高等代数二次型及其矩阵表示
- 格式:pdf
- 大小:104.80 KB
- 文档页数:17
第五章 实二次型 5-1 二次型及其矩阵表示一、2元实二次型:两个实变量x,y的二次齐次多项式函数。
f(x,y)=ax2+2bxy+cy2[平方项 交叉项]=22Cy byx bxy ax +++=()⎥⎦⎤⎢⎣⎡++cy bx by ax y x=[]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡y x c b b a y x 二次型f的矩阵A 未知量矩阵Xf(X)=XTAX(AT=A)叫二次型f的矩阵表示式。
二元二次型f−−−→←一一对应2阶实对称矩阵A。
二次型f的秩=秩(A)。
二、3元实二次型:三个实变量x1,x2x3的二次齐次多项式函数。
f(x1,x2,x3)=a11x12+2a12x1x2+2a13x1x3+a22x22+2a23x2x3+a33x32令aji=aij,其中1≤i<j≤3。
因为xixj=xjxi,所以f(x1,x2,x3)= a11x12+a12x1x2+a13x1x3+a21x2x1+a22x22+a23x2x3+a31x3x1+a32x3x2+a33x32=[]321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++333232131323222121313212111x a x a x a x a x a x a x a x a x a=[]321x x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x 二次型f的矩阵A 未知量矩阵Xf(x1,x2,x3)=XTAX(AT=A)叫二次型f的矩阵表示式。
三元二次型f−−−→←一一对应3阶实对称矩阵A。
二次型f的秩=秩(A)例(掌握)f(x1,x2,x3)=x12-2x22+3x32-4x1x2+x1x3,f的矩阵A=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---30210222121 f的矩阵表示式:f(x1,x2,x3)=[]321x x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---30210222121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x 。
第5章二次型5.1复习笔记一、二次型及其矩阵表示1.二次型定义设P是一数域,一个系数在数域P中的x1,x2,…,x n的二次齐次多项式称为数域P上的一个n元二次型,或简称二次型.2.线性替换与二次型矩阵(1)线性替换定义设x1,…,x n;y1,…,y n是两组文字,系数在数域P中的一组关系式称为由x1,…,x n到y1,…,y n的一个线性代替,或简称线性替换.如果系数行列式,那么线性替换就称为非退化的.(2)二次型的矩阵令由于所以二次型可以写成其中的系数排成一个n×n 矩阵它就称为二次型的矩阵,因为a ij =a ji ,i,j=1,…,n,所以A=A'二次型的矩阵都是对称的.3.合同矩阵(1)定义数域P 上n×n 矩阵A ,B 称为合同的,如果有数域P 上可逆的n×n 矩阵C ,使B C AC¢=(2)性质①反身性:A=E'AE ;②对称性:由B=C'AC 即得A=(C -1)'BC -1;③传递性:由A 1=C 1'AC 1和A 2=C 2'A 1C 2即得经过非退化的线性替换,新二次型的矩阵与原二次型的矩阵是合同的.二、标准形1.定义数域P 上任意一个二次型都可以经过非退化的线性替换变成平方和2221122n nd x d x d x +++ 的形式,该形式就称为的一个标准形.注意:二次型的标准型不是唯一的,而与所作的非退化线性替换有关.2.定理在数域P 上,任意一个对称矩阵都合同于一对角矩阵.即对于任意一个对称矩阵A 都可以找到一个可逆矩阵C,使C AC ¢成对角矩阵,并且该对角矩阵的值就是对应的标准形式的系数.三、唯一性1.基本概念(1)二次型的秩在一个二次型的标准形中,系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,二次型矩阵的秩有时就称为二次型的秩.(2)复二次型的规范性设f(x1,x2,…,x n)是一个复系数的二次型.经过一适当的非退化线性替换后,f(x1,x2,…,x n)变成标准形,不妨假定它的标准形是易知r就是f(x1,x2,…,x n)的矩阵的秩.因为复数总可以开平方,我们再作一非退化线性替换(1)就变成称为复二次型f(x1,x2,…,x n)的规范形.结论:任意一个复系数的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.即任一复数的对称矩阵合同于一个形式为的对角矩阵.从而有,两个复数对称矩阵合同的充分必要条件是它们的秩相等.(3)实二次型的规范形设f(x1,x2,…,x n)是一实系数的二次型,经过某一个非退化线性替换,再适当排列文字的次序,可使f(x1,x2,…,x n)变成标准形其中d i>0,i=1,…,r;r是f(x1,x2,…,x n)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以再作一非退化线性替换(4)就变成(6)称为实二次型f(x1,x2,…,x n)的规范形.结论:任意一个实数域上的二次型,经过一适当的非退化线性替换可以变成规范形,且规范形是唯一的.2.惯性定理设实二次型f(x1,x2,…,x n)经过非退化线性替换X=BY化成规范形而经过非退化线性替换X=CZ也化成规范形则p=q.另一种表述:实二次型的标准形中系数为正的平方项的个数是唯一确定的,它等于正惯性指数,而系数为负的平方项的个数就等于负惯性指数.3.惯性指数在实二次型f(x1,x2,…,x n)的规范形中,(1)正惯性指数:正平方项的个数p;(2)负惯性指数:负平方项的个数r-p;(3)符号差:p-(r-p)=2p-r.该定义对于矩阵也是适合的.四、正定二次型1.定义实二次型,f(x1,x2,…,x n)称为正定的,如果对于任意一组不全为零的实数c1,c2,…,c n都有f(c1,c2,…,c n)>0.2.常用的判别条件(1)n元实二次型f(x1,x2,…,x n)是正定的充分必要条件是它的正惯性指数等于。