4.2算符的矩阵表示
- 格式:ppt
- 大小:118.00 KB
- 文档页数:5
量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧z lC.i∧x l D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B.ψ一定是 ∧B 的本征态; C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA.)1(21+N N ; B.)2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D.z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
第四章矩阵力学基础——表象理论部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第四章矩阵力学基础(Ⅱ>——表象理论4.1态和算符的表象表示1.态的表象表示(1> 坐标表象以坐标算符的本征态为基底构成的表象称为坐标表象。
以一维的x 坐标为例。
算符本征方程是(4-1-1>本征函数是量子态总可按x的本征函数系展开,得<4.1.2)展开系数必就是该量子态在x表象的表示,即波函数。
(2> 动量表象以动量算符的本征态为基底构成的表象是动量表象。
选x为自变量,动量算符的本征函数是平面波。
以动量算符为例,其本征态为:b5E2RGbCAP(4 .1 .3>将量子态按展开(4 .1 .4>C(px>就是动量表象中的波函数。
这正是第二章中已熟知的结果。
动量表象也可以用动量为自变量表示。
在Px表象中,粒子具有确定动量分量Px的波函数是以Px为自变量的函数p1EanqFDPw<4.1.5)在动量表象中的波函数也可以用类似于(4. 1. 2>式的方式给出。
(3> 任意表象设有某一线性厄M算符。
为叙述方便起见,假定算符具有分立本征值谱。
它的本征方程为(4.1.6>将波函数按算符的正交归一本征函数系展开<4.1.7)展开系数{an(t>}就是波函数必在Q表象中的表示。
它可由的正交归一性推出。
将(4.1.7>式两边分别乘并对空间积分,得DXDiTa9E3d(4 .1 .8>an(t>的物理意义是:当体系处在以(r,t>所描述的状态时,力学量Q具有确定值Qn的概率是具有和波函数统计解释相同的概率解释。
因此我们可以用一组系数RTCrpUDGiT{(t>}代替户(,t>来描述该状态。
将数列 a 1(t>,a2(t>,…,an(t>,…写成一个列矩阵,则(r,t>在Q表象的表示为5PCzVD7HxA<4.1.9)它的共轭矩阵是<4.1.10)归一条件是<4.1.10)(4.1.9>式是波函数在Q表象中的表示。