复旦大学数学分析考研试题及答案
- 格式:pdf
- 大小:780.11 KB
- 文档页数:4
数学分析考研2021复旦与山东科大考研真题库一、山东科技大学《603数学分析》考研真题二、复旦大学数学系第1部分数项级数和反常积分第9章数项级数一、判断题1.若收敛,则存在.[重庆大学2003研] 【答案】错查看答案【解析】举反例:,虽然,但是发散.2.若收敛,,则收敛.[南京师范大学研] 【答案】错查看答案【解析】举反例:满足条件,而且很容易知道但是发散,所以发散.二、解答题1.求级数的和.[深圳大学2006研、浙江师范大学2006研] 解:2.讨论正项级数的敛散性.[武汉理工大学研]解:由于,所以当a>1时收敛,当0<a<1时发散;当a=1时,由于,故发散.3.证明:收敛.[东南大学研]证明:因为所以又因为而收敛,故收敛.4.讨论:,p∈R的敛散性.[上海交通大学研]证明:因为为增数列,而为减数列,所以.从而所以.于是当p>0时,由积分判别法知收敛,故由Weierstrass判别法知收敛:当p=0时,因为发散,所以发散:当p<0时,发散.5.设级数绝对收敛,证明:级数收敛.[上海理工大学研]证明:因为绝对收敛,所以.从而存在N>0,使得当n>N 时,有,则有,故由比较判别法知级数收敛.6.求.[中山大学2007研]解:由于,所以绝对收敛.7.设,且有,证明:收敛.[大连理工大学研]证明:因为,所以对任意的ε,存在N,当n>N时,有,即取ε充分小,使得,即.因为,所以单调递减,且现在证明.因为,即则.所以对任意的ε,存在N,当n>N时,有.对任意的0<c-ε<r,有所以存在N,当n>N时,,则因此,由两边夹法则可得.故由交错级数的Leibniz判别法知收敛.8.说明下面级数是条件收敛或绝对收敛[复旦大学研]解:数列是n的单调递减函数.且由莱布尼兹判别法,可知收敛.所以故当2x>1,即时收敛,即绝对收敛;当2x≤1,即时,发散,即条件收敛.9.证明:若绝对收敛,则亦必绝对收敛.[华东师范大学研]证明:绝对收敛,从而收敛,记则由比较判别法知敛散性相同,而收敛,所以收敛,即绝对收敛.10.证明级数发散到[吉林大学研]证明:令则易知发散到所以又,所以所以原级数发散到。
数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。
12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。
第二章 数列极限习 题 2.1 实数系的连续性1. (1) 证明6不是有理数;(2) 3+2是不是有理数?证(1)反证法。
若6是有理数,则可写成既约分数nm=6。
由,可知是偶数,设,于是有,从而得到是偶数,这与226n m =m k m 2=2223k n =n nm是既约分数矛盾。
(2)3+2不是有理数。
若3+2是有理数,则可写成既约分数32+n m=,于是222623nm =++,252622−=n m ,即6是有理数,与(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在: ; A x x =≥{|}0 ⎭⎬⎫⎩⎨⎧<<=320|sin πx x B ; ⎭⎬⎫⎩⎨⎧<∈=+m n n m m n C 并且N ,。
解 ;因为,有0min =A A x ∈∀A x ∈+1,x x >+1,所以不存在。
A max 12sin max ==πB ;因为B x ∈∀,⎦⎤⎜⎝⎛∈∃2,0πα,使得αsin =x ,于是有B ∈2sinα,x <2sinα,所以B min 不存在。
C max 与都不存在,因为C min C m n ∈∀,有C m n ∈+1,C m n ∈++11, 111++<<+m n m n m n ,所以与都不存在。
C max C min 3. A B ,是两个有界集,证明: (1) 是有界集;A B ∪(2) 也是有界集。
S x y x A y B =+∈∈{|,}证 (1)设A x ∈∀,有1M x ≤,B x ∈∀,有2M x ≤,则B A x ∪∈∀,有{}21,max M M x ≤。
(2)设,有A x ∈∀1M x ≤,B x ∈∀,有2M x ≤,则S x ∈∀,有21M M x +≤。
4. 设数集S 有上界,则数集T x x S =−∈{|}有下界,且sup S =T inf −。
证 设数集S 的上确界为,则对任意S sup ∈x T x x S =−∈{|},有,即;同时对任意S x sup ≤−S x sup −≥0>ε,存在S y ∈,使得ε−>S y sup ,于是,且T y ∈−ε+−<−S y sup 。
数学分析复旦大学第四版答案实数基本定理【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。
(1)域公理:(2)全序公理:则或a中有最大元而a中无最小元,或a中无最大元而a中有最小元。
评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。
二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。
主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1证明dedekind分割原理与确界原理的等价性。
习题2用区间套定理证明有限覆盖定理。
习题3用有限覆盖定理证明聚点定理。
评注以上定理哪些能够推广到欧氏空间r?如何叙述?n2闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4用有限覆盖定理证明有界性定理习题5用致密性定理证明一致连续性定理3数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)n定义评注确界定义易于理解;聚点定义易于计算;n定义易于理论证明习题6用区间套定理证明有界数列最大(小)聚点的存在性。