6.1二次型的定义及其矩阵表示
- 格式:ppt
- 大小:212.00 KB
- 文档页数:8
第六章二次型本章共有三节内容:§1 二次型及其矩阵表示§2 化二次型为标准形§3 正定二次型§6.1二次型及其矩阵表示二次型的定义二次型的矩阵表示二次型的标准形合同矩阵一、二次型的定义12(,,,)n f x x x n 元二次型是指如下形式的二次齐次多项式211112121313112222232322222222n n n n nn n a x a x x a x x a x x a x a x x a x x a x =++++++++++ 定义6.112,,,n x x x ;n 元二次型的特点:①含n 个自变量②二次齐次多项式:只含或的项,无一次项2i x i j x x 和常数项。
221212(,)5f x x x x =++不是二次型例如:特点:只含有变量的平方项,无混合乘积项。
222121122(,,,)n n n f x x x d x d x d x =+++ 当a ij 为实数时,称f 为实二次型;当a ij 为复数时,称f 为复二次型。
本章仅讨论实二次型。
标准形:二、二次型的矩阵表示12,1(,,,)n n ij i ji j f x x x a x x ==∑ 若将改写成2()ij i j a x x i j <,ij i j ji j i a x x a x x +,其中ij ji a a =,则二次型可以表示为ij ji a a =即A 是对称矩阵,则二次型可用矩阵形式表示为:111211212222121212(,,)(,,)n n n n n n nn n a a a x a a a x f x x x x x x a a a x ⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠若令11121121222212,n n n n nn n a a a x a a a x a a a x ⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠A x ,其中T=x Ax 实对称矩阵A 称为二次型f 的矩阵,也把f 称为实对称矩阵A 的二次型,实对称矩阵A 的秩称为二次型f 的秩,二次型与实对称矩阵之间是一一对应的关系。
第6章 实二次型二次型是线性代数的主要内容之一,它在工程技术领域有着广泛的应用,作为可对角化矩阵的应用是用正交变换化实二次型为标准形,它与实对称矩阵正交相似于对角矩阵是以两种形式出现的同一问题。
正定二次型是有广泛应用的一种特殊的二次型,要掌握其判定方法。
6.1二次型及其矩阵表示定义(实二次型) 设);,,2,1,(j i n j i a ij ≤= 均为实常数,称关于n 个实变量n x x x ,,,21 的二次齐次多项式函数∑∑<==+=+++++++++=nji j i ji ij ni i ii nnn nn nn n x x a x a x a x x a x x a x a x x a x x a x x a x a x x x f 1,12222322322221131132112211121222222),,(为一个n 元实二次型,简称为n 元二次型。
令ji ij a a =,则i j ji j i ij j i ij x x a x x a x x a +=2,再令矩阵n n ij a A ⨯=)(,T n x x x x ),,,(21 =,则A 为实对称矩阵,且可将二次型写成⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,(或Ax x x f T =)(称此式右端为二次型的矩阵表达式,称实对称矩阵A 为二次型f 的矩阵,并称A 的秩为二次型f 的秩。
注意二次型f 的矩阵n n ij a A ⨯=)(的元素为:ii a 为2i x 的系数ji ij a a n i ==),,,2,1( 为j i x x 的系数的一半);,,2,1,(j i n j i ≠= 。
6.2合同变换与二次型的标准形定义(满秩线性变换)设n n ij c C ⨯=)(为满秩方阵,则称由变量n y y y ,,,21 到变量n x x x ,,,21 的线性变换⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 为满秩线性变换或可逆变换。
第六章二次型§1 二次型及其矩阵表示、合同矩阵§2 化二次型为标准形§3 二次型与对称矩阵的正定性§1 二次型及其矩阵表示、合同矩阵定义6.1.1:含有n 个变量x 1, x 2, … , x n 的二次齐次多项式()n x x x f ,,,21 nn x x a x x a x x a x x a x a 1141143113211221112222+++++= nn x x a x x a x x a x a 22422432232222222+++++ 2nnn xa +当系数属于数域F 时,称为数域F 上的一个n 元二次型。
本章讨论实数域上的n 元二次型,简称二次型。
nn x x a x x a x a 334334233322++++22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j22212111222121213131,12111121211221212222221122,1222(,,,)n nn nn n n nn n n nn n n n nn nniji ji j f x x x a x a x a xa x x a x x a x x a x a x x a x x a x x a x a x x a x x a x x a xax x --==+++++++=++++++++++++=∑i j j i ij i j i j i j j i i j212111121211221212222221122(,,,)n n n n n n n n n nn nf x x x a x a x x a x x a x x a x a x x a x x a x x a x =+++++++++++11111221()n n x a x a x a x+++22112222()n nx a x a x a x ++++1122()n n n nn n x a x a xa x +++11112212112222121122(,,,)n n n n n n n nn n a x a x a x a x a x a x x x x a x a x a x +++⎛⎫⎪+++⎪= ⎪⎪+++⎝⎭1112112122221212(,,,)n n n n n nn n a a a x a a a x x x x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭Tx Ax=其中A = (a ij )n ×n , x = (x 1, x 2, ···, x n )TA 为对称矩阵,称A 为二次型对应的矩阵,A 的秩为二次型的秩。
第六章 二 次 型I 重要知识点一、二次型及其矩阵表示1、二次型的定义:以数域P 中的数为系数,关于x 1,x 2,…,x n 的二次齐次多项式f (x 1,x 2,…,x n )=a 11x 12+2a 12x 1x 2+ … +2a 1n x 1x n+a 22x 22+ … +a 2n x 2x n + … (3) +a nn x n 2称为数域P 上的一个n 元二次型,简称二次型。
2、二次型的矩阵表示 设n 阶对称矩阵A =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn nnn n a a a a a a a a a 212221211211 则n 元二次型可表示为下列矩阵形式:f (x 1,x 2,…,x n )=( x 1,x 2,…,x n ) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn nnn n a a a a a a a a a212221211211⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21=X TAX其中 X =( x 1,x 2,…,x n )T 。
对称矩阵A 称为二次型的系数矩阵,简称为二次型的矩阵。
矩阵A 的秩称为二次型f (x 1,x 2,…,x n )的秩。
二次型与非零对称矩阵一一对应。
即,给定一个二次型,则确定了一个非零的对称矩阵作为其系数矩阵;反之,给定一个非零的对称矩阵,则确定了一个二次型以给定的对称矩阵为其系数矩阵。
3、线性变换设x 1,x 2,…,x n 和y 1,y 2,…,y n 为两组变量,关系式⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 其中c ij (i ,j =1,2,…,n )为实数域R (或复数域C )中的数,称为由x 1,x 2,…,x n 到y 1,y 2,…,y n 线性变换,简称线性变换。
线性变换的矩阵表示,设n 阶矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n c c c c c c c c c212222111211则从x 1,x 2,…,x n 到y 1,y 2,…,y n 线性变换可表示为下列矩阵形式:X =CY其中X =( x 1,x 2,…,x n )T 和Y =( y 1,y 2,…,y n )T ,C 称为线性变换的系数矩阵。