煤化工制尿素
- 格式:ppt
- 大小:737.00 KB
- 文档页数:36
煤化工下游产品汇总1、合成气通过补N2和变换合成生产氨、尿素等;2、合成气F-T合成,一步法制备汽油、煤油、柴油等;3、合成气催化制甲醇1) 甲醇羰基合成制备醋酸,醋酸再进一步制备醋酸乙烯酯、醋酐等;2)甲醇经氧化制备甲醛,甲醛进一步制备酚醛树脂等有机原料;3)甲醇与异丁烯合成,制备甲基叔丁酯醚(MTBE);4)甲醇与CO合成,制备甲酸甲酯,进一步生产甲酸;5)甲醇与CO、O2制备草酸甲酯,草酸甲酯进一步制备草酸,也可制备乙二醇;6)甲醇同系化制备乙醇,乙醇分子内脱水制备乙烯(间接法制烯烃);7)甲醇脱水制备二甲醚;4、合成气直接法制备二甲醚,二甲醚转化制C2-C4烯烃,或二甲醚转化制备汽油或柴油;5、合成气一步法直接合成C2-C4烯烃;6、合成气羰基偶联制备乙二醇,乙二醇再进一步制备聚酯、树脂、纤维、抗冻剂等;7、合成气经加[wiki]氢[/wiki]甲酰化制备成醛,醛进一步制备醇,然后进一步制成溶剂、增塑剂、表面活性剂等;8、合成气直接一步法合成低碳混合醇;9、甲醇甲烷化制备甲烷。
补充1)合成气通过变换反应脱羰或联醇再甲烷化制取氢气(CO+CO2 < 25 ppm),氢和氮气在熔铁催化剂(可选用负载钌催化剂)高温高压合成氨,氨再和二氧化碳反应形成碳酸氨和尿素(工业应用)2)合成气在沉淀铁、熔铁或负载钴催化剂作用下,发生费托合成反应,形成烃类,烃类再进一步精制和改质得到液化石油气、汽柴油、石脑油和低碳烯烃、高级微晶蜡等硫氮含量非常低的优质产品(工业应用)3)合成气(H2-CO2/CO+CO2比2.0-2.05)在铜锌铝催化剂作用下,形成甲醇(工业应用)4)从煤气化后的合成气提取纯一氧化碳,再气均相Rh催化剂作用下与甲醇发生羰基化合成形成醋酸(BP、Celanes、兖矿等工业应用)5)甲醇经铁钼催化剂或银催化剂作用下形成甲醛(工业应用)6)甲醇在甲醇钠催化剂作用下与一氧化碳进行羰基化反应形成甲酸(工业应用)7)甲醇与NO和O2作用形成亚硝酸甲酯,CO与亚硝酸甲酯反应可形成草酸二甲酯或碳酸二甲酯,草酸二甲酯则经催化加氢形成乙二醇(日本Ube和正在工业示范)8)甲醇在固体酸或液体酸作用下脱水形成二甲醚(工业应用)9)合成气在双功能催化剂作用下形成一步二甲醚,反应器包括固定床和浆态床10)合成气在催化剂作用形成低碳烯烃,但甲烷的抑制是一个问题11)合成气直接偶联制备乙二醇12)丙烯和合成气进行甲酰化反应制备丁辛醇(工业应用)13)合成气直接制备低碳混合醇14)合成气在镍催化剂作用下形成甲烷(工业应用)。
煤产尿素工艺流程感悟总结Title: Reflection and Summary of Coal-to-Urea Process FlowAbstract:The coal-to-urea process is a significant industrial operation that transforms coal, a carbonaceous resource, into urea, a vital nitrogen fertilizer. This paper reflects on the process flow of coal-to-urea conversion, highlighting its complexities, challenges, and opportunities for optimization. Through this reflection, insights are gained into the intricate interplay of chemical reactions, engineering design, and environmental considerations in the production of urea from coal.Keywords: coal, urea, process flow, reflection, optimizationReflection and Summary:The coal-to-urea process involves several intricate steps, each contributing to the overall conversion of coal into urea. Initially, coal undergoes gasification to produce syngas, primarily composed of carbon monoxide (CO) and hydrogen (H2). This syngas is then subjected to the Fischer-Tropsch synthesis, where CO and H2 react over catalysts to produce a mixture of hydrocarbons, including methanol.Following the synthesis of methanol, the process proceeds with the conversion of methanol to formaldehyde, and subsequently to urea through a series of chemical reactions. These reactions involve the condensation of ammonia and carbon dioxide, leading to the formation of urea as the final product.Throughout the process flow, various challenges emerge, ranging from the optimization of reaction conditions to the efficient utilization of resources. The selection and design of catalysts play a crucial role in enhancing reaction kinetics and product yields. Additionally, the management of by-products and waste streams necessitates effective environmental stewardship to mitigate potential environmental impacts.Furthermore, technological advancements offer opportunities for optimizing the coal-to-urea process. Integration of novel catalysts, process intensification techniques, and advanced process control systems can enhance the efficiency and sustainability of urea production. Moreover, the integration of carbon capture and utilization technologies presents a promising avenue for reducing greenhouse gas emissions associated with coal-based urea production.In conclusion, the coal-to-urea process represents a complex interplay of chemical, engineering, and environmental factors. Through reflection on its process flow, valuable insights are gained into the challenges and opportunities for optimization. By addressing these challenges and leveraging technological innovations, the coal-to-urea industry can strive towards more sustainable and efficient production practices.流程感悟总结:煤制尿素工艺涉及多个复杂步骤,每个步骤都对将煤转化为尿素做出了贡献。
尿素生产工艺流程尿素是一种重要的农业化肥,也是工业上的重要原料。
尿素生产工艺流程是经过多次的反应和精制过程。
下面将介绍尿素的生产工艺流程。
尿素的生产主要分为合成氨和合成尿素两个部分。
首先,通过哈氏过程或斯蒂克曼过程从天然气中得到氨气。
然后,将氨气和二氧化碳按照一定的比例进入尿素合成反应器。
在高压下,经过反应生成尿素。
尿素合成的反应式为:2NH3 + CO2 → NH2CONH2 + H2O。
尿素合成反应是一个可逆反应,而且酸碱度对反应速度有重要影响,因此需要在利用催化剂的条件下进行。
通常使用铁催化剂,加入尿素合成反应器中。
反应温度通常在180-220°C,压力在150-200 bar。
该反应是一个放热反应,会释放出大量的热量,需要进行冷却。
合成尿素的产物中包含了未反应的氨气、碳酸氢铵、甲醇等。
为了提高尿素的纯度和减少对环境的污染,还需经过一系列的精制过程。
首先,将合成尿素液通过蒸发器进行蒸发,使其中的甲醇蒸发。
然后,使用精馏塔将氨气和甲醇回收,再次用于尿素合成反应中。
同时,可以通过加入碱性物质,如氢氧化钠,将碳酸氢铵转化为氨气和水,再回收利用。
经过精制后的尿素液体会被进一步浓缩,使其含水量达到一定标准。
然后,将尿素液体注入结晶器中进行结晶,得到尿素晶体。
尿素晶体通过离心机进行分离,得到纯净的尿素固体。
最后,对尿素固体进行研磨、筛分等加工处理,使其形成符合市场需求的尿素产品。
尿素产品可以作为农业肥料直接使用,也可以用作原料进一步生产其他化工产品。
以上就是尿素生产的工艺流程。
通过合成氨和合成尿素两个部分的反应和精制过程,最终得到纯净、符合市场需求的尿素产品。
这个工艺流程的研发和优化对尿素产业的发展起到了重要的推动作用,也为农业生产提供了重要的化肥资源。
尿素生产工艺流程
尿素是一种重要的有机化肥,可以提供作物所需的氮元素。
下面介绍一种常见的尿素生产工艺流程。
首先,尿素生产的原料主要是天然气和空气。
通过化工厂对天然气进行处理,将其中的杂质去除,得到纯净的甲烷气体。
然后,将甲烷与空气进行混合,进入蒸汽重整反应器。
在高温高压的条件下,甲烷气体与氧气反应生成合成气。
合成气中主要含有一氧化碳和氢气。
接下来,将合成气经过变换反应器,加入催化剂,进行水气变换反应。
在适当的温度和压力下,一氧化碳与水蒸汽反应生成氢气和二氧化碳。
然后,将得到的氢气与一部分二氧化碳进行压缩,进入合成装置。
在高温高压的条件下,氢气与二氧化碳进行催化反应,生成尿素和甲醛。
尿素分子中的两个氨基与甲醛中的羰基发生缩合反应,形成尿素分子。
这个反应需要使用催化剂,例如铁催化剂,来加速反应速度。
最后,通过降温和脱水处理,将反应产生的尿素和甲醛分离。
尿素经过冷凝器后成为液态尿素,可以通过过滤和结晶的方法进一步提纯。
甲醛则经过蒸馏处理后再次进入合成装置,参与下一轮尿素的合成反应。
尿素生产工艺流程中还有一些其他的环节,例如回收和再利用废气、废水等。
通过科学的工艺设计和设备运行管理,可以实
现对环境的保护和资源的循环利用。
总的来说,尿素的生产工艺流程包括甲烷气体的处理、合成气的产生、水气变换反应、尿素的合成反应、尿素和甲醛的分离等步骤。
这个工艺流程是高温高压条件下的复杂化学反应过程,需要依靠先进的设备和催化剂来保证反应效率和产品质量。
尿素的生产工艺流程尿素是一种重要的化学品,广泛应用于农业、化工、医药等领域。
尿素的生产工艺流程有以下几个主要步骤:1. 合成氨的制备:尿素的生产首先需要制备氨气。
通常采用合成氨工艺流程,即将气体混合物(通常为自然气和蒸汽的混合物)通过压缩、解冷、采用催化转化反应等方式,将气体转化为含有高浓度氨气的气体。
2. 尿素合成:尿素的合成一般采用哈伦斯过程,即将合成氨与二氧化碳反应生成尿素。
这一步骤通常在高压和高温下进行,并且需要使用催化剂催化反应。
具体的反应方程式为:2NH3+ CO2 → NH2CONH2 + H2O3. 尿素结晶:尿素合成后是以液体状态存在的,需要通过结晶过程将其转化为固体尿素。
通常采用蒸发结晶法或压滤除溶法进行尿素的结晶。
具体的过程一般包括加热、浓缩、结晶分离、干燥等步骤。
4. 尿素粒化:经过结晶后的尿素通常需要进行粒化处理,以改善其性能和外观。
粒化过程通常采用旋转粒化机,将固体尿素与适量的液体尿素混合后,通过旋转机械的作用使尿素逐渐成为颗粒状。
粒化后的尿素质量更均匀,便于搬运和应用。
5. 产品包装和储运:尿素粒化后,需要进行适当的包装和储运以保证产品质量和安全性。
一般采用塑料袋或编织袋等包装尿素,并以集装箱或散装的形式进行储运。
同时,根据不同的应用需求,也可以对尿素进行进一步的混合、掺杂等处理,以调整其化学成分和性能。
尿素的生产工艺流程需要采用先进的设备和控制技术,以确保产品质量和生产效率。
同时,对废气、废水等产生的副产品也需要进行适当的处理和回收,以避免对环境造成污染。
因此,尿素的生产需要综合考虑技术、环保和经济等多个方面因素的综合优化。
尿素生产工艺流程
尿素是一种重要的化肥和化工原料,其生产工艺流程是一个复杂的过程,需要经过多个步骤才能得到最终的产品。
尿素的生产工艺流程主要包括合成氨、尿素合成和尿素精制三个主要步骤。
首先,合成氨是尿素生产的第一步。
合成氨是通过哈勃-波斯特过程来实现的,该过程是将氮气和氢气在催化剂的作用下进行高温高压反应,生成氨气。
合成氨是尿素合成的重要原料,其质量和产量直接影响着尿素的生产效率和质量。
其次,尿素合成是尿素生产的核心步骤。
尿素的合成是通过将合成氨和二氧化碳在催化剂的作用下进行加热反应,生成尿素。
这个过程需要严格控制温度、压力和反应时间,以确保尿素的产率和质量。
此外,在尿素合成过程中,还需要对反应产物进行分离和精制,以得到高纯度的尿素产品。
最后,尿素精制是尿素生产的最后一步。
尿素精制包括结晶、干燥和筛分等工艺,以去除杂质和水分,提高尿素的纯度和产品质量。
尿素精制是尿素生产过程中至关重要的一环,它直接影响着尿素的市场竞争力和应用范围。
总的来说,尿素生产工艺流程是一个复杂而严谨的过程,需要各个步骤紧密配合,严格控制各项工艺参数,才能确保尿素的高产率和优质产品。
随着化工技术的不断进步,尿素生产工艺流程也在不断优化和改进,以适应市场对高效、环保、高品质产品的需求。
希望通过不断的技术创新和工艺改进,能够推动尿素生产工艺流程向着更加智能化、绿色化和高效化的方向发展。
XX煤化工项目一期工程年产30万吨合成氨52万吨尿素环评报告(简本)—中国环境科学研究院二OO八年六月目录前言 (1)第一章总论 (3).第二章工程分析 (4)第三章自然社会环境概况 (13)第四章环境空气质量影响评价 (14)第五章地下水环境影响分析 (14)第六章噪声环境影响评价 (14)第七章固体废物、扬尘及升压站环境影响分析 (14)第八章地表水环境影响分析 (15)第九章环境风险评价 (15)/第十章环保措施及其技术、经济论证 (15)第十一章清洁生产分析 (15)第十二章污染物排放总量控制分析 (16)第十三章环境经济损益分析 (16)第十四章评价结论与建议 (16)^前言化肥是支持农业生产和保证国家粮食安全的在重要物资,由于我国人口众多,人均耕地面积少,土地肥力低,复种指数高,粮食需求大,使得化肥对农作物的贡献率高达%,超出世界水平近20%。
随着我国农业的快速发展,化肥的需求量也在逐年上升,农业部提出2015年我国氮肥需求总量为3131万吨,到2030年将增加到3679万吨。
为了保证化肥的供应,国家已经加强政策干预力度,其中包括对煤炭企业增加化肥生产用煤计划并纳入铁路运输计划。
目前国内中小氮肥企业占氮肥供应量75%以上,但由于规模小,技术设备落后,污染严重等原因,一旦失去国家扶持,绝大多数的中小氮肥企业将难以生存。
国内大型氮肥企业占氮肥供应量不足25%,部分中小型企业如果退出,大型企业将难以填补由此造成的缺口。
另外,国内有三十三套大型合成氨生产装置中只有两套是以煤为原料的,随着天然气和燃油价格的不断上涨,成本也日益增加,不利于长期发展。
根据国家相关产业政策、《国务院关于促进煤炭工业健康发展的若干意见》和《关于加强煤化工项目建设管理,促进产业健康发展的通知》(国家发改委,2006)等文件精神,国家要求煤化工产业的发展要“积极采用先进煤气化技术改造以间歇气化技术为主的化肥行业,减少环境污染,推动产业发展和技术升级”。