高三上学期期中考试数学试题卷(理科)
- 格式:doc
- 大小:525.50 KB
- 文档页数:7
兰州一中2022-2023-1学期期中考试试题高三数学(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 答案写在答题卷(卡)上,交卷时只交答题卷(卡).第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合{3,1,0,2,4}U =--,{1,0}A =-,{0,2}B =,则()U A B ⋃=( ) A .{3,1}- B .{3,4}- C .{3,1,2,4}--D .{1,0,2}-2.已知a R ∈,()13ai i i +=+,(i 为虚数单位),则=a ( ) A .1-B .1C .3-D .33.已知()f x 是R 上的偶函数,()g x 是R 上的奇函数,它们的部分图像如图,则()()⋅f x g x 的图像大致是( )A .B .C .D .4.已知等差数列{}n a 的前n 项和为n S ,且918S =,71a =,则1a =( ) A .4B .2C .12-D .1-5.已知x 、y 都是实数,那么“x y >”的充分必要条件是( ).A .lg lg x y >B .22x y >C .11x y> D .22x y >6.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是半径为2的一个半圆,则该几何体的体积为( ) A 3π B 3πC 3πD 3π 7.设x ,y 满足约束条件23250y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则z x y =-+的最小值为( )A .2B .1-C .2-D .3-8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()x f x e x =+,则32(2)a f =-,2(log 9)b f =,(5)c f =的大小关系为( )A .a b c >>B .a c b >>C .b c a >>D .b a c >>9.设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭ B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .()f x 的一个周期为810.已知函数222,2,()366,2,x ax x f x x a x x ⎧--≤⎪=⎨+->⎪⎩若()f x 的最小值为(2)f ,则实数a的取值范围为( ) A .[2,5]B .[2,)+∞C .[2,6]D .(,5]-∞11.已知双曲线2221x y a-=(0a >)的左、右焦点分别为1F ,2F ,过点2F 作一条渐近线的垂线,垂足为P 若12PF F △的面积为22率为( ) A 23B 32C .3D 1412.已知函数3()5()R f x x x x =+∈,若不等式()22(4)0f m mt f t ++<对任意实数2t ≥恒成立,则实数m 的取值范围为( ) A .(2,2-- B .4,3⎛⎫-∞- ⎪⎝⎭ C .((),22,-∞+∞D .(,2-∞第Ⅱ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分)13.有甲、乙、丙三项任务,甲、乙各需1人承担,丙需2人承担且至少1人是男生,现有2男2女共4名学生承担这三项任务,不同的安排方法种数是______.(用数字作答)14.已知()1,2a =,()1,1b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围为______.15.已知()f x 是R 上的奇函数,()g x 是在R 上无零点的偶函数,()20f =,当0x >时,()()()()0f x g x f x g x ''-<,则使得()()lg 0lg f x g x <的解集是________16.已知0x >,0y >,且24x y +=,则112x y y ++最小值为________. 三、解答题(本大题共6小题,共70分)(一)必考题:共五小题,每题12分,共60分。
焦作市博爱一中2024—2025学年高三(上)期中考试数 学考生注意:1.答题前,考生务必用黑色签字笔将自己的姓名、准考证号、座位号在答题卡上填写清楚;2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试卷上作答无效;3.考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数过定点M ,点M 在直线上且,则的最小值为( )A. B. C. D.2.设,,,则,,的大小关系为( )A. B. C. D.3.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点为坐标原点,定义余弦相似度为,余弦距离为.已知点,若P ,Q 的余弦距离为( )A. B.C. D.4.若复数且,则满足的个数为( )A.0B.2C.1D.45.已知在中,.若与的内角平分线交于点,的外接圆半径为,则面积的最大值为( )A. B.6.已知点为椭圆上第一象限的一点,左、右焦点为的平分线与轴交于点,过点作直线的垂线,垂足为为坐标原点,若,则面积为( )B.C.D.3()1x f x a -=1mx ny +=,0m n >12m n+3+4+34128a =3log 2b =2log 3c =a b c a b c<<b a c<<b c a<<c a b<<()()1122,,,,A x y B x y O cos(,)A B =cos ,OA OB 〈〉1cos(,)A B -(sin ,cos ),(1,0)P Q ααcos 2=α15-1535-35()i ,z x y x y =+∈R 5i z -+=21x y --=z ABC V cos cos sin a B b A c C +=BAC ∠ABC ∠I ABC V 1ABI △1+11-1P 22:143x y C +=1212,,F F F PF ∠x M 1F PM ,H O 12OH =12F PF 327.假设甲袋中有3个白球和2个红球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.已知从乙袋中取出的是2个白球,则从甲袋中取出的也是2个白球的概率为( )A.37150B.975C.1837D.128.已知数列满足,且,若函数,记,则数列的前9项和为( )A.0B. C.D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.记实数,,,中的最大数为,最小数为.已知函数,,其中,,分别为内角,,的对边,且,则下列说法正确的是( )A.当时,的最小值为B.若的图象关于直线对称,则C.“”是“为等边三角形”的充要条件D.“”是“为等边三角形”的必要不充分条件10.已知函数,下列结论正确的是( )A.的最小正周期为B.若直线是图象的对称轴,则C.在上的值域为D.若,且,则11.如图,正方体的棱长为4,点E 、F 、G 分别在棱、、上,满足,,记平面与平面的交线为,则( ){}n b *211,n n n n b b b b n +++-=-∈N 5π2b =()2cos sin cos 2xg x x x =+()n n a gb ={}n a 92-12921x 2x L n x {}12max ,,,n x x x {}12min ,,,n x x x (){}min ,f x x x t =+max ,,min ,,a b c a b c k b c a b c a ⎧⎫⎧⎫=⋅⎨⎬⎨⎩⎭⎩⎭a b c ABC V A B C a b c ≤≤1t =-()f x 12()f x 12x =-1t =1k =ABC V 1k =ABC V ()sin 2cos f x x x =+()f x 2π0x x =()f x 0sin x =()f x []0,π⎡-⎣(],,0,2παβαβ≠∈()()2f f αβ==-()3cos 5αβ+=1111ABCD A B C D -11D A 11D C 1A A 11111114D E D F D A D C ==11(0)A GA Aλλ=>EFG 11A B CD lA.存在使得平面截正方体所得截面图形为四边形B.当时,三棱锥体积为C.当时,三棱锥的外接球表面积为D.当时,直线与平面所成的角的正弦值为三、填空题:本大题共3个小题,每小题5分,共15分.12.从,,,2,3,4,6,9中任取两个不同的数,分别记为,,记“”,则 .13.已知函数,在区间上的单调函数,其中是直线l 的倾斜角,则的所有可能取值区间为 .14.已知函数,若不等式仅有1个整数解,则实数的取值范围为 .四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数 f (x )=a ⋅3x +13x−1是定义域为 R 的偶函数.(1)求 a 的值;(2)若 g (x )=9x +9−x +mf (x )+m 2−1,求函数g (x ) 的最小值.16.(15分)在某地区进行高中学生每周户外运动调查,随机调查了名高中学生户外运动的时间(单位:小时),得到如下样本数据的频率分布直方图.(0,1)λ∈EFG 34λ=B EFG -3234λ=1A EFG -34π12λ=l ABCD 141312m n A =log 0m n <()P A =()21tan 32f x x x θ=++2πθ⎛⎫≠ ⎪⎝⎭⎡⎤⎢⎥⎣⎦θθ43()()ln f x a x x x x =--()0f x <a 1000(1)求的值,估计该地区高中学生每周户外运动的平均时间;(同一组数据用该区间的中点值作代表)(2)为进一步了解这名高中学生户外运动的时间分配,在,两组内的学生中,采用分层抽样的方法抽取了人,现从这人中随机抽取人进行访谈,记在内的人数为,求的分布列和期望;(3)以频率估计概率,从该地区的高中学生中随机抽取名学生,用“”表示这名学生中恰有名学生户外运动时间在内的概率,当最大时,求的值.17.(15分)记的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求A 取值的范围;(2)若,求周长的最大值;(3)若,求的面积.a 1000(]14,16(]16,18553(]14,16X X 8()8P k 8k (]8,10()8P k k ABC V ()()sin sin sin sin C A B B C A -=-2a =ABC V 2,2b A B ==ABC V18.(17分)如图,正方形的边长为2,,分别为,的中点.在五棱锥中,为棱上一点,平面与棱,分别交于点,.(1)求证:;(2)若底面,且,直线与平面所成角为.(i )确定点的位置,并说明理由;(ii )求线段的长.19.(17分)已知数列的前n 项和.若,且数列满足.(1)求证:数列是等差数列;(2)求证:数列的前n 项和;(3)若对一切恒成立,求实数的取值范围.焦作市博爱一中2024—2025学年高三(上)期中考试数学 参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个AMDE B C AM MD P ABCDE -F PE ABF PD PC G H AB FG ∥PA ⊥ABCDE PA AE =BC ABF π6F PH {}n a ()()113n n S a n *=-∈N 1423log n n b a +={}n c n n n c a b =⋅{}n b {}n c 23n T <()2114n c t t ≤+-n *∈N t选项中,只有一项是符合题目要求的.1.【答案】A2.【答案】C3.【答案】D4.【答案】A5.【答案】C6.【答案】C7.【答案】C8.【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】BD 10.【答案】ACD 11.【答案】BD三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】13.【答案】,14.【答案】四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)(1)由偶函数定义知 f (−x )=f (x ) ,即 a ⋅3−x +13−x−1=a ⋅3−x +3⋅3x=a ⋅3x +3⋅3−x ,所以 (a−3)(3x −3−x )=0,对 ∀x ∈R 成立,所以a =3.(2)由题意知 g (x )=9x +9−x +mf (x )+m 2−1=32x +3−2x +m (3⋅3x+13x−1)+m 2−1,令 u =3x +3−x ,u⩾2,所以 u 2=(3x +3−x )2=32x +3−2x +2,所以 32x +3−2x =u 2−2,所以 y =g (x )=u 2−2+3mu +m 2−1=u 2+3mu +m 2−3,u⩾2.当 −3m 2⩽2 ,即 m⩾−43时,y =u 2+3mu +m 2−3 在 [2,+∞) 上单调递增,所以 y min =22+3m ×2+m 2−3=m 2+6m +1 ,即 g (x )min =m 2+6m +1;15283ππ,π[46⎡⎫⋃⎪⎢⎣⎭π2ln 3ln 2[,184当 −3m 2>2 ,即 m <−43时,y =u 2+3mu +m 2−3 在 (2,−3m 2) 上单调递减,在(−3m 2,+∞) 上单调递增,所以 g (x )min =−54m 2−3 .综上, g (x )min ={−54m 2−3,m <−43,m 2+6m +1,m⩾−43.16.(15分)(1)由已知,解得,所以平均数为.(2)这名高中学生户外运动的时间分配,在,两组内的学生分别有人,和人;所以根据分层抽样可知人中在的人数为人,在内的人数为人,所以随机变量的可能取值有,,所以,,则分布列为期望;(3)由频率分布直方图可知运动时间在内的频率为,则,若为最大值,则,即,即,解得,又,且,则.17.(15分)【答案】(1);(2)6;(3).()20.020.030.050.050.150.050.040.011a ++++++++=0.1a =10.0430.0650.170.190.3⨯+⨯+⨯+⨯+⨯110.2130.1150.081706290.1.+++⨯=⨯+⨯⨯1000(]14,16(]16,1810000.0880⨯=10000.0220⨯=5(]14,1680548020⨯=+(]16,18541-=X 23()2435C 32C 5P X ===()3435C 23C 5P X ===()321223555E X =⨯+⨯=(]8,1030.1520.310⨯==()888883337C 1C 10101010kkkkk k P k --⎛⎫⎛⎫⎛⎫⎛⎫=⋅-=⋅⋅ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()8P k ()()()()888811P k P k P k P k ⎧≥+⎪⎨≥-⎪⎩8171888191883737C C 101010103737C C 10101010k k k kk k k k k kk k -+-+----⎧⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅≥⋅⋅⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎨⎛⎫⎛⎫⎛⎫⎛⎫⎪⋅⋅≥⋅⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩1713810110131710910k k k k ⎧⋅≥⋅⎪⎪-+⎨⎪⋅≥⋅⎪-⎩ 1.7 2.7k ≤≤N k ∈08k ≤≤2k =π(0,]3A ∈218.(1)在正方形中,,又平面平面,所以平面,又平面,平面平面,则;(2)(i )当为中点时,有直线与平面所成角为,证明如下:由平面,可得建立空间直角坐标系,如图所示:则,又为中点,则,设平面的一个法向量为n =(x,y,z ),则有,即,令,则,则平面的一个法向量为,设直线与平面所成角为,则,故当为中点时,直线与平面所成角的大小为.(ii )设点的坐标为,因为点在棱上,所以可设,即,所以,因为是平面的法向量,所以,即,解得,故,则,所以.19.(17分)(1)证明:由题意知,当时,,所以.当时,,所以,AMDE //AB DE AB ⊄,PDE DE ⊂PDE //AB PDE AB ⊂ABFG ABFG ⋂PDE FG =AB FG ∥F PE BC ABF π6PA ⊥ABCDE ,,PA AB PA AE ⊥⊥A xyz -()()()()0,0,0,1,0,0,2,1,0,0,0,2A B C P F PE ()()()()0,1,1,1,1,0,1,0,0,0,1,1F BC AB AF ===ABF 00n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩ 00x y z =⎧⎨+=⎩1z =1y =-ABF ()0,1,1n =-BC ABF α||1sin |cos ,|2||||n BC n BC n BC α⋅=<>==F PE BC ABF π6H (),,u v w H PC ()01PH PC λλ=<<()(),,22,1,2u v w λ-=-2,,22u v w λλλ===-()0,1,1n =-ABFGH 0n AH ⋅=()()0,1,12,,220λλλ-⋅-=23λ=422,,333H ⎛⎫⎪⎝⎭424,,333PH ⎛⎫=- ⎪⎝⎭2PH ==1133n n S a =-2n ≥111133n n n n n a S S a a --=-=-114n n a a -=1n =1111133S a a =-=114a =所以数列是以为首项,为公比的等比数列,所以.因为,所以,所以,令,可得,所以数列是以1为首项,3为公差的等差数列.(2)证明:由(1)知,所以,所以,两式相减,可得,所以,所以.(3)若对一切恒成立,只需要的最大值小于或等于.因为,所以,所以数列的最大项为和,且.所以,即,解得或,即实数的取值范围是.{}n a 1414()14nn a n *⎛⎫=∈ ⎪⎝⎭N 1423log n n b a +=114413log 23log 2324nn n b a n ⎛⎫=-=-=- ⎪⎝⎭11b =()11n b b n d =+-3d ={}n b ()1324nn n n c a b n ⎛⎫=⋅=⨯- ⎪⎝⎭()()211211111435324444n nn n T c c c n n -⎛⎫⎛⎫⎛⎫=+++=⨯+⨯++⨯-+⨯- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()2311111114353244444n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()231311111133332444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()21111114411113233214424414n n n n n n -++⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭-⎢⎥⎛⎫⎣⎦=+⨯-⨯-=-- ⎪⎝⎭-2321334nn n T +⎛⎫=-⨯ ⎪⎝⎭23n T <()2114n c t t ≤+-n *∈N n c ()2114t t +-()()111119931320444n nn n n nc c n n +++-⎛⎫⎛⎫-=+⨯--⨯=≤ ⎪⎪⎝⎭⎝⎭1234c c c c =>>> {}n c 1c 2c 1214c c ==()211144t t ≤+-220t t +-≥1t ≥2t ≤-t (][),21,-∞-+∞。
2024—2025学年第一学期11月高三期中考试数学考试说明:1.本试卷共150分.考试时间120分钟.2.请将各题答案填在答题卡上.一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数的定义域为( )A .B .C .D .2.已知平面向量,且∥,则( )A .B .C.D .13.已知,若,则( )A .B .C .D .4.已知,则( )A .B .C .D .5.已知函数(其中,,)的部分图象如图所示,有以下结论:①②函数为偶函数③④在上单调递增所有正确结论的序号是( )A .①②④B .①②③C .②③④D .①③④6.若函数在(1,3)上不单调,则实数的取值范围是( )A .B .C .D .1()ln(22)1f x x x =++-(1,)+∞(0,1)(1,)-+∞ (,1)-∞(1,1)(1,)-+∞ (1,2),(1,1)a b λ=+()a b +a λ=12-1-123()2sin 2f x x x =-+()f m a -=()f m =4a-2a -2a +a-tan 3α=3cos 2sin 2cos 3sin αααα-=+511511-311311-()cos()f x A x B ωϕ=++0A >0ω>πϕ<23π()(6f x f ≤π(3f x +()()26f x f x π+-=()f x 4π13π[,]363()2ln f x x t x x=--7)(7,)+∞[7,)+∞7]7.将函数的图象向右平移个单位长度后得到函数的图象,且函数是奇函数,则的最小值是( )A .B .C .D .18.在锐角△中,、、分别是角、、所对的边,已知且,则的取值范围为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知下列函数中,最小正周期为的是()A .B . C .D .10.在△中,,为线段上一点,且有,则下列命题正确的是( )A .B .C .的最大值为D .的最小值为911.过点(2,)可以作两条直线与曲线相切,则实数的可能取值为( )A .B .C .D .三、填空题:本题共3小题,每小题5分,共15分.12.已知复数(为虚数单位),若是纯虚数,则实数________.13.已知平面向量,,则在上的投影向量为________(结果用坐标表示)14.在等边三角形的三边上各取一点,满足,,°,则三角形的面积的最大值是________.π()sin()(0)6f x x ωω=+>π3()g x ()g x ω132312ABC a b c A B C 23cos cos b c C A-=3a =b c +(3,6)(3,6]6]6)πcos 2y x=π2sin(213y x =++sin 2y x =tan()4y x π=-ABC 14CD CA = P BD ,,(0,)CP CA CB λμλμ=+∈+∞41λμ+=41λμ+=λμ1911λμ+a xy xe =a e 26e -21e -2e 122,3z a i z i =+=-12z z a =(2,1)a = (1,3)b =-b a ABC ,,M N P MN =4MP =30PMN ∠=ABC四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分13分)已知向量,满足.(1)求向量与夹角的余弦值;(2)求的值.16.(本题满分15分)(1)已知都是锐角,若,求的值;(2)已知,求的值.17.(本题满分15分)设函数.(1)当时,求函数的单调区间;(2)若函数有两个极值点,且,求的最小值.18.(本题满分17分)△的内角的对边分别为,已知.(1)求角的大小;(2)若是△边上的中线,且,求△面积的最大值.19.(本题满分17分)已知为坐标原点,对于函数,称向量为函数的相伴特征向量,同时称函数为向量的相伴函数.(1)记向量的相伴函数为,若当且时,求的值;(2)设,试求函数的相伴特征向量,并求出与同向的单位向量;(3)已知为函数的相伴特征向量,若在△中,,,若点为该△的外心,求的最大值.2024-2025学年第一学期11月高三期中考试数学答案1.D 2.D 3.A4.D5.B6.A7.C8.C9.ABD10.AD11.ABDa b 2,3,(2)a b a b b ==-⊥a b2a b -,αβ38sin ,cos()517ααβ=+=sin β1sin cos ,(0,π)3ααα-=∈πsin(26α-21()ln 1()2f x x x ax a R =+-+∈52a =()f x ()f x 12,x x 11(0,]2x ∈12()()f x f x -ABC ,,A B C ,,a b c cos sin 2A Cc b C +=B BE ABC AC 3BE =ABC O ()sin cos f x a x b x =+(,)OM a b =()f x ()f x OM(3,ON =()f x ()3f x =ππ(,33x ∈-x ππ())cos()()36g x x x x R =++-∈()g x OM OM(0,1)OA = ()h x ABC 2AB =πcos ()6C h =G ABC GC AB CA CB ⋅+⋅12. 13. 1415.【解析】(1)设与的夹角为,因为,所以,又,所以,所以所以向量与夹角的余弦值为;(2)由,所以.16.【解析】(1)∵已知、都是锐角,且,∴.∵,∴,∴.(2)因为,所以,即,所以,又,所以,故,故,故,所以,所以,,故17.【解析】(1),则定义域为(0,),23-21,55⎛⎫⎪⎝⎭a b θ(2)a b b -⊥2(2)20a b b a b b -⋅=⋅-=2,3a b == 223cos 90θ⨯⨯⨯-=3cos 4θ=a b 342223244442349224a b a a b b -=-⋅+=-⨯⨯⨯+⨯= 2a b -=αβ3sin 5α=4cos ,0π5ααβ==<+<8cos()17αβ+=15sin()17αβ+==1548336sin sin[()]sin()cos cos()sin 17517585βαβααβααβα=+-=+-+=⨯-⨯=1sin cos 3αα-=21(sin cos )9αα-=112sin cos 9αα-=4sin cos 9αα=(0,π)α∈sin 0α>cos 0α>π0,2α⎛⎫∈ ⎪⎝⎭22217(sin cos )sin cos 2sin cos 9αααααα+=++=sin cos αα+=8sin 22sin cos 9ααα==22cos 2cos sin (sin cos )(sin cos )ααααααα=-=-+-=81sin(2sin 2cos cos 2sin 66692πππααα-=-=+⨯=21()ln 12f x x x ax =+-+()f x +∞211()x ax f x x a x x-+'=+-=当时,,令,解得或,令,解得,所以的单调递增区间为,单调递减区间为(2)∵定义域为,由(1)可知当时有两个极值点等价于在上有两个不等实根,∴,∴ ∴设,则,∴在上单调递减,∴,即,∴的最小值为18.【解析】(1)在△中,由,根据正弦定理可得因为为△的内角可知,,且,所以,即因为为△的内角,,故;所以,即(2)由题知是边的中线,所以.两边平方得:52a =2511(2)(21)22()x x x x f x x x -+--'==()0f x '>2x >102x <<()0f x '<122x <<()0f x '>1(0,),(2,)2+∞1(,2)2()f x 211(0,),()x ax f x x a x x-+'+∞=+-=2a >()f x 12,x x 210x ax -+=(0,)+∞12,x x 1212,1x x a x x +==211x x =221211122211()()ln 1ln 122f x f x x x ax x x ax -=+-+--+-22211211112221111111111ln ln ()2ln 2222x x a x x x x x x x x x ==--+-=+-+-21121112ln 22x x x =-+22111()2ln 0222g x x x x x ⎛⎫=-+<≤ ⎪⎝⎭24223332121(1)()0x x x g x x x x x x---'=--==-≤()g x 1(0,]21115()2ln 222ln 2288g x g ⎛⎫≥=--+=-+ ⎪⎝⎭1215()()2ln 28f x f x -≥-+12()()f x f x -152ln 28-+ABC cos sin 2A Cc b C +=sin cos sin sin 2A CC B C+=C ABC sin 0C ≠A B C π++=πsin coscos sin 2222A C B B B +⎛⎫==-= ⎪⎝⎭2sin cos sin222B B B =B ABC sin02B ≠1cos 22B =π23B =2π3B =BE AC 2BE BA BC =+222(2)2cos BE c a ac B =++ 2236c a ac=+-又,故,当且仅当时等号成立.所以面积的最大值为19.【解析】(1)根据题意知,向量的相伴函数为当时,,又,则,所以,故(2)因为,故函数的相伴特征向量,则与同向的单位向量为(3)由题意得,,在△中,,,因此,设△外接圆半径为,根据正弦定理,,故所以,代入可得,所以当时,取得最大值14.222c a ac +≥2236c a ac ac =+-≥6a c ==11sin 3622ABC S ac B =≤⨯=V ABC (3,ON =π()3sin 6f x x x x =+=+π()36f x x ⎛⎫=+= ⎪⎝⎭πsin 6x ⎛⎫+= ⎪⎝⎭ππ,33x ⎛⎫∈-⎪⎝⎭πππ,662x ⎛⎫+∈- ⎪⎝⎭ππ63x +=π6x =ππππππ()cos cos cos sin sin cos cos sin sin363366g x x x x x x x ⎛⎫⎛⎫⎫=++-=-++ ⎪ ⎪⎪⎝⎭⎝⎭⎭sin x x =-+()g x (1,OM =-(1,OM =- 11(1,,22OM OM ⎛=-=- ⎝()cos h x x =ABC 2AB =ππcos (cos 66C h ===π6C =ABC R 24sin ABR C==2R =2GA GB GC ===()()()GC AB CA CB GC GB GA GA GC GB GC ⋅+⋅=⋅-+-⋅- =2GC GB GC GA GA GB GA GC GC GB GC⋅-⋅+⋅-⋅-⋅+ 228cos 4cos 4GC GA GA GB GC AGC AGB =-⋅+⋅+=-∠+∠+ πππ1,2,cos cos 6332C AGB C AGB =∠==∠==68cos GC AB CA CB AGC ⋅+⋅=-∠ πAGC ∠=GC AB CA CB ⋅+⋅。
菏泽市2024—2025学年度第一学期期中考试高三数学试题(答案在最后)本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}202,0M x x N x x x =∈<<=-≤Z ∣∣,则M N = ()A.{}0,1 B.{}1 C.{}1,1- D.∅2.已知函数()21f x +的定义域为[]1,2,则函数()1f x -的定义域为()A.[]1,2B.[]4,6 C.[]5,9 D.[]3,73.已知2025π1sin sin 22αα⎛⎫-+=⎪⎝⎭,则cos2sin cos ααα=+()A.12-B.12C.0D.14.“函数()32f x x ax =-在[]2,3-上单调递增”是“3a ≤”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分又不必要条件5.过曲线9log =y x 上一点A 作平行于两坐标轴的直线,分别交曲线3log y x =于点,B C ,若直线BC 过原点,则其斜率为()A.1B.3log 22C.ln33D.2log 366.函数()11ln sin 21x f x x x+=--的零点个数为()A.1B.0C.3D.27.自然界中许多流体是牛顿流体,其中水、酒精等大多数纯液体、轻质油、低分子化合物溶液以及低速流动的气体等均为牛顿流体;高分子聚合物的浓溶液和悬浮液等一般为非牛顿流体,非牛顿流体在实际生活和生产中有很多广泛的应用,如工业制造业常利用某些高分子聚合物做成“液体防弹衣”,已知牛顿流体符合牛顿黏性定律,即在一定温度和剪切速率范围内黏度值是保持恒定的:τηγ=,其中τ为剪切应力,η为黏度,γ为剪切速率;而当液体的剪切应力和剪切速率存在非线性关系时液体就称为非牛顿流体.其中宾汉流体(也叫塑性流体),是一种粘塑性材料,是非牛顿流体中比较特殊的一种,其在低应力下表现为刚体,但在高应力下表现为粘性流体(即粘度恒定),以牙膏为例,当我们挤压它的力较小时,它就表现为固体,而当力达到一个临界值,它就会变成流体,从开口流出.如图是测得的某几种液体的流变τγ-曲线,则其中属于牙膏和液体防弹衣所用液体的曲线分别是()A.①和④B.③和④C.③和②D.①和②8.已知函数()()1e xf x x =-,点(),m n 在曲线()y f x =上,则()()f m f n -()A.有最大值为1e-,最小值为1 B.有最大值为0,最小值为1e-C.有最大值为0,无最小值D.无最大值,有最小值为1e-二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0c b a <<<,则()A.ac bc <B.333b c a +< C.a c ab c b+>+D.<10.已知函数()21,2,5,2x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩,且()()()()f a f b f d f c ==<,则()A.1a ≤- B.[]1,4c ∈ C.()20,5ad ∈ D.222a b +=11.把一个三阶魔方看成是棱长为1的正方体,若顶层旋转x 弧度π02x ⎛⎫<<⎪⎝⎭,记表面积增加量为()S f x =,则()A.π663f ⎛⎫=⎪⎝⎭B.()f x 的图象关于直线π3x =对称C.S 呈周期变化D.6S ≤-三、填空题:本题共3小题,每小题5分,共15分.12.命题:“所有能被4整除的正整数能被2整除”的否定是______.13.已知函数()sin2cos2f x x a x =+,将()f x 的图象向左平移π6个单位长度,所得图象与曲线()y f x =关于原点对称,则()0f =______.14.已知22,e x ⎡⎤∈⎣⎦时,2log 2axx x ax ≥⋅,则正数a 的最大值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.15.记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知πsin sin ,63C C b ⎛⎫+== ⎪⎝⎭,ABC V的面积为.(1)求C ;(2)求ABC V 的周长.16.已知函数()π2sin 43⎛⎫=- ⎪⎝⎭f x x .(1)求()f x 的单调递减区间;(2)若ππ,68x ⎡⎤∈-⎢⎣⎦,求()()23-=+f x y f x 的最大值.17.记锐角ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos 2cos cos c CA b B-=.(1)求B ;(2)延长AC 到D ,使2,15AC CD CBD =∠= ,求tan A .18.已知函数()()2e xf x x a =-.(1)求()f x 的单调区间;(2)设12,x x 分别为()f x 的极大值点和极小值点,记()()()()1122,,,A x f x B x f x .证明:直线AB 与曲线()y f x =交于另一点C .19.已知函数()()sin tan sin 2f x x x x =+-,其中01x <<,(1)证明:21cos 12x x >-;(2)探究()f x 是否有最小值,如果有,请求出来;如果没有,请说明理由.菏泽市2024—2025学年度第一学期期中考试高三数学试题本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABD 【10题答案】【答案】BCD 【11题答案】【答案】AD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】存在能被4整除的正整数不能被2整除【13题答案】【答案】3-【14题答案】【答案】222log e e 四、解答题:本题共5小题,共77分.解答应写出必要的文字说明,证明过程或演算步骤.【15题答案】【答案】(1)π3C =(2)10+【16题答案】【答案】(1)π5ππ11π,224224k k ⎡⎤++⎢⎣⎦,()k ∈Z (2)0【17题答案】【答案】(1)45B =(2)2+【18题答案】【答案】(1)单调增区间为()(),2,,a a ∞∞--+,单调减区间为(2,)a a -(2)证明见解析【19题答案】【答案】(1)证明见解析(2)没有,理由见解析。
南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。
2023-2024学年度上期高2024届半期考试数学试卷(理科)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.本试卷分选择题和非选择题两部分.3.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.4.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.5.所有题目必须在答题卡上作答,在试题卷上答题无效.6.考试结束后,只将答题卡交回.第Ⅰ卷(选择题,共60分)一、选择题:(本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}220,21xA x x xB x =-<=>,则()A .B A ⊆B .A B⊆C .A B =RD .A B =∅2.复数34i2iz +=+,则z =()A B .5C .3D 3.执行如图所示程序框图,则输出结果是()A .热B .爱C .生D .活4.某公司一种型号的产品近期销售情况如表:月份x23456销售额y (万元)15.116.317.017.218.4根据上表可得到回归直线方程ˆˆ0.75yx a =+,据此估计,该公司7月份这种型号产品的销售额为()A .18.85万元B .19.3万元C .19.25万元D .19.05万元5.已知空间两不同直线m n 、,两不同平面αβ、,下列命题正确的是()A .若//m α且//n α,则//m nB .若m β⊥且m n ⊥,则//n βC .若m α⊥且//m β,则αβ⊥D .若m 不垂直于α,且n α⊂,则m 不垂直于n6.如图,在ABC △中,120,2,1,BAC AB AC D ∠=︒==是BC 边一点,2DC BD =,则AD BC ⋅等于()A .83-B .83C .23D .23-7.将函数()cos2f x x =的图象向左平移2π个单位得到函数()g x 的图象,则关于函数()y g x =以下说法正确的是()A .最大值为1,图象关于直线2x π=对称B .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数D .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数8.如图,平面四边形ABCD 中,1,2,AB AD CD BD BD CD ====⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,四面体A BCD '-的顶点在同一个球面上,则该球的体积为()A .43πB .32C .43πD .239.已知双曲线C 的两个顶点分别为12,A A ,若C 的渐近线上存在点P ,使122PA =,则C 的离心率范围是()A .(]1,3B .[)3,+∞C .(]1,2D .[)2,+∞10.已知函数()()2ln 2x f x kx x kx k R =--∈,在()20,e 有且只有一个极值点,则k 的取值范围是()A .[)0,e B .(){}2,0,2e e ⎡⎫-∞+∞⎪⎢⎣⎭C .()2,0,2e ⎡⎫-∞+∞⎪⎢⎣⎭D .(]0,e11.已知数列{}n a 满足()12121,1,54032n n n a a a a a n --=-=-+=≥,则1013a =()A .202321-B .202421-C .202621-D .101321-12.已知0,0a b >>,则在下列关系①222a b +≤②1a b e -≤③1cos 23a b≥-④a b e ea e eb -=-中,能作为“2a b +≤”的必要不充分条件的个数是()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.)13.曲线22ln 2y x x x =--+在点()1,1处的切线的倾斜角为______.14.已知40n xdx =⎰ ,则二项式()310nx x x ⎛⎫+> ⎪⎝⎭展开式中的常数项为______.15.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S =______.16.12F F 、分别是椭圆()222210x y a b a b +=>>的左、右焦点,点P 在椭圆上,12PF F △的内切圆的圆心为I ,设直线12,IF IF 的斜率分别为11,23-,则椭圆的离心率为______.三、解答题:(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)在ABC △中,内角A B C 、、所对的边分别为a b c 、、,其外接圆半径为1,4,sin sin 11cos bA C B=+=-.(1)求cos B ;(2)求ABC △的面积.18.(本小题满分12分)一个多面体的三视图和直观图如图所示,其中正视图和俯视图均为矩形,侧视图为直角三角形,M 是AB 的中点.(1)求证:CM ⊥平面FDM ;(2)若N 为线段FC 上一点,且FN FC λ= ,二面角F DM N --的余弦值为3,求λ的值.19.(本小题满分12分)体育强国是新时期我国体育工作改革和发展的目标和任务,我国要力争实现体育大国向体育强国的转变。
北京名校高三第一学期期中试卷(理科) 第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合要求的.选出符合要求的一项填在答题卡上.)1.已知集合{1,0,1,2}A =-,{1}B x x =≥,则A B = ( ).A .{2}B .{1,2}C .{1,2}-D .{1,1,2}-2.下列函数为奇函数的是( ).A.y .e x y = C .cos y x = D .e e x x y -=-3.设(1,2)a = ,(1,1)b = ,c a kb = +.若b c ⊥,则实数k 的值等于( ).A .32-B .53-C .53D .324.若x ,y 满足2030x y x y x -⎧⎪⎨⎪⎩≤≤≥+,则2x y +的最大值为( ).A .0B .4C .3D .55.若a ,b是两个非零的平面向量,则“||||a b = ”是“()()0a b a b +⋅-= ”的( ).A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ).正(主)视图侧(左)视图俯视图A.2+.4.2.57.已知函数42|log |,04()1025,4x x f x x x x <⎧⎪=⎨-+>⎪⎩≤,若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是( ).A .(24,25)B .(18,24)C .(21,24)D .(18,25)8.一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁,事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字( ).A .4,6B .3,6C .3,7D .1,7第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.)9.已知抛物线的方程24y x =,则其焦点到准线的距离为___________.10.若4sin 5θ=,tan 0θ<,则sin 2θ=__________.11.设4log πa =,14log πb =,4πc =,则a ,b ,c 的大小关系是___________.(从小到大用“<”连接)12.如图,在矩形ABCD中,AB =2BC =,点E 为BC 的中点,点F 在边CD上,若AB BF ⋅则AE BF ⋅的值是__________.E13.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =___________.14.设函数3||,1()log ,1x a x f x x x -⎧=⎨>⎩≤. (1)如果(1)3f =,那么实数a =____________.(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分13分)已知函数π()Asin(),0,02f x x x ωϕωϕ⎛⎫=+∈><< ⎪⎝⎭R 的部分图象如图所示.(1)求函数()f x 的解析式.(2)求函数()f x 在区间π,02⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16.(本小题满分13分)在锐角ABC △中,a 、b 、c 分别为角A 、B 、C 所对的边,且sin a A (1)确定角C 的大小.(2)若c ABC △,求22a b +的值.17.(本小题满分13分)已知等差数列{}n a 满足:25a =,4622a a +=.{}n a 的前n 项和为n S . (1)求n a 及n S .(2)若21()1f x x =-,()(*)n n b f a n =∈N ,求数列{}n b 的前n 项和n T .18.(本小题满分13分) 在如图所示的几何体中,四边形ABCD 是等腰梯形,AB CD ∥,60DAB ∠=︒,PC ⊥平面ABCD ,AE BD ⊥,CB CD CF ==.D ABCEF(1)求证:BD ⊥平面AED .(2)求二面角D BF C --的余弦值.(3)在线段AB (含端点)上,是否存在一点P ,使得FP ∥平面AED ,若存在,求出APAB的值;若不存在,请说明理由. 19.(本小题满分14分)已知函数22()(24)ln (0)f x x ax x x a =->+.(1)当1a =时,求此函数对应的曲线在(1,(1))f 处的切线方程. (2)求函数()f x 的单调区间.(3)对[1,)x ∀∈∞+,不等式(24)ln x a x x ->-恒成立,求a 的取值范围.20.(本小题满分14分)已知集合123{,,,}(3)n S a a a a n = ≥,集合{(,),,}T x y x S y S x y ⊆∈∈≠且满足:i a ∀,(,1,2,3,,,)j a S i j n i j ∈=≠ ,(,)i j a a T ∈与(,)j i a a T ∈恰有一个成立.对于T 定义1,(,),(,)0,(,),T a b T d a b b a T ∈⎧=⎨∈⎩1211()(,)(,)(,)(,)(,)(1,2,3,,)T i T i T i T i i T i i T i n l a d a a d a a d a a d a a d a a i n -== +++++++.(1)若4n =,12(,)a a ,32(,)a a ,24(,)a a T ∈,求2()T l a 的值及4()T l a 的最大值.(2)取1()T l a ,2()T l a , ,()T n l a 中任意删去两个数,即剩下的2n -个数的和为M ,求证:1(5)32M n n -≥+. (3)对于满足()1(1,2,3,,)T i l a n i n <-= 的每一个集合T ,集合S 中是否都存在三个不同的元素e ,f ,g ,使得(,)(,)(,)=3T T T d e f d f g d g e ++恒成立,并说明理由.北京名校高三第一学期期中试卷(理科) 第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合要求的.选出符合要求的一项填在答题卡上.)1.已知集合{1,0,1,2}A =-,{1}B x x =≥,则A B = ( ).A .{2}B .{1,2}C .{1,2}-D .{1,1,2}- 【答案】B【解析】{1,2}A B = . 故选B .2.下列函数为奇函数的是( ).A.y .e x y = C .cos y x = D .e e x x y -=- 【答案】D【解析】A 选项,定义域0x ≥,∴yB 选项,定义域x ∈R ,e xy =非奇非偶; C 选项,定义域x ∈R ,cos y x =,偶函数;D 选项,定义域x ∈R ,()e e ()x xf x f x -=-=--,奇函数. 故选D .3.设(1,2)a = ,(1,1)b = ,c a kb = +.若b c ⊥,则实数k 的值等于( ).A .32-B .53-C .53D .32【答案】A【解析】∵b c ⊥,∴(1,1)(1,2)120b c k k k k ⋅=⋅== +++++,∴32k =-.故选A .4.若x ,y 满足2030x y x y x -⎧⎪⎨⎪⎩≤≤≥+,则2x y +的最大值为( ).A .0B .4C .3D .5 【答案】B【解析】如图所示:3(,)x y 满足区域为阴影部分,令2z x y =+,2y x =-+z , 当直线过A 时,z 取最大. 32y x y x =⎧⎨=⎩+,得12x y =⎧⎨=⎩,(1,2)A ,∴max 4z =. 故选B .5.若a ,b是两个非零的平面向量,则“||||a b = ”是“()()0a b a b +⋅-= ”的( ).A .充分且不必要条件B .必要且不充分条件C .充要条件D .既不充分也不必要条件 【答案】C【解析】22()()0a b a b a b +⋅-=-= ,∴22a b = ,∴||||a b = . 故选C .6.某三棱锥的三视图如图所示,则该三棱锥的表面积是( ).正(主)视图侧(左)视图俯视图A.2+.4.2.5 【答案】A【解析】原图形如图所示:212DAB C12222BCD S =⨯⨯=△,112ABD ACB S S ==⨯△△||AD,||AC ,∴122ACD S =⨯△∴表面积为2+ 故选A .7.已知函数42|log |,04()1025,4x x f x x x x <⎧⎪=⎨-+>⎪⎩≤,若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是( ).A .(24,25)B .(18,24)C .(21,24)D .(18,25) 【答案】A【解析】函数()f x 图象如图所示:若有四个不同数a ,b ,c ,d , 使函数值相同,设a b c d <<<,∴44log log a b -=,∴44log log 0a b =+, ∴4ab =,c 与d 关于5x =对称, ∴45c <<,56d <<,10c d =+, ∴(10)cd c =-,(45)c <<,∴(24,25)cd ∈,∴(24,25)abcd ∈. 故选A .8.一位手机用户前四次输入四位数字手机密码均不正确,第五次输入密码正确,手机解锁,事后发现前四次输入的密码中,每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字( ).A .4,6B .3,6C .3,7D .1,7 【答案】D【解析】若正确密码中含有3,6,而3,6在第1,2,3,4位置都有,与各自位置均不正确矛盾,同理,含有4,6或3,7不正确.若密码中一定有1,7,而3,6在1,2,3,4位置都有,位置不正确, ∴1在三位,7在4位置. 故选D .第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.)9.已知抛物线的方程24y x =,则其焦点到准线的距离为___________. 【答案】2【解析】焦点到准线距离为2P =.10.若4sin 5θ=,tan 0θ<,则sin 2θ=__________.【答案】2425-【解析】4sin 5θ=,且tan 0θ<, ∴3cos 5θ=-,24sin22sin cos 25θθθ==-.11.设4log πa =,14log πb =,4πc =,则a ,b ,c 的大小关系是___________.(从小到大用“<”连接)【答案】b a c << 【解析】40log π1a <=<,14log π0b =<,4π1c =>,∴c a b <<,∴b a c <<.12.如图,在矩形ABCD中,AB =2BC =,点E 为BC 的中点,点F 在边CD上,若AB BF ⋅则AE BF ⋅的值是__________.E【解析】如图以A 为原点建系,∴B ,(0,2)D,(,2)F a,c ,E ,,2)AB AF a ⋅== ,∴1a =,2(12AE BF ⋅=⋅+13.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =___________. 【答案】3222nn S ⎛⎫=⋅- ⎪⎝⎭【解析】12n n S a =+,12n n S a -=,(2n ≥且*n ∈N ), 作差:122n n n a a a =-+,123n n a a =+,(2n ≥且*n ∈N ),∴{}n a 为首项为1,公比为32的等比数列,3132223212nnn S ⎛⎫- ⎪⎛⎫⎝⎭==⋅- ⎪⎝⎭-.14.设函数3||,1()log ,1x a x f x x x -⎧=⎨>⎩≤. (1)如果(1)3f =,那么实数a =____________.(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___________. 【答案】(1)2-或4;(2)12a -<≤ 【解析】(1)若(1)3f =,即|1|3a -=,∴2a =-或4. (2)当1x >时,()20f x -=,得()2f x =, 即5log 2x =,得9x =.若()2f x =有两个解,则当1x ≤时,||2x a -=只有一个交点, 由||2x a -=得2x a =+或2x a =-.若当1x ≤时,且21a >+且21a -≤,即1a -≥且3a ≤, ∴13a -<≤.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分13分)已知函数π()Asin(),0,02f x x x ωϕωϕ⎛⎫=+∈><< ⎪⎝⎭R 的部分图象如图所示.(1)求函数()f x 的解析式.(2)求函数()f x 在区间π,02⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π()2sin 26f x x ⎛⎫= ⎪⎝⎭+(2)min ()2f x =-,max ()1f x =【解析】(1)由图可知115πππ212122T =-=,∴πT =,∴2ππT ω==,2ω=, 55πsin π0126f A ϕ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭+. ∵π02ϕ<<,∴π6ϕ=.∵π(0)sin 16f A ==,∴2A =.∴π()2sin 26f x x ⎛⎫= ⎪⎝⎭+.(2)当π,02x ⎡⎤∈-⎢⎥⎣⎦时,5πππ2666x -≤≤+.当ππ262x =-+,即π3x =-时,min ()2f x =-.当ππ266x =+时,0x =时,max ()1f x =.16.(本小题满分13分)在锐角ABC △中,a 、b 、c 分别为角A 、B 、C 所对的边,且sin a A (1)确定角C 的大小.(2)若c ABC △,求22a b +的值. 【答案】(1)π3C =;(2)13【解析】(1)sin sin a c A C =,∴sin C =, ∵090C <∠=︒,∴60C ∠=︒.(2)1sin 2ABC S ab C ==△6ab =, 2221cos 22a b c C ab -==+,∴2213a b =+. 17.(本小题满分13分)已知等差数列{}n a 满足:25a =,4622a a +=.{}n a 的前n 项和为n S . (1)求n a 及n S .(2)若21()1f x x =-,()(*)n n b f a n =∈N ,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =+,22n S n n =+(2)4(1)n nT n =+【解析】(1)465222a a a ==+,∴511a =, ∴5231156a a d -==-=,2d =, ∴5(2)221n a n n =-⨯=++,21(1)3(1)22n n n dS a n n n n n n -==-=+++.(2)2211111()1(21)141n n n b f a a n n n ⎛⎫=+==- ⎪--⎝⎭++, ∴1111111422314(1)n nT n n n ⎛⎫=---= ⎪⎝⎭ +++++. 18.(本小题满分13分) 在如图所示的几何体中,四边形ABCD 是等腰梯形,AB CD ∥,60DAB ∠=︒,PC ⊥平面ABCD ,AE BD ⊥,CB CD CF ==.D ABCEF(1)求证:BD ⊥平面AED .(2)求二面角D BF C --的余弦值.(3)在线段AB (含端点)上,是否存在一点P ,使得FP ∥平面AED ,若存在,求出APAB的值;若不存在,请说明理由. 【答案】(1)见解析(2(3)存在,12AP AB = 【解析】(1)∵AB CD ∥,60DAB ∠=︒,∴120ADC BCD ∠=∠=︒. ∵CB CD =,∴30CDB ∠=︒,∴90ADB ∠=︒,AD BD ⊥. ∵AE BD ⊥,且AE AD A = ,AE 、AD ⊂面AED ,∴BD ⊥面AED . (2)知AD BD ⊥,∴AC BC ⊥.∵FC ⊥面ABCD ,CA ,CB ,CF 两两垂直,以C 为坐标原点, 以CA ,CB ,CF 为x ,y ,z 轴建系.设1CB =,则(0,0,0)C ,(0,1,0)B,1,02D ⎫-⎪⎪⎝⎭,(0,0,1)F,A ,∴3,02BD ⎫=-⎪⎪⎝⎭,(0,1,1)BF =- . 设BDF 的一个法向量为000(,,)m x y z =,∴00003020y y z -=⎪-=⎩+,取01z =,则m . 由于(0,0,1)CF =是面BDC 的法向量,则cos ,||||m CF m CF m CF ⋅<>==⋅∵二面角F BD C --(3)存在点(,,)P x y z . 设AP AB λ=,(,)(,0)x y z λ=,∴x =,y λ=,0z =,∴,,0)P λ,,,1)FP λ=-.∵BD ⊥面AED,3,02BD ⎫=-⎪⎪⎝⎭.若PF ∥面AED ,∴PF BD ⊥,0BD =,3)02λ⎛⎫-=⎪⎝⎭+,∴12λ=,∴12APAB=,∴存在P为AB中点.x19.(本小题满分14分)已知函数22()(24)ln(0)f x x ax x x a=->+.(1)当1a=时,求此函数对应的曲线在(1,(1))f处的切线方程.(2)求函数()f x的单调区间.(3)对[1,)x∀∈∞+,不等式(24)lnx a x x->-恒成立,求a的取值范围.【答案】(1)1y=(2)见解析(3)当1x=时,a∈R,当1x>时0a<【解析】(1)当1a=时,22()(24)ln(0)f x x x x x x=->+,∴(1)1f=,224()(44)ln2x xf x x x xx-'=-++,(1)0f'=,∴切线方程1y=.(2)224()(44)ln2x axf x x a x xx-'=-++(44)ln44x a x x a=--+(44)(ln1)x a x=-+.令()0f x'=,则1ex-=或x a=,当1ea<<时,()f x在(0,)a,1,e⎛⎫∞⎪⎝⎭+上为增函数.在1,ea⎛⎫⎪⎝⎭上为减函数,当1ea=时,()f x在(0,)∞+上为增函数,当1ea>时,()f x在10,e⎛⎫⎪⎝⎭,(,)a∞+上为单调递增,在1,ea⎛⎫⎪⎝⎭上单调递减.(3)当1x=时,a∈R,当x n>时,由(24)lnx a x x->-得42lnxa xx<+,对[1,)x∀∈∞+恒成立.设()2ln xg x x x=+,则 2222ln 12ln ln 1(2ln 1)(ln 1)()2(ln )(ln )(ln )x x x x x g x x x x ---'===+++,令()0g x '=得x 或1ex =,min ()g x g ==4a <0a < 20.(本小题满分14分)已知集合123{,,,}(3)n S a a a a n = ≥,集合{(,),,}T x y x S y S x y ⊆∈∈≠且满足:i a ∀,(,1,2,3,,,)j a S i j n i j ∈=≠ ,(,)i j a a T ∈与(,)j i a a T ∈恰有一个成立.对于T 定义1,(,),(,)0,(,),T a b T d a b b a T ∈⎧=⎨∈⎩1211()(,)(,)(,)(,)(,)(1,2,3,,)T i T i T i T i i T i i T i n l a d a a d a a d a a d a a d a a i n -== +++++++.(1)若4n =,12(,)a a ,32(,)a a ,24(,)a a T ∈,求2()T l a 的值及4()T l a 的最大值.(2)取1()T l a ,2()T l a , ,()T n l a 中任意删去两个数,即剩下的2n -个数的和为M ,求证:1(5)32M n n -≥+.(3)对于满足()1(1,2,3,,)T i l a n i n <-= 的每一个集合T ,集合S 中是否都存在三个不同的元素e ,f ,g ,使得(,)(,)(,)=3T T T d e f d f g d g e ++恒成立,并说明理由. 【答案】(1)2()1T l a =,4max ()2T l a = (2)见解析 (3)存在 【解析】(1)∵12(,)a a ,32(,)a a ,2(,)k a a T ∈,∴21(,)0T d a a =, 23(,)0T d a a =,24(,)1T d a a =,故2()1T l a =. ∵24(,)a a T ∈,∴42(,)0T d a a =,∴4414243()(,)(,)(,)1012T T T T l a d a a d a a d a a ==≤++++. (2)(,)(,)1T T d a b d b a =+,∴12211331111()[(,)(,)](,)(,)[(,)(,)]nT i T T T T T n n T n n i l a d a a d a a d a a d a a d a a d a a --==∑ ++++++21=C (1)2nn n =-. 设删去的两个数为()T k l a ,()T m l a ,则1(()(1)2T k T m l a l a n n M =--)+,∴()1T k l a n -≤,()1T m l a n -≤,且其中只有一个不等式中等号成立,不妨让()1T k l a n =-时,(,)1T k m d a a =,(,)0T m k d a a =,∴()2T m l a n -≤.∴1()()(1)232T k T m l a l a n n M n =---≤+,∴1(5)32M n n -≥+.(3)对()1(1,2,)T i l a n i n <-= 的每一个集合T ,集合S 中都存在三个不同元素e ,f ,g ,使(,)(,)(,)=3T T T d e f d f g d g e ++恒成立,任取集合T ,由()1(1,2)T i l a n i n <-= 可知1()T l a ,2()T l a ,()T n l a 中存在最大数,不妨记为()T l f .∵()1T l f n <-,存在e S ∈,使(,)=0T d f e ,即(,)e f T ∈, 由()1T l f ≥可设集合{(,)}G x S f x T =∈∈≠∅, 则1l 中一定在元素g ,使得(,)=1T d g e , 否则(e)()1T T l l f ≥+,与()T l f 最大数矛盾, ∴(,)1T d f g =,(,)=1T d g e ,即(,)(,)(,)=3T T T d e f d f g d g e ++.。
市一中高校区2022—2021学年度第一学期期中考试 高三数学(理科)试题命题人:付 功一、选择题:(本大题共12小题,每小题5分,共60分). 1. 已知集合{11}A x x =+<,1{|()20}2x B x =-≥,则=⋂B C A R ( )(A))1,2(-- (B))0,1(- (C))0,1[- (D)]1,2(--2.下列命题正确的个数是 ( )①命题“2000,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;②函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ③22x x ax +≥在[]1,2x ∈上恒成立⇔max min 2)()2(ax x x ≥+在[]1,2x ∈上恒成立; ④“平面对量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<”. (A)1 (B)2 (C)3 (D)43.复数z 满足i z i 34)23(+=⋅-,则复平面内表示复数z 的点在( )(A )第一象限 (B )其次象限 (C )第三象限(D )第四象限4.将函数()3cos sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) (A ) 12π (B )6π (C ) 3π(D )56π5. 已知数列{}n a 为等差数列,满足OC a OB a OA 20133+=,其中C B A ,,在一条直线上,O 为直线AB 外一点,记数列{}n a 的前n 项和为n S ,则2015S 的值为( ) (A )22015(B ) 2015 (C )2016 (D )2013 6. 已知函数)91(log 2)(3≤≤+=x x x f ,则[])()(22x f x f y +=的最大值为( )(A )33 (B )22 (C ) 13 (D )67.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是 ( )A .(0,6π] B .[ 6π,π) C .(0,3π] D .[ 3π,π)8. 在ABC∆中,060=A ,2=AB ,且ABC ∆的面积为23,则BC 的长为( ) (A )2 (B )23 (C )32 (D )39.已知向量(,),(,),与的夹角为060,则直线021sin cos =+-ααy x 与圆()()21sin cos 22=++-ββy x 的位置 关系是( )(A )相交 (B )相离 (C )相切 (D )随的值而定10.设动直线m x =与函数x x g x x f ln )(,)(2==的图象分别交于点N M ,,则MN 的最小值为( )(A )2ln 2121+ (B )2ln 2121- (C ) 2ln 1+ (D )12ln - 11.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( ) (A )62 (B )92 (C ) 122 (D )15212.已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( ).(A )f (x 1)>0,f (x 2)>-12 (B )f (x 1)<0,f (x 2)<-12 (C )f (x 1)>0,f (x 2)<-12 (D )f (x 1)<0,f (x 2)>-12二、填空题 :(本大题共4小题,每小题5分,共20分.把答案填在答题卡上). 13. 设向量)2,1(),1,(=+=b x x a ,且b a ⊥,则=x .14.已知函数)(x f =x+sinx.项数为19的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d .若0)()()()(191821=++⋯++a f a f a f a f ,则当k =______时,0)(=k a f15在△ABC 中,角A ,B ,C 所对的边分别为a,b,c,设S 为△ABC 的面积,满足2223()4S a b c =+- 则角C 的大小为。
好教育云平台 名校精编卷 第1页(共4页) 好教育云平台 名校精编卷 第2页(共4页)最新吉林省长春市实验中学 高三上学期期中考试数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单选题1.已知i 是虚数单位,复数z=4i (1−i)2+i2019在复平面内所对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.已知集合A ={y|y =x 2}和集合B ={x|y =√1−x 2},则A ∩B 等于 A .(0,1) B .[0,1] C .[0,+∞) D .[−1,1]3.已知命题p:∃x 0∈R,x 0−4>lgx 0,命题q:∀x ∈R,x 2>0,则 A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(¬q)是真命题 D .命题p ∨(¬q)是假命题 4.已知a =21.1,b =30.6,c =log 123,则a,b,c 的大小为A .b >c >aB .a >c >bC .b >a >cD .a >b >c 5.函数f(x)=(m 2−m −1)x m2+2m−5是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0,若a,b ∈R ,且a +b >0,则f(a)+f(b)的值A .恒大于0B .恒小于0C .等于0D .无法判断6.设f(x)={1π√1−x 2,x∈[0,1]2−x,x ∈(1,2],则∫f(x)dx 20等于A .34 B .45 C .56 D .0 7.下列四个命题中真命题的个数是①设a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2),则a ⃗//b 的充要条件是x 1y 1=x2y 2;②在ΔABC 中,AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0; ③将函数y =f(|x |)的向右平移1个单位得到函数y =f(|x |−1); ④cos(3π2+α)=sinα;⑤已知S n 是等差数列{a n }的前n 项和,若S 7>S 5,则S 9>S 3;A .1B .2C .3D .48.已知π2<β<α<34π,cos(α−β)=1213,sin(α+β)=−35,则sin2α= A .5665 B .−5665 C .6556 D .−65569.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ (λ、μ为实数),则λ2+μ2 =A .58B .14C .1D .51610.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的天数最小为A .2B .3C .4D .511.已知函数f(x)=Asin(ωx +ϕ)(其中A >0,ω>0,0<ϕ<π)的图象关于点M(5π12,0)成中心对称,且与点M 相邻的一个最低点为N(2π3,−3),则对于下列判断:①直线x =π2是函数f(x)图象的一条对称轴;②点(−π12,0)是函数f(x)的一个对称中心; ③函数y =1与y =f(x)(−π12≤x ≤35π12)的图象的所有交点的横坐标之和为7π.其中正确的判断是A .①②B .①③C .②③D .①②③12.已知函数y =f(x)满足xf ′(x)>(x −1)f(x) 且f(1)=e ,则不等式lnxf(lnx)>x 的解为 A .x >e B .0<x <e C .x >1 D .0<x <1二、填空题13.(1+tan15°)(1+tan30°)=________.此卷只装订不密封班级 姓名 准考证号 考场号 座位号好教育云平台 名校精编卷 第3页(共4页) 好教育云平台 名校精编卷 第4页(共4页)14.在ΔABC 中,内角A,B,C 的对边分别是a,b,c ,若20aBC ⃗⃗⃗⃗⃗ +15bCA ⃗⃗⃗⃗⃗ +12cAB ⃗⃗⃗⃗⃗ =0⃗ ,则ΔABC 最小角的正弦值等于_______.15.ΔABC 的内角A,B,C 的对边分别为a,b,c ,已知B =π3,b =2√3,则ΔABC 周长的取值范围是_____________.16.已知函数f(x)={|lnx |,x >02−x 2,x ≤0,若函数g(x)=f(x)−kx 有4个零点,则实数k 的取值范围是_____________.三、解答题17.设两个向量a ⃗,b ⃗⃗,满足|a ⃗|=2,|b ⃗⃗|=1. (1)若(a ⃗+2b ⃗⃗)⋅(a ⃗−b ⃗⃗)=1,求a ⃗、b⃗⃗的夹角. (2)若a ⃗、b ⃗⃗夹角为60∘,向量2ta ⃗+7b ⃗⃗与a ⃗+tb ⃗⃗的夹角为钝角,求实数t 的取值范围. 18.已知函数f(x)=2cosxcos(x −π6)−√3sin 2x +sinxcosx .(1)求f(x) 的最小正周期;(2)把f(x)的图象向右平移m 个单位后,在[0,π2]是增函数,当|m|最小时,求m 的值. 19.19已知函数f(x)=12x 2−alog 2x(a ∈R)(1)若函数f(x)的图象在x =2处的切线方程为y =x +b ,求a,b 的值. (2)若函数f(x)在(1,+∞)上为增函数,求a 的取值范围.20.在ΔABC 中,角A,B,C 所对的边分别是a,b,c ,S 为其面积,若4S =a 2+c 2−b 2. (1)求角B 的大小;(2)设∠BAC 的平分线AD 交BC 于D ,AB =4,BD =√2.求cosC 的值.21.设f (x )是定义在R 上的函数,且对任意实数x ,恒有f(x +2)=f(−x),f(x)=−f(4−x),当x ∈[0,2]时, f (x )=2x −x 2.(1)当x ∈[2,4]时,求f (x )的解析式;(2)计算f(0)+f(1)+f(2)+⋯+f(2019). 22.已知函数f(x)=lnx+1x.(1)若f(x)在(m,m +1)上存在极值,(1)求实数m 的取值范围;(2)求证:当x >1时,f(x)e+1>2e x−1(x+1)(xe x +1).最新吉林省长春市实验中学高三上学期期中考试数学(理)试题数学答案参考答案1.C【解析】【分析】利用复数代数形式的乘除运算化简,求出z的坐标得答案.【详解】∵z=4i(1−i)2+i2019=4i−2i+(i4)504•i3=−2−i,∴复数z在复平面内对应的点的坐标为(﹣2,-1),位于第三象限.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.B【解析】【分析】分别求解函数的值域和定义域化简集合A与B,然后直接利用交集运算得答案.【详解】∵A={x|y=x2}={y|y≥0},B={x|y=√1−x2}={x|-1≤x≤1},∴A∩B={x|0≤x≤1}.故选:B.【点睛】本题考查了交集及其运算,考查了函数的定义域和值域的求法,是基础题.3.C【解析】【分析】举出正例x0=10可知命题p为真命题;举出反例x=0可知命题q为假命题,进而根据复合命题真假判断的真值表得到结论.【详解】∵p为存在性命题,∴当x0=10时,x0﹣4>lgx0成立,故命题p为真命题;又当x=0时,x2=0,故命题q为假命题,故命题p∨q是真命题,故A错误;命题p∧q是假命题,故B错误;命题p∧(¬q)是真命题,故C正确;命题p∨(¬q)是真命题,故D错误;故选:C.【点睛】本题以命题的真假判断与应用为载体,考查了复合命题,全称命题,特称命题,难度基础.4.D【解析】【分析】利用指数函数与对数函数的单调性即可得出.【详解】a=21.1>2,0<b=30.6=√335<√255=2,c=log123<0,∴a>b>c.故选:D.【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.5.A【解析】【分析】利用幂函数的定义求出m,利用函数的单调性求解即可.【详解】由已知函数f(x)=(m2﹣m﹣1)x m2+2m−5是幂函数,可得m2﹣m﹣1=1,解得m=2或m=﹣1,好教育云平台名校精编卷答案第1页(共14页)好教育云平台名校精编卷答案第2页(共14页)好教育云平台 名校精编卷答案 第3页(共14页) 好教育云平台 名校精编卷答案 第4页(共14页)当m=2时,f (x )=x 3;当m=﹣1时,f (x )=x ﹣6. 对任意的x 1、x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)−f(x 2)x 1−x 2>0,函数是单调增函数,∴m=2,f (x )=x 3. 又a+b >0,∴f (a )>f (-b )=-f (b ) 则f (a )+f (b )恒大于0. 故选:A . 【点睛】本题考查幂函数的性质以及幂函数的定义的应用,考查计算能力. 6.A 【解析】 【分析】原积分化为∫f (x )2dx=∫1π√1−x 210dx+∫(2﹣x )21dx ,根据定积分的计算法则计算即可【详解】 ∫f (x )2dx=∫1π√1−x 210dx+∫(2﹣x )21dx ,由定积分的几何意义知∫1π√1−x 21dx=1π∫√1−x 2dx 10=14,∫(2﹣x )21dx=(2x ﹣12x 2)|12=(2×2﹣12×22)﹣(2﹣12)=4﹣2﹣2+12=12,∴∫f (x )2dx=∫1π√1−x 210dx+∫(2﹣x )21dx=14+12=34 故选:A . 【点睛】本题考查了定积分的计算及定积分的意义,关键是求出原函数,属于基础题. 7.B 【解析】 【分析】①由a ⃗//b⃗⃗的向量坐标公式直接可得不正确; ②在ΔABC 中,AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0⃗ ;注意0⃗ 与0的区别;③将函数y =f(|x |)的向右平移1个单位得到函数y =f(|x −1|); ④由诱导公式知cos(3π2+α)=sinα正确;⑤由S 7−S 5=a 7+a 6>0可得S 9−S 3=3(a 7+a 6)>0,故正确. 【详解】①设a ⃗=(x 1,y 1),b ⃗⃗=(x 2,y 2),则a ⃗//b⃗⃗的充要条件是x 1y 2=x 2y 1,当y 1=0或y 2=0时,x 1y 1=x 2y 2无意义,故①不正确;②在ΔABC 中,AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0⃗ ,而不是0,故②不正确;③将函数y =f(|x |)的向右平移1个单位得到函数y =f(|x −1|),故不正确; ④由诱导公式知cos(3π2+α)=sinα,故正确;⑤已知S n 是等差数列{a n }的前n 项和,若S 7>S 5,则S 7−S 5=a 7+a 6>0,∴S 9−S 3=3(a 7+a 6)>0,故正确.故选B. 【点睛】本题考查命题的真假判断与应用,综合运用向量基本运算、函数的平移变换、等差数列的性质及三角函数中的诱导公式,属于中档题.8.B 【解析】【分析】利用同角三角函数的基本关系求得以sin (α﹣β)和cos (α+β)的值,再利用两角和的正弦公式求得sin 2α=sin[(α+β)+(α﹣β)]的值.【详解】∵已知π2<β<α<3π4,cos (α﹣β)=1213,sin (α+β)=﹣35,∴π<α+β<3π2,0<α﹣β<π4.∴sin (α﹣β)=√1−cos 2(α−β)=513,cos (α+β)=﹣√1−sin 2(α+β)=﹣45, 则sin 2α=sin[(α+β)+(α﹣β)]=sin (α+β)cos (α﹣β)+cos (α+β)sin (α﹣β) =﹣35×1213+(﹣45)×513=﹣5665.故选B. 【点睛】本题主要考查同角三角函数的基本关系,两角和的正弦公式的应用,属于基础题. 9.A 【解析】 【分析】由向量的线性运算得DE →=12DA →+12DO →=14AB →−34AD →.即可.好教育云平台 名校精编卷答案 第5页(共14页) 好教育云平台 名校精编卷答案 第6页(共14页)【详解】DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+DC →)=14AB →−34AD →.∴λ=14,μ=−34,λ2+μ2=58故选A. 【点睛】本题考查了平面向量的线性运算,转化思想,数形结合思想,属于基础题. 10.C 【解析】 【分析】设需要n 天时间才能打通相逢,则有:2n −12−1+12(1−12n )1−12≥8,即2n ﹣12n ﹣8≥0,解不等式即可得出.【详解】设需要n 天时间才能打通相逢,则2n −12−1+12(1−12n )1−12≥8,化为:2n ﹣12n ﹣8≥0,令2n =t,则t 2−8t −1≥0⇒t ≤4−√17(舍去)或t ≥4+√17 ∴2n >8, ∴n>3,n 的最小整数为4. 故选:C . 【点睛】本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题. 11.C 【解析】 【分析】首先根据已知条件确定函数的解析式,进一步利用整体思想确定函数的对称轴方程,对称中心及各个交点的特点,进一步确定答案.【详解】函数f (x )=Asin (ωx+φ)(其中A >0,ω>0,0<φ<π)的图象关于点M (5π12,0)成中心对称,且与点M 相邻的一个最低点为(2π3,﹣3),则:T4=2π3−5π12=π4,所以:T=π, 进一步解得:ω=2ππ=2,A=3由于函数f (x )=Asin (ωx+φ)(其中A >0,ω>0,0<φ<π)的图象关于点M (5π12,0)成中心对称,所以:2⋅5π12+∅=kπ(k ∈Z ),解得:∅=kπ−5π6,由于0<φ<π,所以:当k=1时,∅=π6. 所以:f (x )=3sin(2x +π6).①当x=π2时,f (π2)=﹣3sin π6=﹣32,故错误. ②当x=−π12时,3sin (-π6+π6)=0,故正确.③由于:﹣π12≤x≤35π12,则:0≤2x +π6≤6π,所以函数f (x )的图象与y=1有6个交点.根据函数的交点设横坐标为x 1、x 2、x 3、x 4、x 5、x 6, 根据函数的图象所有交点的横标和为7π.故正确. 故选C. 【点睛】本题考查的知识要点:正弦型函数的解析式的求法,主要确定A ,ω、φ的值,三角函数诱导公式的变换,及相关性质得应用,属于基础题型.12.A 【解析】 【分析】 构造函数g (x )=xf(x)e x,确定函数的单调性,即可解不等式.【详解】令lnx=t,则不等式lnxf(lnx)>x 换元后得tlnt>e t ,构造函数g (x )=xf(x)e t,则g′(x )=xf′(x)−(x−1)f(x)e x>0,函数单调递增,且g (1)=1,∴不等式tlnt>e t ⇔t (t )e t>1=g (1),即g (t )>g (1)∴t>1, ∴lnx>1, ∴x>e 故选:A .好教育云平台 名校精编卷答案 第7页(共14页) 好教育云平台 名校精编卷答案 第8页(共14页)【点睛】本题考查函数的单调性与奇偶性,考查学生解不等式的能力,正确构造函数是关键. 13.2 【解析】 【分析】由条件利用两角和的正切公式求得要求式子的值. 【详解】(1+tan15°)(1+tan30°)=1+tan15°+tan30°+tan15°tan30° =1+ tan45°(1−tan15°tan30°)+tan15°tan30°=2 故答案为:2 【点睛】本题主要考查两角和的正切公式的应用,属于基础题. 14.35【解析】 【分析】依题意,可得(20a ﹣15b )AC →+(12c ﹣20a )AB →=0→,继而得b=43a ,c=53a ,a 最小,角A 最小,利用余弦定理可得cosA=b 2+c 2−a 22bc=(4a 3)2+(5a3)2−a 22×4a 3×5a 3=45,从而可得sinA 的值.【详解】∵20a BC →+15b CA →+12c AB →=0→,∴20a (AC →﹣AB →)+15b CA →+12c AB →=(20a ﹣15b )AC →+(12c ﹣20a )AB →=0→, ∵向量AC →与向量AB →为不共线向量, ∴20a ﹣15b=0且12c ﹣20a=0,∴b=43a ,c=53a ,a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边, ∴a 最小, ∴cosA=b 2+c 2−a 22bc=(4a3)2+(5a3)2−a 22×4a 3×5a 3=45.∴sinA=√1−cos 2A =35. 故答案为35. 【点睛】本题考查平面向量基本定理与余定理的综合应用,求得b=43a ,c=53a 是关键,也是难点,考查运算求解能力,属于中档题.15.(4√3,6√3] 【解析】 【分析】由正弦定理可得:bsinB =csinC =asinA =3sin60°=4,a=4sinA ,c=4sinC ,于是a+b+c=2√3+4sinA+4sin (2π3﹣A )化简整理即可得出.【详解】 由正弦定理可得:bsinB =csinC =asinA =3sin60°=4,a=4sinA ,c=4sinC ,∴a+b+c=2√3+4sinA+4sin (2π3﹣A )=2√3+6sinA+2√3cos A =2√3+4√3sin (A+π6)∵0<A <2π3, ∴π6<A+π6<5π6,∴sin (A+π6)∈(12,1], ∴(a+b+c )∈(4√3,6√3]. 故答案为(4√3,6√3].【点睛】本题主要考查正弦定理、两角和与差的余弦公式等基础知识,考查了考生运算求解的能力,属于中档题.16.(0,1e )【解析】 【分析】由题意可得函数f (x )的图象和直线y=kx 有4个不同的交点,数形结合求得k 的范围.【详解】f (x )={|lnx |,x >02−x 2,x ≤0,若函数g (x )=f (x )﹣kx 有4个不同的零点,则函数f (x )的图象和直线y=kx 有4个不同的交点,如图:好教育云平台 名校精编卷答案 第9页(共14页) 好教育云平台 名校精编卷答案 第10页(共14页)x>1时,f (x )=lnx, f′(x )=1x ,y=kx 与f (x )在A(x,lnx)处相切,满足lnx x=1x ,⇒x =e ∴切点A(e,1),∴k OA =1e ,0<k <1e 时,y=kx 与y=f (x )有4个不同零点.故答案为(0,1e ). 【点睛】本题主要考查函数的零点的定义,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.17.: (1)2π3 (2)−7<t <−12且t ≠−√142【解析】 【分析】(1)由(a →+2b →)⋅(a →−b →)=1得,a →2+a →⋅b →−2b →2=1,结合向量的夹角公式求解即可; (2)由已知得a →⋅b →=2×1×cos60°=1.从而可得(2ta →+7b →)⋅(a →+tb →)=2ta →2+(2t 2+7)a →⋅b →+7tb →2=2t 2+15t +7,由向量2ta →+7b →与a →+tb →的夹角为钝角,可得2t 2+15t+7<0,即可t 的范围.【详解】(1)∵ (a ⃗+2b ⃗⃗)⋅(a ⃗−b ⃗⃗)=1,∴ a 2+a ⋅b ⃗ −2b ⃗ 2=1,∴ a ⋅b ⃗ =−1,cos <a,⃗⃗⃗ b ⃗ >=a ⃗ ⋅b⃗ |a⃗ ||b⃗ |=−12×1=−12,∴向量a ⃗、b ⃗⃗的夹角是2π3(2)∵向量2ta ⃗+7b ⃗⃗与a ⃗+tb ⃗⃗的夹角为钝角,∴ (2ta ⃗+7b ⃗⃗)⋅(a ⃗+tb ⃗⃗)<0,也就是2ta 2+(2t 2+7)a ⋅b ⃗ +7tb ⃗ 2<0,即2t 2+15t +7<0,解得−7<t <−12,又向量2ta ⃗+7b ⃗⃗与a ⃗+tb ⃗⃗共线反向时 ,t =−√142,所以t 的取值范围是−7<t <−12且t ≠−√142【点睛】本题考查平面向量的数量积的定义和性质,考查向量夹角公式及计算,属于基础题. 18.:(1) π(2)5π12【解析】 【分析】(Ⅰ)利用两角差的余弦公式与二倍角公式将f (x )=2cosxcos (x ﹣π6)﹣√3sin 2x+sinxcosx 化为f (x )=2sin (2x+π3)及可求其周期;(Ⅱ)由f (x )=2sin (2x+π3)的图象向右平移m 个单位后,得到g (x )=2sin (2x ﹣2m+),可求其单调增区间为[﹣5π12+m+kπ,π12+m+kπ],再结合g (x )在[0,π2]是增函数,即可求得|m|最小值.【详解】(1)f(x)=2cosxcos(x −π6)−√3sin 2x +sinxcosx=2cosx(cosxcos π6+sinxsin π6)−√3sin 2x +sinxcosx=√3cos 2x +sinxcosx −√3sin 2x +sinxcosx =√3(cos 2x −sin 2x)+2sinxcosx =√3cos2x +sin2x =2sin(2x +π3) ∴T =2π2=π(2)g(x)=2sin(2x −2m +π3)由2kπ−π2≤2x −2m +π3≤2kπ−π2得单调递增区间为 [−512π+m +kπ,112π+m +kπ].k ∈N ∗∵g(x)在[0,π2]是增函数,而函数的最小正周期恰好是π,所以[0,π2]刚好是半个周期, ∴−512π+m +kπ=0,m =5π12−kπ,∴当|m|最小时,m =5π12.【点睛】本题考查函数y=Asin (ωx+φ)的图象变换,综合考察了两角差的余弦公式与二倍角公式、辅助角公式的应用,考查了正弦函数的单调性,求最值问题等,熟练掌握三角函数公式与三角函数性质是解决问题的关键,属于难题.19.(1)a =2ln2,b =−2ln2(2)a ≤ln2 【解析】 【分析】(Ⅰ)函数f(x)的图象在x=2处的切线方程为y=x+b可知:f′(2)=2−a2ln2=1,进而可解ab的值;(Ⅱ)若函数f(x)在(1,+∞)上为增函数,则f′(x)≥0在(1,+∞)上恒成立,分离变量可求a的范围.【详解】(1)切点坐标是(2,2−a),又f`(x)=x−axln2所以k=2−a2ln2所以2−a2ln2=1解得a=2ln2,把切点代入切线方程的b=−2ln2(2)f`(x)=x−axln2≥0在(1,+∞)上恒成立,即a≤x2ln2在(1,+∞)上恒成立,设g(x)=x2lnx2,因为x∈(1,+∞),所以g(x)的最小值是ln2,所以a≤ln2【点睛】本题为导数与函数的综合应用,正确理解在某点处的切线斜率即是该点的导数值是解决问题的关键,属中档题.20.:(1)B=π4(2)−√210【解析】【分析】(I)由已知及余弦定理可求得cosB=√22,结合范围B∈(0,π),可求B的值.(II)由正弦定理可得sin∠BAD,进而根据同角三角函数基本关系式可求cos∠BAD,根据二倍角的正弦函数公式即可求解sin∠BAC的值.【详解】(1)因为所4S=a2+c2−b2,所以,4×12acsinB=2accosB,即,所以B=π4.(2)在ΔABD中,由余弦定理,AD=√10,由正弦定理,√2sin∠BAD =√10sinπ4,以为√10>√2所以∠BAD<π4,所以sin∠BAD=√1010,COS∠BAD=3√1010,所以,sin∠BAC=sin2∠BAD=35,COS∠BAC=1−2sin2∠BAD=45sinB=cosB,所以cosC=cos(π−π4−∠BAC)=cos(3π4−∠BAC)=−√210也可以由角分线定理,再用余弦定理解【点睛】本题主要考查了余弦定理,正弦定理,同角三角函数基本关系式,二倍角的正弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.(1)f(x)=x2−6x+8(2)0【解析】【分析】(1)根据函数周期性的定义即可证明f(x)是周期函数,再根据函数奇偶性和周期性的关系即可求出当x∈[2,4]时f(x)的解析式.(2)根据函数的周期性先计算一个周期内的函数值之和,即可计算f(0)+f(1)+f(2)+⋯+ f(2019)的值.【详解】:(1)将f(x)=−f(4−x)中的x用−x代换得f(−x)=−f(x+4),又f(x+2)=f(−x)得f(x+4)=−f(x+2),将x用x−2替换得f(x+2)=−f(x)所以周期为4,由f(x)=−f(4−x)得函数f(x)的对称中心是(2,0),此函数是奇函数,在[−2.0]的解析式为f(x)=−f(−x)=x2+2x,向右移4个单位得f(x)=(x−4)+22(x−4)=x2−6x+8(2)f(0)=0,f(1)=1,f(2)=0,f(3)=−1,由周期是4知f(0)+f(1)+f(2)+f(3)+ f(4)+⋯+f(504×4+3)=f(1)+f(2)+f(3)=0【点睛】本题主要考查函数值的计算,根据函数周期性的定义以及函数奇偶性和周期性的性质是解决本题的关键.22.(1)0<m<1(2)见解析【解析】【分析】(1)求出f(x)的导数,求得极值点x=1,令m<1<m+1,解不等式即可得到取值范围;(2)不等式f(x)e+1>2ex−1(x+1)(xe x+1)即为1e+1•(x+1)(lnx+1)x>2ex−1xe x+1,令g(x)=(x+1)(lnx+1)x,通过导数,求得g(x)e+1>2e+1,令k(x)=ex−1xe x+1,运用导数证得k(x)<k(1)=1e+1,原不等式即可得证.【详解】.:(1)f`(x)=−lnxx2,f`(x)=0得x=1,由题意,1在(m,m+1)内{m<11<m+1所以0<m<1(2)只需证明1e+1f(x)(x+1)>2e x−1xe x+1,即证1e+1(x+1)(lnx+1)x>2e x−1xe x+1设g(x)=(x+1)(lnx+1)x,则g`(x)=x−lnxx2,设ℎ(x)=x−lnx,则ℎ`(x)=1−1x⁄=x−1x,当x>1时,ℎ`(x)>0,ℎ(x)在(1,+∞)上是增函数,所以ℎ(x)>ℎ(1)=1>0,所以g`(x)>0,所以g(x)在(1,+∞)上是增函数,所以当x>1时,g(x)>g(1)=2,所以g(x)e+1>2e+1(i)好教育云平台名校精编卷答案第11页(共14页)好教育云平台名校精编卷答案第12页(共14页)好教育云平台 名校精编卷答案 第13页(共14页) 好教育云平台 名校精编卷答案 第14页(共14页)再设k(x)=e x−1xe x +1,则k `(x)=e x−1(1−e x )(xe x +1)2,当x >1时,k `(x)<0,所以k(x)在(1,+∞)上是减函数,所以,当x >1时,k(x)<k(1)=1e+1,所以2e x−1xe x +1<2e+1(ii ),综合(i )与(ii )得,f(x)e+1>2e x−1(x+1)(xe +1).【点睛】本题考查导数的运用:求切线的斜率、单调区间和极值,同时考查构造函数求导数,判断单调性,运用单调性证明不等式,属于中档题.。
绝密★启用前高三上学期期中考试数学试题卷(理科)数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题:(本大题共10小题,每小题5分,共50分)。
1.已知523cos sin =+x x ,则sin 2x =( ) A .1825 B .725C .725-D .1625-2.设11a b >>>-,则下列不等式中恒成立的是 ( )A . 2a b >B .11a b> C .11a b < D .22a b >3.下列命题的说法错误..的是 ( ) A .若q p ∧为假命题,则,p q 均为假命题.B .“1=x ”是“2320x x -+=”的充分不必要条件.C .对于命题2:,10,p x R x x ∀∈++> 则2:,10p x R x x ⌝∃∈++≤.D .命题“若2320x x -+=,则1=x ”的逆否命题为:“若1≠x , 则2320x x -+≠” 4.已知集合{}{}22,01242>=<-+=x x B x x x A ,则=B A ( )A .{}6<x xB .{}12x x <<C .{}26<<-x xD .{}2<x x5.已知等差数列{}n a 的公差0,d <若462824,10,a a a a ⋅=+=则该数列的前n 项和n S 的最大值为 ( )A .50B .40C .45D .356.(原创)在△ABC 中,已知||4,||1AB AC ==,ABC S ∆=AB AC ⋅的值为( )A .2-B .2C .4±D .2±7.函数)(x f y =在[0,2]上单调递增,且函数)2(+x f 是偶函数,则下列结论成立的是( )A .f (1)<f ()<f ()B .f ()<f (1)<f ()C .f ()<f ()<f (1)D .f ()<f (1)<f ()8.(原创)若点P 是函数x x x f ln )(2-=上任意一点,则点P 到直线02=--y x 的最小距离为 ( ) A .2 B .22 C .21D .3 9、(原创)在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200y x s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是 ( )A.[6,15]B.[7,15]C.[6,8]D.[7,8] 10. (原创)已知O 为坐标原点,(),OP x y =,(),0OA a =, ()0,OB a =,()3,4OC =,记PA 、PB 、PC 中的最大值为M ,当a 取遍一切实数时,M 的取值范围是 ( )A. )+∞B. )7⎡++∞⎣C. )7⎡-+∞⎣D. 7,7⎡+⎣ 二.填空题:(本大题共6小题,考生作答5小题,每小题5分,共25分). 11.在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项 公式n a =_____.12已知),3(),1,2(x ==若⊥-)2(,则x =___________13.(原创)若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 (14)(15)(16)三题为选做题,请从中任选两题作答,若三题全做,则按 前两题给分14.如图,PA 是圆O 的切线,切点为A ,PO 交圆O 于B ,C 两点,1PA PB ==,则PAB ∠= 。
15.在直角坐标平面内,以坐标原点O 为极点, x 轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C的参数方程为1x y αα⎧=+⎪⎨=⎪⎩(α为参数),则点M 到曲线C 上的点的距离的最小值为 。
16.若关于x 的不等式12a x x ≥+--存在..实数解,则实数a 的取值范围是___. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程 17.(本题满分13分) 已知等差数列{}n a 的首项为23,公差为整数,且第6项为正数,从第7项起为负数。
(1)求此数列的公差d ; (2)当前n 项和n S 是正数...时,求n 的最大值18. (本题满分13分)如图为sin()y A x ωφ=+的图像的一段.(πφω<>>,0,0A ) (1)求其解析式;(2)若将sin()y A x ωφ=+的图像向左平移π6个单位长度后得()y f x =,求()f x 的对称轴方程. 19.(本小题满分13分)已知函数2ln )(bx x a x f -=图像上一点))2(,2(f P 处的切线方程为.22ln 23++-=x y (Ⅰ)求b a ,的值;(Ⅱ)若方程0)(=+m x f 在区间],1[e e内有两个不等实根,求m 的取值范围20.(本小题满分12分)已知函数)(,)cos (sin cos 2)(R m m x x x x f ∈++=,在区间]4,0[π内最大值为2,(1)求实数m 的值;(2)在ABC ∆中,三内角A 、B 、C 所对边分别为c b a ,,,且2,1)43(=+=c a B f ,求b 的取值范围.21. (原创)(本小题满分12分)已知点(3,0),H -点P 在y 轴上,点Q 在x 轴正半轴上,点M 在PQ 上,且满足0HP PM ⋅=,32PM MQ =-.(1)当点P 在y 轴上移动时,求点M 的轨迹方程C;(2)给定圆N: 222x y x +=,过圆心N 作直线l ,此直线与圆N 和(1)中的轨迹C 共有四个交点,自上而下顺次记为A,B,C,D,如果线段,,AB BC CD 的长按此顺序构成一个等差数列,求直线l 的方程。
22. (原创)(本小题满分12分)已知数列{}n a 满足:2112(3)1,2,311n n n n n n n a a a a a b a a ++-===++ (1)求{}n b 的通项公式 (2)求证:12241 (648)n b b b +++<命题人:朱海军审题人:李华,邹发明参考 答 案(理科) 2014.11一、选择题:BCAAC DBADC 二、填空题:11:14n - ,12:-1或3 , 13: (]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭, 14: 30,15: 5,16:3-≥a三、解答题17, 解:(1)6723502323236056=+>⎧⇒-<<-⎨=+<⎩a d d a d ∴d 为整数,4∴=-d(2)2(1)23(4)22502-=+⋅-=-+>n n n S n n n 012.5∴<<∴n n 的最大值为12.18,解 (1) 所求解析式为y =3sin ⎝⎛⎭⎪⎫2x -2π3.(2)f(x)=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-2π3=3sin⎝ ⎛⎭⎪⎫2x -π3, 令2x -π3=π2+k π(k ∈Z),则x =512π+k π2(k ∈Z),∴f(x)的对称轴方程为x =512π+k π2 (k ∈Z).19.解:(Ⅰ)()2a f x bx x'=-,()242a fb '=-,()2ln 24f a b =-. ∴432a b -=-,且ln2462ln22a b -=-++.解得a =2,b =1 (Ⅱ)()22ln f x x x =-,设()2()2ln h x f x m x x m =+=-+,则()222(1)2x h x x x x -'=-=,令()0h x '=,得x =1(x =-1舍去).当x ∈1[,1)e时,()0h x '>, h (x )是增函数;当x ∈(1,e]时,()0h x '<, h (x )是减函数.则方程()0h x =在1[,e]e内有两个不等实根的充要条件是1()0,e (1)0,(e)0.h h h ⎧⎪⎪⎪>⎨⎪⎪⎪⎩≤≤解得2112m e <+≤20,解:(1)m x x m x x x x f +++=++=12cos 2sin cos 2sin cos 2)(21)42sin(2+++=m x π,当]4,0[π∈x 时,)42sin(2π+x 最大值为2,所以1-=m(2)1)423sin(21)43(=+⇒=πB B f 43423ππ=+⇒B ,)0(π<<B解得3π=B 由正弦定理得:)32sin(sin 223sin sin sin A A B C A c a b -+⋅=⋅++=π)6sin(3)cos 21sin 23(3sin 21cos 23sin )32sin(sin ππ+=+=++=-+A A A A A A A A所以,3)32sin(sin 23≤-+<A A π,(当3π=A 时取最大值3) 所以,21<≤b ,(当ABC ∆为正三角形时,1=b ) 21,解:(1)设3(,),(0,),(,0),2M x y P y Q x H P P MP''⋅==-,3(,)(,)2x y y x x y ''∴-=---,(3,)(,)0y x y y ''⋅-=,11,(0),32x x x y y ''∴=>=-带入230,x y y y ''+-=得24(0)y x x =>。
(2)圆N :22(1)1x y -+=,直径2BC =,圆心(1,0)N ,设l 的方程为1x my =+带入24(0)y x x =>得2440y my --=,设11(,),(A x y D x则212124,4,4(1)y y m y y AD m +==-=+,因为线段,,AB BC CD 成一个等差数列,2,36,2BC AB CD AD BC AD BC m ∴=+=-∴===±,所以直线l 的方程为00y y -=+=22,解:(1)()()331122111,13131nnn n nn a a a a a a ++-+-=+=++,()()313111,11n n n n a a a a ++--∴=++即31n n b b +=, 12a =,则113b =,{}1110,ln 3ln ,ln ln =ln ,33n n n n b b b b b +>∴=∴为等比,首项公比为,11311ln 3ln ,()33n n n n b b --∴=∴=(2)当3n ≥时,11112211113(12)22...2n n n n n n n n C C C C n--------=+=+++++>,211()(3)39nn n b n ⎛⎫∴<=≥ ⎪⎝⎭,3412311111......327999nn b b b b ⎛⎫⎛⎫⎛⎫∴++++<+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=11327++3111()()99119n +-<-31()112419132764819<++=-,当2n ≤时,显然成立。