弹性力学(文克勒地基板)
- 格式:pdf
- 大小:617.27 KB
- 文档页数:9
二、线性弹性地基模型线性弹性地基模型:荷载作用下,地基土应力-应变的关系为直线关系,可用广义虎克定律表示。
{}[]{}εσe D ={}{ }Tx y z xy yz zx σσσστττ={}{ }Tx y z xy yz zx εεεεγγγ=为弹性刚度矩阵。
[]e D 用矩阵表示:[]()()()()1 1 1 12 0 0 0 211212 0 0 0 0 2 0 0 0 0 e E D νννννννννν----=+--12 0 2ν⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦对称弹性体的应力-应变关系服从虎克定律:适用条件:实际基础刚度介于柔性基础和绝对刚性基础之间,基础底面的地基反力分布复杂。
当建筑物荷载较小,而地基承载力较大时,地基土应力应变关系可近似采用线弹性地基模型分析。
❑常用的三种线性弹性地基模型:(1)文克勒(Winkler)地基模型(2)弹性半空间地基模型(3)分层地基模型1. 文克勒地基模型(文克勒于1867年提出)模型描述:假定地基由许多互不影响的独立弹簧组成,即假定地基任一点所受的压力强度p只与该点的地基变形s成正比,而p不影响该点以外的变形。
其表达式为:p ksk─地基基床系数,表示产生单位变形所需的压力强度,kN/m3;p─地基上任一点所受的压力强度,kPa;s─荷载p作用点位置上的地基变形,m。
适用条件:地基土越软弱,土的抗剪强度越低,该模型越接近实际情况。
优点:计算简便,如果k选择得当,则可获得比较满意的结果。
存在问题:文克勒地基模型忽略了地基中的剪应力,按这一模型计算,地基变形只能发生在基底范围内,而基底范围以外没有地基变形,这与实际情况不符,使用不当会造成不良的后果。
有缘学习+V星ygd3076或关注桃报:奉献教育(店铺)。
板壳理论课程设计第一部分 学习心得第二部分文克勒地基上的基础板解题法题目:文克勒地基上的四边简支薄板中心受集中荷载的解法设文克勒地基上放置一个正方形薄板,边长为a=1.6m,厚度0.08m δ=,如图所示,四边均为简支边,在薄板的中心受有集中力的作用,0 1.07F e N =。
取薄板弹性模量E =205a GP ,泊松比0.3μ=,1k = ,取坐标轴如图所示, 方法1——纳维解法当并无支座沉陷时,其边界条件为(((( 把挠度w 的表达式取为如下的重三角级数:11sin sin mn m n m x n yw A a b ππ∞∞===∑∑(1)其中的m 和n 都是任意正整数。
显然,上列的边界条件都能满足。
将式(1)代入弹性曲面的微分方程4D w q ∇=中,但是在薄板承受横向荷载而发生挠度时,弹性地基将对薄板作用一定的分布反力,即所谓弹性抗力。
在文克勒地基中,地基对薄板所施反力的集度P ,是和薄板的挠度w 成正比而方向相反,即p kw =-,这样,薄板所受横向分布力的总集度将为p q +,因此薄板弹性曲面的微分方程oX须改变成为4k qD w wD D∇+=此时,将荷载q也展为同一形式的级数,即(2)将式(1)和式(2)代入微分方程4k qD w wD D∇+=中,即得002242224sin sin()a bmnm x n yq dxdyab a bAm nD ka bπππ=++⎰⎰(3)当薄板在任意一点(),ξη受集中荷载F时,可以得到当薄板在任意一点(),ξη受集中荷载F时,可以用微分面积dxdy上的均布荷载Fdxdy来代替分布荷载q,于是除了在(),ξη处的微分面积上等于Fdxdy以外,在其余各处都等于零。
22421122sin sin4sin sin()m nm nF m x n ya bwm nab a bD ka bπξπηπππ∞∞===++∑∑(4)由题意,当集中荷载作用在薄板中心时,中心处()0.8,0.8的挠度最大,将坐标点()0.8,0.8代入式(4),结果如下图所示00114sin sin sin sina bm nm x n y m x n yq q dxdyab a b a bππππ∞∞==⎡⎤=⎢⎥⎣⎦∑∑⎰⎰解得max 3.092e w =-方法2——差分法2.1网格(4*4)差分法用4*4网格求解4a h ⎛⎫= ⎪⎝⎭。
第十六章水泥混凝土路面设计§16-1 概述水泥混凝土路面板具有较高的力学强度,在车轮荷载作用下变形小,同时按照现行的设计理论,混凝土板工作在弹性阶段,也就是在计算汽车荷载作用下,板内产生的最大应力不超过水泥混凝土的比例极限应力。
当水泥混凝土板工作在弹性阶段时,基层和土基所承受的荷载单位压力及产生的变形也微小,它们也都工作于弹性阶段,因此从力学体系上看,水泥混凝土路面结构也属于弹性层状体系。
然而,作为刚性路面的水泥混凝土路面,同柔性路面相比,有其自己的特性。
首先,混凝土路面板的弹性模量及力学强度大大高于基层和土基的相应模量和强度;其次,混凝土的抗弯拉强度远小于抗压强度,约为其1/6~1/7,因此决定水泥混凝土板尺寸的强度指标是抗弯拉应力;同时,由于混凝土板与基层或土基之间的摩阻力一般不大,所以在力学图式上可把水泥混凝土路面结构看作是弹性地基板,用弹性地基板理论进行分析计算。
由于混凝土的抗弯拉强度比抗压强度低得多,在车轮荷载作用下当弯拉应力超过混凝土的极限抗弯拉强度时,混凝土板便产生断裂破坏。
且在车轮荷载的重复作用下,混凝土板会在低于其极限抗弯拉强度时出现破坏。
此外,由于板顶面和底面的温差会使板产生温度翘曲应力,板的平面尺寸越大,翘曲应力也越大。
另外,水泥混凝土又是一种脆性材料,它在断裂时的相对拉伸变形很小。
因此,在荷载作用下土基和基层的变形情况对混凝土板的影响很大,不均匀的基础变形会使混凝土板与基层脱空,在车轮荷载作用下板产生过大的弯拉应力而遭破坏。
基于上述,为使路面能够经受车轮荷载的多次重复作用、抵抗温度翘曲应力、并对地基变形有较强的适应能力,混凝土板必须具有足够的抗弯拉强度和厚度。
水泥混凝土路面在行车荷载和环境因素的作用下可能出现的破坏类型主要有:1)断裂;2)唧泥;3)错台;4)拱起;5)接缝挤碎等。
从水泥混凝土路面的几个主要破坏类型可以看出,影响混凝土路面的使用性能的因素是多方面的,如轮载、温度、水分、基层、接缝构造、材料以及施工和养护情况等。
目前,主要有两种弹性地基模型:一种是温克勒地基模型;另一种是半空间弹性体地基模型;此外尚有介于两种模型之间的双参数弹性地基模型以及有限压缩层地基模型等。
文克勒地基模型是原捷克斯洛伐克工程师文克勒(WINKLER)1876年提出的,其基本假定是地基上任一点的弯沉L,仅与作用于该点的压力P成正比,而与相邻点处的压力无关,反映压力与弯沉值关系的比例常数K称为地基反应模量,即:`K=(P)/(L)`式中 K——地基的反应模量(MPa/m或MN/m3);P——单位压力(MPa);L——弯沉值(m)。
根据上述假定,可以把地基看作是无数彼此分开的小土柱组成的体系,或者是无数互不相联的弹簧体系。
文克勒地基模型由于假设简单,K值测试方便,被广泛采用,但这种地基模型有明显的缺点,它忽略了地基中剪应力的存在,与实际情况出入较大。
文克勒地基模型忽略了地基中的剪应力,而正是由于剪应力的存在,地基中的附加应力才能向旁扩散分布,使基底以外的区域发生沉降。
凡力学性质与水相近的地基,例如抗剪强度很低的半液态土﹙如淤泥、软粘土﹚地基或基底下塑性区相对较大时,采用文克勒地基模型就比较合适。
文克勒地基又可称为稠密液体地基,地基反应模量K相当于液体的密度,地基反力相当于液体的浮力。
此外,厚度不超过梁或板的短边宽度之半的薄压缩层地基也适于采用文克勒地基模型。
﹙这是因为在面积相对较大的基底压力作用下,薄层中的剪应力不大的缘故。
﹚实际上,沉陷也发生在受压范围以外。
半无限弹性体假设:假设地基是半无限理想弹性体,采用弹性力学中半无限大弹性地基的沉陷公式来计算地基的沉陷。
显然一般土壤与理想弹性体是有区别的。
土壤是颗粒体,而且不能或几乎不能承受拉力。
因此,必须土壤中没有拉应力发生时,这个土壤地基才能当做连续体看待。
中厚度假设:假设地基是中等厚度的弹性层(有限压缩层),用弹性力学导出地基的沉陷公式。
按照后两种假设计算基础梁时,必须把问题区分为平面问题和空间问题,前者又必须区分为平面应力问题和平面形变问题。
地基模型弹性支点法弹性支点法是在弹性地基梁分析方法基础上形成的一种方法,弹性地基梁的分析是考虑地基与基础共同作用条件,假定地基模型后对基础梁的内力与变形进行计算分析。
由于地基模型变化的多样性,弹性地基梁的分析方法也非常多。
地基模型指的是地基反力与变形之间的关系,至今,学术界提出了不少模型,但由于问题的复杂性,不论哪一种模型都难以完全反映地基的工作性状,因而都有一定的局限性。
目前,运用最多的是线弹性模型,包括文克尔地基模型、弹性半空间地基模型和有限压缩层地基模型。
1.地基模型①文克尔地基模型早在1867年,捷克工程师E.文克尔(Winkler)就提出了以下的假设:地基上任一点所受的压力强度p与该点的地基沉降量s成正比,即pks式中比例系数k称为基床反力系数(或简称基床系数),其单位为KN/m3.对某一种地基,基床系数为一定值。
根据这一假设,地基表面某点的沉降与其它点的压力无关,故可把地基土体划分成许多竖直的土柱,如下图所示,每条土柱可用一根独立的弹簧来代替。
如果早这种弹簧体系上施加荷载,则每根弹簧所受的压力与弹簧的变形成正比。
这种模型的基底反力图形与基础底面的竖向位移性状是相似的。
如果基础刚度非常大,受负荷后基础底面任保持为平面,则基底反力图按直线规律变化。
按照文克尔地基模型,实质上就是把地基看作是无数小土柱组成,并假设各土柱之间无摩擦力,即将地基视为无数不相联系的弹簧组成的体系,也即假定地基中只有正应力而没有剪应力,因此,地基的沉降只发生在基底范围以内。
事实上,土柱之间存在着剪应力,正是剪应力的存在,才使基底压力在地基中产生应力扩散,并使基底以外的地表发生沉降。
尽管如此,文克尔地基模型由于参数少、便于应用,所以ren是目前最常用的地基模型之一。
一般认为,凡土层力学性质与水相近的地基,采用文克尔模型就比较合适。
在下述情况下,可以考虑采用文克尔地基模型:⑴地基主要受力层为软土;由于软土的抗剪强度低,因此能够承受剪应力值很小;⑵厚度不超过基础底面宽度一半的薄压缩层地基。
第四章弹性地基上的梁和板分析
4.1地基计算模型(①静力平衡②变形协调)
1.地基模型是描述地基土应力和应变关系的数学表达式。
2.选择地基模型一般要考虑建筑物荷载大小,地基土性质以及地基承载力等因素。
4.1.1 线性弹性地基模型(当建筑物的荷载较小,而地基承载力较大时,地基土的应变关系可采用线弹性地基模型进行分析。
线性弹性地基模型认为,地基土在荷载作用下其应力应变关系为直线关系。
)
最简单和常用的三种线性弹性地基模型为:①文克勒地基模型(地基某点的沉降只与该点的作用力有关,而与作用于其他点上的压力无关。
实质上就是把地基看作无数分割开的小土柱,若用一根根弹簧代替土柱,则有变成一群不相连的弹簧体系,这就是文克勒地基模型)②弹性半空间地基模型(弹性半空间地基模型是将地基视作均匀的,各向同性的弹性半空间体)③分层地基模型(分层地基模型是以计算地基基础最终沉降的分层总和法为基础构建的地基模型)
4.1.2非线性弹性地基模型(地基土在荷载作用下的应力-应变关系假设为线性关系之适于应力-应变的开始阶段,随着荷载的增加,土体的变形呈非线性特征。
)
4.2文克勒地基上梁的计算
①满足地基与基础之间的变形协调条件。
②基础在外荷载和基底反力的作用下必须满足静力平衡条件。