高数(数列的极限)
- 格式:ppt
- 大小:1.82 MB
- 文档页数:29
高数数列极限经典例题高数数列是数学中重要的概念,它定义了一个数列中每一项的表达式,以及每一项和前面项之间的关系。
极限是描述数列无限接近某个值的重要概念,也是高数中最重要的内容之一,比较经典的例题是必须要掌握的。
首先,让我们来看一个经典的极限例题:求函数y=x3-3x2+3的极限,当x趋近于1的时候。
这道题的步骤是,先求x接近1时,函数值的上限和下限,然后利用极限的定义求解极限。
根据函数定义,当x取值接近1时,函数值的上限是x3-3x2+3+Δx,下限是x3-3x2+3-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。
接下来,我们可以利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于1时,函数值的极限就是x3-3x2+3。
通过这个例题,我们不仅学会了求函数极限的方法,还学会了求解其他类似例题的步骤。
再来看一道比较典型的极限例题:求函数y=2x2-2x+1的极限,当x趋近于0的时候。
这道题的步骤也是先求函数值的上限和下限,然后利用极限的定义求解极限。
根据函数定义,当x取值接近0时,函数值的上限是2x2-2x+1+Δx,下限是2x2-2x+1-Δx,Δx表示x变化量,这里可以看出上下限的差值为2Δx。
再利用极限的定义,得出结论:当x变化量趋于0时,上下限的差值也是趋于0,也就是说,当x趋于0时,函数值的极限就是2x2-2x+1。
可以看出,这两道极限例题,在步骤上有些类似,只是数值上的差别。
解决时只要注意函数的表达式,分析x趋于某个值时,函数值的上下限,从而利用极限定义求解极限。
当然,极限例题远不止上面两道,在解决这类例题的时候要更加熟悉解决的技巧,多练习解出一些类似的经典例题,以便应对考试中可能出现的问题。
以上就是关于高数数列极限经典例题的几个介绍,以帮助大家更好地理解极限和掌握求解极限的技巧。
当然,要想真正掌握极限知识,不能只依靠死记硬背,而要形成自己独立思考和解决问题的能力。
大一高数数列的极限知识点数列与极限是大一高等数学中的基础概念之一,对于理解数学的发展和推导过程具有重要意义。
本文将介绍大一高数中数列的概念及其与极限的关系,帮助读者更好地理解这一知识点。
一、数列的定义和性质数列是由一系列按照特定规律排列的数所组成的序列。
通常用a₁, a₂, a₃,..., an来表示,其中a₁为首项,a₂为第二项,an为第n项。
一个数列可以是等差数列、等比数列、递归数列等,不同的数列按照不同的规律生成。
例如,等差数列的规律是每一项与前一项的差值都相等,而等比数列的规律是每一项与前一项的比值都相等。
数列的性质包括有界性、单调性和有限性。
有界性指数列的所有项都在某一区间内,分为上有界和下有界;单调性表示数列中的项按照一定的规律递增或递减;有限性说明数列的项数是有限个。
二、数列的极限定义数列的极限是数列中的项随着项数增加而趋于的某一个确定的值。
数列的极限可以是有限值,也可以是无限值。
1. 数列极限为有限值的情况:设数列an的极限为A,即lim(n→∞) an = A。
当数列的项无论如何变化,当项数足够大时,与极限A的差值可以任意小,即对于任何ε > 0,都存在正整数N,使得当n > N时,|an - A| < ε 成立。
2. 数列极限为无穷大的情况:当数列的项随着项数增加而趋向于正无穷或负无穷时,我们说数列的极限为无穷大或负无穷大。
特别地,当数列的绝对值越来越大,且无论项数有多大,都可以找到其中某一个项,使得其绝对值大于任意给定的正数M,我们说数列的极限为正无穷大。
三、数列极限的性质1. 数列极限唯一性:如果数列an的极限存在,那么极限是唯一的。
即若lim(n→∞) an = A,lim(n→∞) an = B,则A = B。
2. 数列有界性与极限:如果数列an存在极限,那么它一定是有界的。
有界性分为上有界和下有界。
即存在正常数M,使得对于数列的所有项都有|an| ≤ M成立。
高数极限与数列公式定理总结大全高数极限与数列公式定理总结大全一、极限1.极限的定义:当一个数列中的项数n无限增大时,如果数列的项趋近于一个确定的数值,则称这个数值为这一数列的极限。
2.极限的性质:极限具有唯一性、有界性、收敛性。
3.极限的求法:通常有直接观察法、定义法、等价无穷小代换法、洛必达法则、泰勒公式等方法。
4.重要极限:lim(1+1/n)^n=e;lim(sinx/x)=1(x趋向于无穷)。
二、数列1.等差数列:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,则称这个数列为等差数列。
这个常数叫做等差数列的公差。
2.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,则称这个数列为等比数列。
这个常数叫做等比数列的公比。
3.数列的求和:通常有公式求和法、分组求和法、倒序相加法、裂项相消法等方法。
4.数列的通项公式:通常有直接观察法、构造法、递推关系式法等方法。
5.数列的极限:当数列的项数n无限增大时,如果数列的项趋近于一个确定的数值,则称这个数值为这一数列的极限。
三、导数与微分1.导数的定义:导数是函数在某一点的变化率,反映了函数在这一点附近的局部性质。
2.导数的几何意义:在曲线上某点的切线斜率即为该点的导数值。
3.导数的运算:导数的四则运算法则包括加法、减法、乘法和除法。
4.微分的定义:微分是函数在某一点附近的近似值,可以用来近似计算函数在某一点的值。
5.微分的应用:微分主要用于近似计算和误差估计等方面。
四、积分1.定积分的定义:定积分是函数在区间上的积分和,表示函数在这个区间上的平均值。
2.定积分的性质:定积分具有非负性、可加性、可减性等性质。
3.微积分基本定理:微积分基本定理说明了定积分与被积函数的原函数之间的关系。
4.不定积分的定义:不定积分是函数的一组原函数,表示该函数的无穷多个可能的值。
5.不定积分的性质:不定积分具有线性性、可加性等性质。
6.积分的应用:积分在物理、工程、经济等领域都有广泛的应用,如求面积、体积、长度等。
高数两个重要极限公式
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1;特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x →0时,(1+x)^(1/x)的极限等于e。
相关性质:
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列收敛(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。
3、与子列的关系:数列{xn} 与它的任一平凡子列同为收敛或发散,且在收敛时有相同的极限;数列{xn} 收敛的充要条件是:数列{xn} 的任何非平凡子列都收敛。