+和20FD FA +=,连接CF 并延长交AB 于E ,若AE EB λ=,则λ的值为( ) A .12B .13C .14D .15二、填空题13.已知向量(9,6),(3,)a b x ==,若//a b ,则()b a b ⋅-=___________.14.已知平面向量a ,b 不共线,且1a =,1a b ⋅=,记b 与2a b +的夹角是θ,则θ最大时,a b -=_______.15.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.已知(2,3),(4,7)a b ==-,则向量b 在a 方向上的投影为_________.18.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________. 19.在AOB 中,已知1OA =,3OB =,2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________. 20.如图,在四边形ABCD 中,60B ∠=︒,2AB =,6BC =,1AD =,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的取值范围为_________.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.23.如图,在ABC ∆中,已知点D E 、分别在边AB BC 、上,且3AB AD =,2BC BE =. (1)用向量AB 、AC 表示DE ;(2)设6AB =,4AC =,60A =︒,求线段DE 的长.24.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小.25.如图,在OAB 中,P 为边AB 上的一点2BP PA =,6OA =,2OB =且OA 与OB 的夹角为60︒.(1)设OP xOA yOB =+,求x ,y 的值; (2)求OP AB ⋅的值. 26.已知椭圆22:24C x y += (1)求椭圆C 的标准方程和离心率;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.若存在,求出直线l 的方程;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、3,22Q ⎛⎫⎪ ⎪⎝⎭两点间的距离,考查了运算求解能力.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22124x y ⎛-+= ⎝⎭,表示以⎫⎪⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,02222x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得2214x y ⎛+= ⎝⎭,表示以⎫⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,12,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A【解析】因为2299AP m AB BC⎛⎫=++⎪⎝⎭29mAB AC=+,设BP tBN=,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t=,故811199m t=-=-=,应选答案A.4.A解析:A【分析】根据题意可得,OM ON⋅=2x﹣y,令Z=2x﹣y,做出不等式组所表示的平面区域,做直线l0:2x﹣y=0,然后把直线l0向可行域内平移,结合图象可判断取得最大值时的位置.【详解】根据题意可得,OM ON⋅=2x﹣y,令Z=2x﹣y做出不等式组所表示的平面区域,如图所示的△ABC阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1B .2C .3D .43.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C 3D .24.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90°B .60°C .45°D .30°5.在ABC ∆中,5,6AB AC ==,若2B C =,则向量BC 在BA 上的投影是( ) A .75-B .77125-C .77125D .756.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(21⎤⎦B .(21⎤⎦ C .221⎡⎤⎣⎦D .)21,+∞7.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( )A .1()2a b + B .1()2a b - C .12a b + D .12a b +8.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ). A .5B .5C .42D .319.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .010.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26-C .6 D .2211.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( ) A .42,0B .4,42C .16,0D .4,012.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-二、填空题13.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.14.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则ABAC的值为___________.15.如图所示,已知AOB ,点C 是点B 关于点A 的对称点,2OD DB =,DC 和OA 交于点E ,若OE OA λ=,则实数λ的值为_______.16.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AM MB=__________.17.已知圆22:1O x y +=,A 点为圆上第一象限内的一个动点,将OA 逆时针旋转90°得OB ,又1,0P ,则PA PB ⋅的取值范围为________.18.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________. 19.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.20.已知平面单位向量a ,b 满足1a b -≤.设向量2a b +与向量2a b -的夹角为θ,则cos θ的最大值为______. 三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=.(1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题:(1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ;(2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.23.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)310的直线方程.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.如图,在OAB 中,P 为线段AB 上一点,且OP xOA yOB =+.()1若AP PB =,求x ,y 的值;()2若3AP PB =,4OA =,2OB =,且OA 与OB 的夹角为60︒,求OP AB ⋅的值.26.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以12ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR ==【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点(),3P x x 到()2,0A 、33,2Q ⎛⎫⎪ ⎪⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.3.A解析:A分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π, 由2213a b -=,则222222444442cos523a ba b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.4.C解析:C 【详解】由题意可得2(2)b =-=,所以cos ,252a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C. 5.B解析:B 【解析】 由正弦定理得,653cos sin sin sin 2sin 5AC AB C B C C C =⇒=⇒=,由余弦定理得,22211cos 25BC AC AB C BC AC BC +-=⇒=⋅,则77cos 125BC θ=- ,故选B. 6.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围.法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出OB d ==,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 1,O 在BM 的延长线上时,OB 1.法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,ax cy +≤=,取等号条件:ay cx =,令OB d ==,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得11d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.7.D解析:D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.8.B解析:B 【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模. 【详解】由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B.【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解. 9.B【分析】建立坐标系,逐段分析·PE PF 的取值范围及对应的解. 【详解】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+,[0,6],716x PE PF ∈∴≤⋅≤, ∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-,22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B. 【点睛】本题主要考查平面向量数量积的运算,二次函数的根的个数判断,属于中档题.10.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a ba b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.11.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.12.D解析:D 【分析】以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+- 113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE113(33)(32)44+-∴++=++n n n n a a BE a BC BA因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a ,即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a , 故选:D . 【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-,故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为:【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =, 所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =,所以=3ABAC. 故答案为:315.【分析】设可得又因为即可求解【详解】如图所示:设由于所以由于点是点关于点的对称点则为中点所以得所以由于又因为得故答案为:【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法解析:45【分析】设,OA a OB b ==,可得523DC a b =-,()2EC a b λ=--,又因为//EC DC ,即可求解λ. 【详解】 如图所示:设,OA a OB b ==,由于2OD DB =,所以23OD b =, 由于点C 是点B 关于点A 的对称点,则A 为BC 中点, 所以()12OA OB OC =+,得2OC a b =- 所以523DC OC OD a b =-=-由于()2EC OC OE a b λ=-=-- ,又因为//EC DC21523λ-=得45λ= . 故答案为:45【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.16.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.17.【分析】由题意可设即有结合应用数量积的坐标公式即可求的取值范围;【详解】由题意设则即有∴而即∴故答案为:【点睛】本题考查了向量数量积的坐标表示结合坐标的三角表示正弦函数的区间值域求数量积的范围; 解析:()0,2【分析】由题意可设(cos ,sin )A αα,02πα<<,即有(sin ,cos )B αα-,结合1,0P 应用数量积的坐标公式即可求PA PB ⋅的取值范围; 【详解】由题意,设(cos ,sin )A αα,02πα<<,则(sin ,cos )B αα-,即有(cos 1,sin )PA αα-,(sin 1,cos )PB αα--,∴(cos 1)(sin 1)sin cos sin cos 12)14PA PB πααααααα⋅=---+=-+=-+,而(,)444πππα-∈-,即2sin()(0,42πα-∈, ∴(0,2)PA PB ⋅∈, 故答案为:()0,2 【点睛】本题考查了向量数量积的坐标表示,结合坐标的三角表示、正弦函数的区间值域求数量积的范围;18.【分析】以为基底向量表示再由数量积的运算律定义计算即可【详解】∵∴D 为OB 的中点从而∴∵∴∴故答案为:【点睛】本题考查平面向量的数量积需要根据题意确定基底向量再根据平面向量基本定理表示所求的向量数量解析:1564【分析】以,OA OB 为基底向量表示CD CO ,,再由数量积的运算律、定义计算即可. 【详解】 ∵1()2CD CO CB =+,∴D 为OB 的中点,从而12OD OB =,∴97191161621616CD CO OD OA OB OB OA OB =+=-+=+ ∵1OA =,3OB =2AOB π∠=,∴0OA OB ⋅=∴9197()()16161616CD CO OA OB OA OB ⋅=+⋅-221(817)256OA OB =-1(8173)256=-⨯1564=. 故答案为:1564. 【点睛】本题考查平面向量的数量积,需要根据题意确定基底向量,再根据平面向量基本定理表示所求的向量数量积,进而根据数量积公式求解.属于中档题.19.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=, 则a 在b 的方向上的投影为1025ab b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.20.【分析】设的夹角为由题可得则可化简得出即可求出最值【详解】是单位向量设的夹角为则由可得即可得则当时取得最大值为故答案为:【点睛】本题考查数量积的运算律解题的关键是先得出的夹角为满足的再将所求化为可求 解析:14-【分析】设,a b 的夹角为α,由题可得1cos 2α≥,则可化简得出cos θ=-求出最值. 【详解】,a b 是单位向量,1a b ∴==,设,a b 的夹角为α,则由1a b -≤可得21a b -≤,即222cos 1aa b b α-⋅⋅+≤,可得1cos 2α≥, 则()()22222222cos 224444a b ab a b a ba ab ba ab bθ+⋅-==+⋅-+⋅+⋅-⋅+==-=- 当1cos 2α=时,cos θ取得最大值为14-. 故答案为:. 【点睛】本题考查数量积的运算律,解题的关键是先得出,a b 的夹角为α满足的1cos 2α≥,再将所求化为cos θ=-. 三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1)1122AD a b =+;(2)证明过程见详解. 【分析】(1)根据题干中所给的方法,结合向量的线性运算,可分别求解;(2)根据题干中所给的方法,由向量的线性运算,用a ,b 表示出AD ,即可得出结论成立. 【详解】(1)因为D 为BC 的中点, 方法一:12AD AB BD AB BC =+=+,∵BC AC AB =-, ∴11221)22(221AD AB AC AB AB AC a b =+-=+=+; 方法二:21AC CD AC AD CB =+=+,∵CB AB AC =-,∴111221)2(221AD AC AB AC AB AC a b =+-=+=+; 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且BD DC =,∴21FD CD AB CB ==,21FD AE AB ==.∵//ED AC ,BD DC =.∴12ED BD AC BC ==,得12ED AF AC ==. ∴11212212AD AE ED AE AF AB AC a b =+=+=+=+; (2)因为D 为直线BC 上任意一点(除B 、C 两点),BD kDC =,显然1k ≠-; 所以1k BD BC k =+,11CB k CD =+, 方法一:1AD AB BD AB BC kk =+++=,∵BC AC AB =-, ∴1111111()k k k AD AB AC AB AB AC a b k k k k k +++++=+-=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法二:11A AC CD AC CB D k =++=+,∵CB AB AC =-, ∴11111111()k k k k AD AC AB AC A k k B AC a b k ++=+-=+++=++; 即存在唯一实数对11k λ=+,1kk μ=+,使得:AD a b λμ=+,且1λμ+=; 方法三:若点D 位于点B 左侧,如图,过点D 作//DM AB ,过点A 作//AM BC ,交DM 于点M ,则AMDB 为平行四边形,1kAM BD BC k ==+,所以11()AD AB AM AB BC AB k k k k AC AB =++=-+++=111111k k AB AC a b k k k k ++++=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于点C 右侧,如图,过点D 作//DN AC ,过点A 作//AN BC ,交DN 于点N ,则ANDC 为平行四边形, 11AN CD BC k ==+,因此11A AC AN AC CB D k =++=+111111(1)k k k AB AC AB AB AC a b k k k k k +++=+++-+=+=, 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于BC 之间,则0k >;如图所示,过点D 作AC 的平行线,交AB 于点P ,过点D 作AB 的平行线,交AC 于点Q ,则四边形APDQ 为平行四边形.∵//DQ AB 且BD DC =,∴11QD CD AB C k B =+=,11Q k D AP AB =+=, ∵//PD AC ,BD DC =.∴1PD BD AC BC k k =+=,得1k k PD AQ AC =+=. ∴111111AD AP AQ AB AC k k a b k k k k =+=++=++++; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 综上,存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.【点睛】思路点睛:利用平面向量的一组基底表示向量时,只需根据向量的线性运算法则,结合平面向量基本定理,逐步求解即可.23.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P 到直线的距离等于5,即d ==∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点, ∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB , 又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.()112x y ==;()23-. 【分析】 ()1用OA ,OB 表示出OP ,根据平面向量的基本定理得出x ,y 的值;()2用OA ,OB 表示出OP ,AB ,代入数量积公式计算即可.【详解】解:()1若AP PB =,则OP OA OB OP -=-, 即1122OP OA OB =+,故12x y ==. ()2若3AP PB =,则33OP OA OB OP -=-, 即1344OP OA OB =+, 所以()221311344424OA OB OB OA O OP A OA O B B OB A ⎛⎫+⋅-=--⋅=⋅+ ⎪⎝⎭ 22221131113cos 60442234244224OA OA OB OB -⋅⋅︒+=-⨯-⨯⨯⨯=-+⨯=-. 【点睛】本题考查平面向量的基本定理,考查向量的数量积运算,属于中档题. 26.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】(1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴.【详解】(1)()()2113322ωωωωωω=+-=+-f x sin x sin x cos x sin x sin xcos x , 3122226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1,故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ; (3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<,令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.。
必修4第二章平面向量检测一.选择题:1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知=(3,4),b =(5,12),a 与b 则夹角的余弦为( ) A .6563B .65 C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A )矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4) 10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B. 25;C. 2或25;D. 2或10. 12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅ (A) 0 (B) 1 (C) 2 (D) 3 二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是_________________。
第二章 平面向量1.设向量a →的始点坐标为(3,1),终点坐标为(-1,-3),则向量a →的坐标为( ) A. (-1,-3) B. (4,4)C. (-4,-2)D.(-4,-4)2.在平行四边形ABCD 中,AC 为一条对角线,(2,4),(1,3)AB AC ==, 则=( ) A.)4,2( B.)5,3( C.)5,3(-- D.)4,2(--3.已知6,3,12a b a b ==⋅=-,则向量a 在b 方向上的投影为( ) A. 4- B. 4 C. 2- D.24.如图,F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点, 则=+( )A. ADB.21C.21D. 5.在下列向量组中,可以把向量()2,3=表示出来的是( ) A. )2,1(),0,0(21==e e B . )2,5(),2,1(21-=-=e eC. )10,6(),5,3(21==e e D. )3,2(),3,2(21-=-=e e6.等边ABC ∆的边长为1,设===,,,则=⋅+⋅+⋅a c c b b a ( )A .23 B .21 C .23- D .21- 7.已知点(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB 在CD 方向上的投影为( )A B C .D .8.在△ABC 中,6AB O =,为△ABC 的外心,则AO AB ⋅等于A B .18 C .12 D .6 9.已知向量(1,2),(2,1)a b ==-,下列结论中不正确的是( )A .a ⊥b B .a ∥b C .a b= D .a b a b +=-10.已知向量)sin ,(cos θθ=a , )1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,011.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ). A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎪⎭⎫ ⎝⎛43-21,12. 如图,在平行四边形ABCD 中,设AB a =,AD b =,P 为边BC 的中点,则AP = A . 2b a +B . 2b a - C .2a b + D . 2a b - 13.如图, ABC ∆中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线, 它们交于点G ,则下列各等式中不正确...的是 ( ) A.23BG BE = B. 12DG AG =;C. 121332DA FC BC += D. 2CG FG =-14.已知ABC ∆及所在平面一点P ,符合条件:→→=PC BP ,且=⋅→→AB AP →→⋅AC AP ,则A B C ∆的形状为( )A. 正ABC ∆B.等腰ABC ∆C.直角ABC ∆D. 等腰直角ABC ∆15.若|a |=2sin 15°,|b |=4cos 15°,a 与b 的夹角为30°,则a ·b 的值是( ) A .23B .3C .23D .21 16. 在△ABC 中,已知||4,||1AB AC ==,ABC S ∆=AB AC ⋅的值为( ) A .2-B .2C .4±D .2±17.已知向量)2,0(),cos ,2cos 2sin2(),3,1(π∈-==x x x x b a ,若⊥,则=x A.6π B.3πC.32πD.65π18.设1e 与2e 是不共线向量,1212,a ke e b e ke =+=+,若//a b 且a b ≠,则实数k 的值为( ) A .0 B .1 C .1- D .1± 19.在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=( ) A .-1 B .0 C .1 D .以上答案都不对GD FECBA20.设D 为ABC ∆所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B )1433AD AB AC =- (C )4133AD AB AC =+ (D )4133AD AB AC =- 21.设向量a ,b 满足||10a b +=,||6a b -=,则=⋅b a ( )A .5B .3C .2D .122.已知向量(1,2),(2,4),||a b c ==--=5(),2a b c +⋅=则a 与c 的夹角为( ) A .30°B .60°C .120°D .150 °23.已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( ) (A )232a -(B )234a -(C ) 234a 错误!未找到引用源。
平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
一、选择题1.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .32.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .323.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3 B .4C .5D .64.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A .21-B .2C .21+D .22+5.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B 6C 5D .26.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦7.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .328.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(0,21⎤-⎦B .(0,21⎤+⎦ C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣9.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定10.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +11.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .412.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.已知向量(9,6),(3,)a b x ==,若//a b ,则()b a b ⋅-=___________.14.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______15.已知平面向量a ,b 的夹角为120︒,且1a b ⋅=-,则a b -的最小值为________. 16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.已知非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=.若n →⊥t m n →→⎛⎫+ ⎪⎝⎭,则实数t的值为_____________.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.20.已知ABC ∆中,3AB =,5AC =,7BC =,若点D 满足1132AD AB AC =+,则DB DC ⋅=__________.三、解答题21.已知向量()sin ,cos a x x =,()3,1b =-,[]0,x π∈.(1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值.22.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值.23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 25.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.2.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得55m =, ∴452555D ⎛⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,45255,EA λλ⎛⎫=-- ⎪ ⎪⎭; ∵34OE EA ⋅=, ∴2454525354λλλ⎛⎫⎛⎫⋅--= ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为()()45251,1ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭, 当34λ=时,551,2ED ⎛⎫== ⎪ ⎪⎝⎭;当14λ=时,35353,2ED ⎛⎫== ⎪ ⎪⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 3.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.4.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.5.C解析:C 【分析】以,AD AB 为一组基底,表示向量,AE BF ,然后利用12AE BF ⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭,223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos 3BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.B解析:B 【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==,所以点Q 的轨迹为圆2234x y +=,又()3,4P ,所以,3322PO PQ PO -≤≤+,即3355PQ -≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡⎤+=∈-+⎣⎦.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.7.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果.【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.8.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 21,O 在BM 的延长线上时,OB 21. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.9.C解析:C 【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA≥,由垂线段最短可确定结论. 【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥,ABC ∴为直角三角形. 故选:C . 【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.10.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.11.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122bb bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.26【分析】先由求出求出再进行的计算【详解】因为所以解得所以故答案为:26【点睛】向量类问题的常用处理方法——向量坐标化利用坐标运算比较简单解析:26 【分析】先由//a b 求出2x =,求出b ,再进行()b a b ⋅-的计算. 【详解】因为//a b ,所以9180x -=,解得2x =,所以(6,4),()362426a b b a b -=⋅-=⨯+⨯=.故答案为:26 【点睛】向量类问题的常用处理方法——向量坐标化,利用坐标运算比较简单.14.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.15.【分析】先利用平面向量的夹角为且解出然后求解的最值即可得到的最值【详解】因为所以而当且仅当时等号成立所以故答案为:【点睛】本题考查平面向量数量积的运用考查模长最值的求解难度一般【分析】先利用平面向量a ,b 的夹角为120︒,且1a b ⋅=-解出2a b ⋅=,然后求解2a b -的最值即可得到a b -的最值. 【详解】因为1·cos 12a b a a b b θ⋅=⋅=-⋅=-,所以2a b ⋅=, 而2222222226a b a a b b a b a b -=-⋅+=++≥⋅+=,当且仅当2a b ==时等号成立,所以6a b -≥. 【点睛】本题考查平面向量数量积的运用,考查模长最值的求解,难度一般.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC∆的边长为4cos30︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,D(2,0)-, 由||1AP=,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M为PC中点,即有3cos sin (,)22M θθ+, 则2223cos ||3=+2BM θ+⎛⎫- ⎪⎝⎭⎝ 2(3cos )4θ-=+=3712sin 64πθ⎛⎫+- ⎪⎝⎭=, 当sin 16πθ⎛⎫-= ⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494. 【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】利用向量的数量积公式向量垂直的性质直接直解【详解】非零向量满足=⊥解得故答案为:【点睛】本题主要考查了向量的数量积公式向量垂直的性质等基础知识考查运算能力属于中档题 解析:4-【分析】利用向量的数量积公式、向量垂直的性质直接直解. 【详解】非零向量m →,n →满足4m →=3n →,cos m →〈,13n →〉=,n →⊥t m n →→⎛⎫+ ⎪⎝⎭,n →∴⋅22+||||cos ,||t m n t m n n t m n m n n →→→→→→→→→→⎛⎫+=⋅=<>+ ⎪⎝⎭223||||034t n n →→=⨯+=, 解得4t =-, 故答案为:4- 【点睛】本题主要考查了向量的数量积公式、向量垂直的性质等基础知识,考查运算能力,属于中档题.18.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.19.【分析】建立平面直角坐标系从而得到的坐标这样即可得出的坐标根据与共线可求出从而求出的坐标即得解【详解】建立如图所示平面直角坐标系则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表 13【分析】建立平面直角坐标系,从而得到,,a b c 的坐标,这样即可得出a b λ+的坐标,根据a b λ+与c 共线,可求出λ,从而求出a b λ-的坐标,即得解. 【详解】建立如图所示平面直角坐标系,则:(1,1),(0,1),(2,1)a b c ==-= ;(,1)a b λλλ∴+=-a b λ+与c 共线2(1)02λλλ∴--=∴=(2,3)a b λ∴-=22||2313a b λ∴-=+=13【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.20.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-, 所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-= ⎪⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.三、解答题21.(1)6x π=;(2)23x π=时,()f x 取到最大值2,0x =时,()f x 取到最小值1-.【分析】(1)利用向量垂直的坐标表示可求得tan x =,结合x 的范围可求得x 的值; (2)将函数化简为()2sin 6f x x π⎛⎫=-⎪⎝⎭,根据x 的范围可求得6x π-的范围,结合正弦函数图象可确定最大值和最小值取得的点,进而求得结果. 【详解】解:(1)因为a b ⊥,所以sin co 30s b x x a =-=⋅,于是sin tan s 3co x x x ==, 又[]0,x π∈,所以6x π=;(2)()())sin ,1cos f x a x b x =⋅=⋅-cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭.因为[]0,x π∈,所以5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 从而12sin 26x π⎛⎫-≤-≤ ⎪⎝⎭于是,当62x ππ-=,即23x π=时,()f x 取到最大值2; 当66x ππ-=-,即0x =时,()f x 取到最小值1-.【点睛】本题考查平面向量垂直的坐标表示、平面向量与三角函数的综合应用,涉及到三角函数最值的求解问题;求解三角函数最值的关键是能够利用整体对应的方式,结合正弦函数的图象来进行求解.22.(1)223-;(2)2-. 【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解. 【详解】(1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒, 在POB 中,由余弦定理,得222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=-∴84362PB =-=,又222PA OA ==,∴1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-=- ⎪⎝⎭(2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 234sin αααα=--+-+2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】 本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.23.(1)π3;(2)27 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】(1)设向量a 与b 的夹角θ,()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得: ()222a b a b -=-=2244a a b b -⋅+4123627-+=.【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)(2,4)-;(2)5-.【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标;(2)根据向量数量积的运算律及数量积的定义计算.【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+=∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭.【点睛】 本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.25.(1)1a b +=;-1;(2)45︒.【分析】(1)根据平面向量数量积的运算律求出||a b +,再根据平面向量的几何意义求出b 在a 方向上的投影;(2)根据向量垂直,则数量积为零,即可得到1a b ⋅=,再根据夹角公式计算可得; 【详解】解:(1)由已知得2222()2121()212a b a b a a b b +=+=+⋅+=+⨯-+=,∴1a b +=;b 在a 方向上的投影为||cos1352(12b =-=- (2)由已知得()0a b a -⋅=,即20a a b -⋅=∴1a b ⋅=,∴[]2cos ,,0,212a b a b a b a b π⋅===∈⨯,, ∴向量a 与b 的夹角为45︒.【点睛】本题考查平面向量的数量积及夹角的计算,属于中档题.26.(12 【分析】(1)利用定义得出a b ⋅,再结合模长公式求解即可;(2)先得出()a a b ⋅+,再由数量积公式得出a 与a b +的夹角的余弦.【详解】(1)313cos 32a b π⋅=⨯⨯=2223()||2||122a b a b a a b b ∴+=+=+⋅+=+⨯=(2)235()||122a a b a a b ⋅+=+⋅=+= 5()2cos ,26113a ab a a b a a b ⋅+∴+===⨯⋅+ 【点睛】 本题主要考查了利用定义求模长以及求夹角,属于中档题.。
一、选择题:( 本大题共10 小题,每题 4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .)1.设点P 〔3,-6〕,Q 〔-5,2〕,R 的纵坐标为-9,且P 、Q 、R 三点共线,那么R 点的横坐标为〔 〕。
A 、-9B 、-6C 、9D 、6 2. =(2,3), =(-4,7) ,那么 在 b 上的投影为〔 〕。
b A 、B、C 、D 、3.设点A 〔1,2〕,B 〔3,5〕,将向量按向量 =〔-1,-1〕平移后得向量为〔〕。
A 、〔2,3〕B 、〔1,2〕C 、〔3,4〕D 、〔4,7〕4.假设(a+b+c)(b+c-a)=3bc ,且sinA=sinBcosC ,那么 ABC 是〔 〕。
A 、直角三角形 B 、等边三角形C 、等腰三角形 D 、等腰直角三角形5.| |=4,| b|=3, 与b 的夹角为60°,那么| +b|等于〔 〕。
A 、B、C、D 、6.O 、A 、B 为平面上三点,点C 分有向线段所成的比为 2,那么〔 〕。
A 、B、C 、D、7.O 是 ABC 所在平面上一点,且满足条件 , 那么点O 是 ABC 的〔 〕。
A 、重心 B 、垂心 C 、内心D 、外心 8.设 、b 、 均为平面内任意非零向量且互不共线,那么以下4个命题: (1)( ·b)2= 2·b 2 (2)| +b |≥| -b|(3)| +b|2=(+b)2(4)(b)-(a)b与不一定垂直。
其中真命题的个数是〔〕。
A、1B、2C、3D、49.在ABC中,A=60°,b=1,,那么等于〔〕。
A、B、C、D、10.设、b不共线,那么关于x的方程x2+b x+=0的解的情况是〔〕。
A、至少有一个实数解B、至多只有一个实数解C、至多有两个实数解D、可能有无数个实数解二、填空题:〔本大题共4小题,每题4分,总分值16分.〕.11.在等腰直角三角形ABC中,斜边AC=22,那么ABCA=_________12.ABCDEF为正六边形,且AC=a,AD=b,那么用a,b表示AB为______.13.有一两岸平行的河流,水速为1,速度为的小船要从河的一边驶向对岸,为使所行路程最短,小船应朝________方向行驶。
高中数学第二章平面向量223向量数乘运算及其几何意义课后习题新人教A 版必修4一、A 组1.已知非零向量 a, b 满足a +4b =0,则( )C a 与b 的方向相同D. a 与b 的方向相反解析:T a +4b =0,二 a =-4b, | a |= 4| b | ,且 a 与 b 的方向相反.答案:D1妙 4- BCA.1 -BA-BCB. Z:BA - BCC.--D.--I 1 IICD = -(CA + CB 解析:T 点D 是边AB 的中点,二).I~~TV 1I r^(CA + CB -BA + BC.•卫dg )=上.故选D .答案:D3.设a, b 不共线 J =a +k b, =n a +b(k ,m€ R),则A , B C 三点共线时有( )A.k=mB.km-仁0C km+1=0D.k+m=0i-1解析:若ABC 三点共线,则’共线,I I.存在唯一实数入,使二上=入“,.a +kb =X (m a +b),A. | a |+ 4| b |= 0B. a 与b 是相反向量2.如图所示1加=1*即 a +k b = Xm a + 入 b, •」几一/• km=1.即 km-1=0.答案:BA. △ ABC 的内部B. AC 边所在直线上C. AB 边所在直线上D. BC 边所在直线上4.如图,已知 lAB =a, AC =b,図/=3。
£,用a, b 表示眉D ,贝则4DA. a +Jb3 1B. 4a+4bC. ]a + ; b)5.已知P 是厶ABC 所在平面内的一点,池色=入卩月+PB ,其中入€ R 则点P —定在(上+解析:,兀入PP R, .UP R»PACB +•上P加••虽以共线.•••C P,A三点共线,故选B.答案:B6.化简:3(6a+»-^k 解析:原式=18a+3b-9a- 3b=9a.答案:9a7.如图,在平行四边形ABCD^ , E是CD的中点,且人月=a,4D=b,贝肖E = _____________________________________________________________________________I I I I I I解析:BE=BC^-CE = AD +答案—a+b &导学号08720054 在△ ABC中,点M为边AB的中点,若。
以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
必修四第二章向量练习题一、选择题1.以下给出了4个命题:(1)两个长度相等的向量一定相等; (2)相等的向量起点必相同;(3)若c a b a ⋅=⋅,且0≠a ,则= b c ;(4)若向量 a 的模小于 b 的模,则<a b .其中正确命题的个数共有 ( ) A 、3个 B 、2个 C 、1个 D 、0个 2.以下说法正确的是( ) A 、零向量没有方向 B 、单位向量都相等C 、共线向量又叫平行向量D 、任何向量的模都是正实数3.[2013·四川广元模拟]如图,已知AP =43AB ,用OA ,OB 表示OP ,则OP等于( )A.13OA-43OB B.13OA+43OB C.-13OA+43OBD.-13OA-43OB4.化简( )5.如图所示,已知2AB BC = ,OA a = ,OB b = ,OC c =,则下列等式中成立的是( )(A)3122c b a =- (B)2c b a =- (C)2c a b =- (D)3122c a b =-6.化简AC - BD + CD - AB得( )A .ABB .C .BCD .07.已知△ABC 中,点D 在BC 边上,且2=,s r +=,则r +s 的值是( )A . 0B .34C .-3 D .32 8.在△ABC 中,AB =c ,AC =b ,若点D 满足BD =2DC ,则AD=( ).A .23b +13cB .53c -23bC .23b -13cD .13b +23c9.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( ) A .AB AC BC += B .12AB BC DA =+C .AD DC AC -= D .2CD BA CA +=10.已知D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ).A .0BD BE FC --=B .0BD CF DF -+=C .0AD CE CF +-= D .0AD BE CF ++=11.在ABC ∆中,点P 是BC 上的点,μλ+==,2,则( ). A.2,1λμ== B.1,2λμ== C.12,33λμ== D.21,33λμ== 12.a b 、是两个非零向量,且a b a b ==-,则a 与a b +的夹角为( ) A .300 B .450 C .600 D .90013.如图所示,向量 OA a OB b OC c ===,A 、B 、C 在一条直线A OA 、13 22c a b =-+B 、31 22c a b =-C 、 2 b a c +-=D 、 2 b a c +=14.如图所示,D 是ABC ∆的边AB 上的中点,记BC a =,BA c = ,则向量CD = ().A .12a c --B .12a c -+C .12a c -D .12a c +15.在ABCD 中,错误的式子是( )A.AD AB BD -=B.AD AB DB -=C.=+D.=+16.在ABC ∆中,D 为AB 边上一点,2AD DB = ,13CD CA CB λ=+,则λ=( ) A .13- B.23C.1D.2 17.已知向量a =(2,4),b =(-1,1),则2a+b 等于() A .(5,7) B .(5,9)C .(3,7) D .(3,9)18.在∆ABC 中,P 是BC 上一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B .511 C .411 D .31119.已知向量a (1,2)=-,b (3,)m =,若a //(2a +b ),则实数m 的值为 ( ) A .6- B .23 C .6 D .213=--==2),1,1(),4,2(则21.已知向量 a =(1,k ), b =(2,2),且 a + b 与 a 共线,那么 a ·b 的值为( )ACB22.设M 是ABC ∆边BC 中点,N 为AM 的中点,若AN AB AC λμ=+,则λ+μ的值为( ) A 、41 B 、31 C 、21D 、1 23.已知向量a =(1,3),b =(-2,-6),|c |=,若(a +b )·c =5,则a 与c的夹角为( )A .30°B .45°C .60°D .120°24.已知平面向量c b a ,,满足:,2,2a c b c c ⊥⋅=-=,b a c λ+=,则实数λ的值为( )A .4-B .2-C .2D .425.已知向量(2,4)a = ,(1,1)b =-,则2a b -= ( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)26.已知向量()3,7AB = ,()C 2,3B =- ,则1C 2-A =( )A .1,52⎛⎫-⎪⎝⎭ B .1,52⎛⎫ ⎪⎝⎭ C .1,52⎛⎫-- ⎪⎝⎭D .1,52⎛⎫- ⎪⎝⎭27.若向量(2,),(3,6)a x b ==为共线向量,则x 的值等于A .2B .3C .4D .528.已知向量)1,3(=,)1,0(-=,)3,(k =,若2+与共线,则=k ___________.29.若向量)1,3(=,=(m ,m+1),且a ∥,则实数m 的值为( )A .32-B .14-C .12D .3230.已知向量(2,1),a = (x,6)b =-,若a b ⊥ ,则a b += ( )A .5B ..6 D .5031.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =A .232a -B .234a -C .234a D .232a32.设向量a =(-1,2),b =(m ,1),如果向量a +2b 与2a -b 平行,则a 与b 的数量积等于( )A .-B .-C .D .A343π,a =,2a b += b = ( )A 335(1,3)-,(4,2)b =-,若a b λ- 与a 垂直,则λ=( )A .1 C .-2 D .2 36sin 40°),b =(sin 20°,cos 20°),则a·b 等于()A 12 D 371a = ,2b = ,且()a b a +⊥,则a ,b 的夹角为( )A .60 C .120 D .150 38满足2==→→b a ,→a 与→b 的夹角为0120,则→→-b a 的值为( )A .3 C .32 D .2339a 与b 的夹角为60°,则)(b a a -⋅等于( ).A .440()()1,1,,2a b x ==-,且a b += a b ⋅= ( )A .041ABCD 中,)2,3(),0,2(-==,则=⋅( )A 13424,a 与b 的夹角为︒120,则a 在b 方向上的投影为( )A .2- D .32-第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)43.如图所示,在△ABC 中,D 为BC 边上的一点,且2BD DC =.若(,)AC mAB nAD m n =+∈R,则____m n -=.44.如图,在ABC ∆中,13AN NC = ,P 是BN 上的一点,若18AP mAB AC =+,则实数m 的值为.45.在正三角形ABC 中,D 是BC 上的点,3AB =,1BD =,则AB A D ⋅=. 46.如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是.47.在▱ABCD 中,AB =a ,AD=b ,AN =3NC ,M 为BC 的中点,则MN =________(用a ,b 表示).48.如图,在四边形ABCD 中,13DC AB =,E 为BC 的中点,且AE x AB y AD =⋅+⋅ ,则32x y -=.A DCBPEDCBA49.在平行四边形ABCD 中,4AD =,=3BAD π∠,E 为CD 中点,若=4AC BE ⋅,则AB的长为 .50.如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD =a ,AB =b ,若AB=2DC ,则AO=________.(用向量a 和b 表示)51.与向量)4,3(=a垂直且模长为2的向量为.52.已知),3(),1,2(λλ=+=b a ,若a 与夹角为钝角,则实数λ的取值范围是__.53.已知点()1,2A -若向量AB 与(2,3)a =同向,||AB =则点B 的坐标为______. 54.已知向量()1,2=a ,则=a .x //),4,(),2,3(若-=-=56.已知()1,2a =- ,()0,2a b +=,则b = .57.在ABC ∆中,点H 是边BC 上异于端点,B C 的一点,M 是AH 的中点,AM AB AC λμ=+,那么λμ+=____________.58.已知)1,(x a =,)1,2(-=b ,且b a ∥,则|a -b|=.59.已知平面向量(1,2),(2,)a b m ==-,若//a b ,则23a b + =,若a b ⊥ ,则23a b+ =;60.已知向量(,1),(6,2)a k b ==-,若a 与b 平行,则实数k =.61.已知平面向量(1,2),b (2,),//b,=a m a m ==-且则________.62.已知向量()2,1,1a =-,(),1,1b t =- ,R t ∈,若//a b ,则t =. 63.设(),3a x = ,()2,1b =-,若a b ⊥ ,则2a b + =.64.已知||3a = ,||2b = ,若3a b ⋅=- ,那么,a b的夹角等于____________.65.已知向量a 与向量b 的夹角为0120,若()(2)a b a b +⊥- 且2a = ,则b 在a 上的投影为66.已知向量a ,b 满足|a|=1,|b|=2,a 与b 的夹角为60°,则|a -b|=________.67.如图,在平行四边形ABCD 中,已知AB=8,AD=5,=3,•=2,则•的值是.68.设0<θ<2π,向量a =(sin2θ,cos θ),b =(1,-cos θ),若a ⊥b ,则tan θ=.69.如图,在平行四边形ABCD 中,已知AB=8,AD=5,=3,•=2,则•的值是.70.已知m ,()y f x =,x ,且2a b + 与a b λ-垂直,则实数λ的值为.71.已知b a b a ,,3,2==的夹角为︒60,则=-b a2三、解答题(题型注释)72.(本小题满分12分)已知向量()(1,cos 2,sin 2,a x b x ==r r ,函数()f x a b =⋅r r.(1)若26235f θπ⎛⎫+=⎪⎝⎭,求cos 2θ的值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域.73.(本小题12分)如图,在ABC ∆中,设AB a = ,AC b = ,又2BD DC =,2,1a b == ,向量a ,b 的夹角为3π.(Ⅰ)用,a b表示AD ;(Ⅱ)若点E 是AC 边的中点,直线BE 交AD 于F 点,求AF BC ⋅.74.(本小题满分12分)已知向量)(),cos ,cos ,cos a x x b x x ==,函数()21f x a b =⋅-(1)求()f x 的对称轴。