干酪根
- 格式:ppt
- 大小:17.12 MB
- 文档页数:45
干酪根的演化化学干酪根是一种沉积物中的有机质,经过地质演化形成的。
它在化学上具有独特的特点,对石油勘探和石油地质研究具有重要意义。
干酪根的形成主要与有机质的化学成分和环境因素有关。
有机质是由碳、氢、氧、氮、硫等元素组成的复杂混合物,其中碳元素是主要成分。
在地质演化过程中,有机质经历了生物分解、颗粒运移、沉积作用等过程,逐渐转变为干酪根。
干酪根的化学成分主要包括生物聚合物、腐殖质和胶体物质等。
生物聚合物是有机质中重要的组成部分,主要由蛋白质、核酸、多糖等大分子有机化合物组成。
腐殖质是有机质中的一种不溶于水的物质,具有较高的分子量和较强的稳定性。
胶体物质是有机质中的一种胶体溶胶体系,具有较小的粒径和较大的比表面积。
干酪根的演化过程可以分为生物分解、成熟和石化三个阶段。
生物分解是指有机质在生物作用下发生分解和氧化的过程。
成熟是指有机质在地下埋藏过程中受到高温高压作用,逐渐转变为干酪根的过程。
石化是指干酪根在长时间的埋藏过程中,经过化学反应和结构改变,形成石油和天然气的过程。
干酪根的演化过程与化学反应密切相关。
在生物分解阶段,有机质中的蛋白质、核酸等生物聚合物会发生水解、氧化等反应,产生一些小分子有机物。
在成熟阶段,有机质中的腐殖质会发生裂解、脱氢等反应,生成石油和天然气的前体物质。
在石化阶段,干酪根中的有机质会发生裂解、聚合等反应,形成石油和天然气。
干酪根的演化过程还受到环境因素的影响。
温度、压力、埋藏深度等环境条件会影响干酪根的演化速度和产物类型。
高温和高压有利于干酪根的成熟和石化,但过高的温度和压力会导致有机质的热解和热裂,降低石油和天然气的产率。
埋藏深度越大,干酪根的演化程度越高,石油和天然气的含量也越高。
干酪根的演化对石油勘探和石油地质研究具有重要意义。
通过研究干酪根的化学成分和演化过程,可以了解地下沉积环境的特点,判断石油和天然气的形成条件和分布规律。
同时,干酪根中的有机质也是石油和天然气的主要来源,研究干酪根有助于预测石油和天然气资源的潜力和开发前景。
干酪根类型和生烃能力评价干酪根(Kerogen)一词最初被用来描述苏格兰油页岩中的有机质,它经蒸馏后能产出似蜡质的粘稠石油。
现在为人们所普遍接受的概念是:干酪根是沉积岩中不溶于一般有机溶剂的沉积有机质。
与其相对应,岩石中可溶于有机溶剂的部分,称为沥青。
一、干酪根基本情况:(1)干酪根定义:为腊状有机物质。
是动植物遗骸(通常是藻类或木质植物)在地下深部被细菌分解,除去糖类、脂肪酸及氨基酸后残留下的不溶于有机溶剂的高分子聚合物。
除了含有碳、氢、氧之外,也含有氮和硫的化合物。
(2)干酪根来源石油及天然气来源于沉积有机质。
对生成石油及天然气的原始物质而言,以沉积物(岩)中的分散有机质为主。
沉积物(岩)中的沉积有机质经历了复杂的生物化学及化学变化,通过腐泥化及腐殖化过程形成干酪根,成为生成大量石油及天然气的先躯。
干酪根是沉积有机质的主体,约占总有机质的80%-90%,研究认为80%以上的石油烃是由干酪根转化而成。
干酪根的成分和结构复杂,是一种高分子聚合物,没有固定的结构表达式。
(3)干酪根成分:有固定的化学成分,主要由C、H、O和少量S、N组成,没有固定的分子式和结构模型。
Durand等对世界各地440个干酪根样品的元素分析结果表明,平均C占76.4%,H占6.3%,O占11.1%,三者共占93.8%,是干酪根的主要元素成分。
又称油母质、油母。
来源于希腊字keros,是蜡的意思。
1912年,布朗(A G Brown)首次用该术语表示苏格兰油页岩中的有机物质,它们经过蒸馏生成蜡状稠油。
以后的学者通常将干酪根与生油母质联系起来。
1980年,杜朗(B Durand)在《干酪根》一书中将其定义为:沉积物中不溶于常用有机溶剂的所有有机质,包括各种牌号的腐殖煤(泥炭、泥煤、烟煤、无烟煤)、藻煤、烛煤、地沥青类物质(天然沥青、沥青、焦油矿中的焦油)、近代沉积物和泥土中的有机质。
这个定义的内涵太广泛,于是将其简化为:干酪根是沉积物中的溶于非氧化的无机酸、碱和有机溶剂的一切有机质。
干酪根的名词解释干酪根,即干酪状有机质,是由于植被沉积和埋藏,在高温高压作用下经过干馏和热解而形成的天然有机物。
1. 干酪根的形成过程干酪根主要由植物残骸、藻类和微生物组成。
这些有机质在长时间的湿地环境下,被沉积于水底或河流下方的湖泊、海洋等地。
随着时间的推移,这些有机质逐渐被沉积物覆盖,与水和气体的接触不断减少,温度和压力慢慢升高。
同时,微生物的分解作用得到抑制,有机质逐渐干燥,形成干酪状有机质。
2. 干酪根的分类根据来源和成因的不同,干酪根可以分为三类:泥板状干酪根、木质干酪根和藻类干酪根。
- 泥板状干酪根:泥板状干酪根主要由植物残骸和微生物组成,一般形成于湖泊、河流和沿海地区。
这些植物残骸在湿地环境中逐渐沉积,受到压实和干燥的影响,形成致密的泥板状干酪根。
- 木质干酪根:木质干酪根是由木材沉积形成的,一般形成于河流区域。
当树木被水冲走并沉积在湖泊或海洋底部时,木材在压力和温度的作用下逐渐转化为木质干酪根。
- 藻类干酪根:藻类干酪根主要由古代藻类的残骸和微生物组成,形成于海洋环境中。
藻类干酪根主要包括二次寄主代、绿藻代和黄金藻代等,这些藻类在海洋中繁殖并逐渐沉积,形成藻类干酪根。
3. 干酪根的应用价值干酪根具有重要的经济和科学价值。
首先,干酪根是石油和天然气的重要原始有机物,通过其热解和转化,可以产生大量的石油和天然气。
其次,干酪根是研究地球演化历史和古气候变化的重要指示物,通过分析干酪根中的有机组分和同位素组成,科学家可以了解地球古代生物的多样性和环境演变过程。
此外,干酪根还具有一定的环境修复和土壤改良功能,可以提高土壤的质地和保水性,促进植物生长。
4. 干酪根的挑战和保护随着能源需求的增加和石油勘探的深入,对干酪根的需求也在增加。
然而,由于干酪根形成需要漫长的时间和特定的环境条件,其资源形成速度远远低于消耗速度。
这种不平衡导致了干酪根资源的稀缺性和可持续性问题。
因此,保护和合理利用干酪根资源成为当务之急。
干酪根制备流程1原理干酪根分离采用化学、物理的方法,除去岩石中的无机矿物及氯仿可溶有机质,使其他有机质富集。
2仪器和设备2.1反应装置:耐氢氟酸腐蚀的材料制成。
2.2加热搅拌装置:可加热至约90℃,转速可调。
2.3离心机:最高转速不低于4 000 r/min,配带体积约400 mL、50 mL、10 mL 的离心管。
2.4电热干燥箱:最高温度不低于200℃。
2.5电冰箱:冷冻温度低于-5℃。
2.6超声波清洗器或振荡器:输出功率250 W。
2.7高温炉:温控1 000℃±20℃。
2.8分析天平:分辨率0.1 mg。
2.9玛瑙研钵:直径约8 cm。
2.10坩埚:耐1 000℃高温。
2.11密封式化验制样粉碎机。
2.12标准检验筛:0.18 mm、0.5 mm、1.0 mm。
2.13天平:分辨率0.5 g,最大称量500 g。
2.14密度计:相对密度测量范围在1.00 g/mL~2.50 g/mL。
3试剂和材料3.1盐酸:化学纯,配成约1 mol/L、6 mol/L、8 mol/L的溶液。
3.2氢氟酸:化学纯。
3.3冰醋酸:化学纯。
3.4无砷锌粒:分析纯。
3.5氯仿:分析纯。
3.6硝酸银:分析纯,配成1%溶液。
3.7氧氧化钠:分析纯,配成0.5 mol/L溶液。
3.8重液:相对密度d420为2.0 g/mL~2.1 g/mL的有关溶液。
3.9 PH试纸:PH1~PHl2。
4样品制备4.1岩样分离干酪根的岩样,其有机碳含量应符合表1规定。
表1 分离干酪根的岩样有机碳含量4.2碎样岩样经粗碎、缩分后,依据干酪根用途再细碎为粗粒级及细粒级两种岩样。
两种岩样粒径应符合表2规定。
表2细碎岩样的粒级和粒径4.3取样量为保证测试项目所需干酪根的数量,根据岩石中有机碳的含量,按表3确定取样量。
有机碳含最较低时,可适当增加取样量。
经氯仿抽提后的细粒级岩石样品取样量按本条执行。
表3取样量5步骤5.1前处理称取一定量岩样,放人酸反应容器中,用蒸馏水浸泡,使岩样中的泥质充分膨胀,2 h~4 h后除去上部清液。