尿素水解制氨系统培训课件
- 格式:ppt
- 大小:7.85 MB
- 文档页数:68
1、技术要求1.1 系统概述尿素水解法制氨系统包括尿素储存间、斗提机、尿素溶解罐、尿素溶液给料泵、尿素溶液储罐、尿素溶液输送装置、尿素水解反应器及控制装置等。
尿素储存于储存间,由斗提机输送到溶解罐里,用除盐水将干尿素溶解成约50%质量浓度的尿素溶液,通过尿素溶液给料泵输送到尿素溶液储罐。
尿素溶液经由输送泵进入水解反应器,水解反应器中产生出来的含氨气流送至反应区,被热风稀释后,产生浓度小于5%的氨气进入氨气—烟气混合系统,并由氨喷射系统喷入脱硝系统。
系统产生的蒸汽冷凝水回收至疏水箱中,作为系统冲洗及溶液配置用水。
系统排放的废氨气由管线汇集后从废水池底部进入,通过分散管将氨气分散入废水池中,利用水来吸收安全阀排放的氨气。
卖方所设计的尿素制氨工艺应满足:还原剂的供应量能满足锅炉不同负荷与脱硝效率的要求,调节方便、灵活、可靠。
尿素储存区与其他设备、厂房等要有一定的安全防火距离,并在适当位置设置室外防火栓,设有防雷、防静电接地装置。
尿素制氨工艺应配有良好的控制系统。
尿素溶解罐、尿素溶液储罐、尿素溶液输送装置、尿素水解反应器等为2台机组的SCR系统公用。
1.2 主要设备(1) 尿素储存间卖方为买方设计一个尿素储存间,尿素颗粒储存间的容量按两台机组脱硝系统设计工况下连续运行5d(每天按24h计)所需要的尿素用量来设计。
(2) 尿素溶解罐设置一座不锈钢材质的尿素溶解罐,每只尿素溶解罐配1台斗提机。
将尿素输送到溶解罐。
在溶解罐中,用去除盐水制成约50%的尿素溶液。
当尿素溶液温度过低时,蒸汽加热系统启动使溶液的温度高于80℃(确保不结晶)。
材料采用SS304不锈钢。
有效容积按2台锅炉BMCR工况下1天的用量设计。
尿素溶液给料泵为不锈钢本体,碳化硅机械密封的离心泵,设两台泵一运一备,并列布置。
此外,溶液给料泵还利用溶解罐所配置的循环管道将尿素溶液进行循环,以获得更好混合。
(3) 尿素溶液储罐尿素溶液经由尿素溶液给料泵进入尿素溶液储罐。
尿素水解制氨在电厂中的应用尿素是一种含有氮的有机化合物,其水解可以产生氨气。
尿素水解制氨在电厂中应用广泛,主要体现在以下几个方面:1. 脱硝系统中的还原剂:尿素水解制氨后产生的氨气可以用作脱硝系统中的还原剂。
电厂燃煤锅炉燃烧过程中会产生大量的氮氧化物(NOx),尤其是氮氧化物对环境污染和空气质量产生非常大的影响。
脱硝系统的主要目的就是将NOx降解转化为无害的氮气。
尿素水解制氨后的氨气可以与NOx反应生成氮气和水,起到脱硝的作用。
2. 萃取剂:尿素水解制氨后产生的氨气可以用作电厂中金属离子的萃取剂。
在电厂中,很多金属离子存在于废水和废气中。
氨气可以与金属离子形成配位络合物,从而使金属离子从溶液中萃取出来。
这种方法被广泛应用于电厂废水和废气处理过程中。
3. 蒸汽发生器的氨水淋注:尿素水解制氨后的氨气可以用作蒸汽发生器的氨水淋注剂。
在电厂中,蒸汽发生器是产生蒸汽的重要设备之一。
为了提高蒸汽的质量和效率,在蒸汽发生器中进行氨水淋注可以提高蒸汽的热传导能力,增强燃烧的稳定性,延长设备的使用寿命。
4. 燃烧助剂:尿素水解制氨后产生的氨气可以用作电厂燃烧过程中的燃烧助剂。
尿素水解制氨后的氨气可以增加燃料的可燃性和热值,提高燃料的燃烧效率和燃烧稳定性。
通过在燃烧过程中加入适量的氨气,可以改善燃烧工艺,减少燃烧产生的有害气体和颗粒物的排放,降低环境污染。
尿素水解制氨在电厂中具有多种应用,包括作为脱硝系统的还原剂、萃取剂、氨水淋注剂和燃烧助剂等。
这些应用可以提高燃烧效率,降低环境污染,对电厂的高效运行和环保生产起到积极的促进作用。
尿素水解制氨在电厂中的应用随着工业化生产的发展,氨是一种重要的化工原料,在电厂中有着广泛的应用。
而尿素水解制氨是一种常用的生产氨的方法,具有效率高,成本低等优点。
本文将介绍尿素水解制氨在电厂中的应用及其优势。
尿素水解制氨是利用尿素经水解反应生成氨,并且同时生成二氧化碳的过程。
该反应式如下:(NH2)2CO + 2H2O → 2NH3 + CO2在电厂中,尿素水解制氨通常用于脱硫除尘系统中的脱硫剂再生。
脱硫剂再生是指将用过的脱硫剂再生回原料状态,以便再次使用。
电厂中的燃煤锅炉排放的烟气中含有大量的二氧化硫和灰尘,需要进行脱硫和除尘处理。
而脱硫剂再生的过程中就需要用到尿素水解制氨。
尿素水解制氨在脱硫剂再生中的工艺流程一般包括以下几个步骤:第一步:脱硫剂再生系统中的吸收液中加入尿素水解制氨装置。
吸收液是一种用于吸收烟气中的二氧化硫的溶液,通常是氧化钙和水混合而成的石灰乳。
在这一步骤中,尿素水解制氨的装置会将尿素水解成氨,并通过氨气将吸收液中的二氧化硫还原为硫化氢。
这样做的目的是将二氧化硫从气相转化为液相,以便后续的处理。
第二步:还原后的二氧化硫溶解在吸收液中形成硫代硫酸盐。
接下来通过氨气将硫代硫酸盐还原成硫化氢,并再生出尿素。
并且在此过程中产生的二氧化碳也会被吸收液吸收并转化成碳酸氢钙。
这时尿素就完成了再生,可以继续用于吸收二氧化硫。
尿素水解制氨在这个过程中的作用是很明显的。
通过尿素水解制氨,能够实现两种反应:一是将二氧化硫转化成硫代硫酸盐,从而将其从烟气中夺取出来;二是在还原硫代硫酸盐的过程中,再生出尿素,并产生氨气将硫代硫酸盐转化成硫化氢。
这样就完成了脱硫剂再生的过程。
尿素水解制氨在电厂中的应用具有以下优势:尿素水解制氨的产氨效率高。
相比于其他方法,尿素水解制氨可以在较低的温度和压力下就能够快速生成氨气,产氨效率高。
这对于需要大量氨气的电厂来说是非常重要的。
尿素水解制氨的成本低。
尿素作为原料成本低廉,而且尿素生产工艺成熟,大规模生产后成本更低。
水解尿素制氨作业是特种作业1. 任务背景水解尿素制氨作业是一种特种作业,属于化工领域中的重要工艺。
在该作业中,通过水解尿素反应来制取氨气。
氨气是一种重要的化工原料,在合成氨、合成硝酸等领域有广泛的应用。
2. 任务目标本次水解尿素制氨作业的目标是高效、安全地制取纯度较高的氨气。
为了实现这一目标,需要合理设计反应装置、控制反应条件,并采取相应的安全措施。
3. 反应原理水解尿素反应是指将尿素与水进行反应,生成氨和二氧化碳的过程。
反应方程式如下:(NH2)2CO + H2O → 2NH3 + CO2该反应是一个放热反应,在适当的温度和压力下可以高效进行。
4. 反应装置设计为了实现高效、安全地进行水解尿素制氨作业,需要设计适当的反应装置。
一般情况下,该装置包括以下几个主要部分:4.1 尿素溶液供给系统尿素溶液供给系统用于提供尿素溶液,以保证反应的持续进行。
该系统包括尿素储罐、泵、管道等设备。
4.2 反应釜反应釜是进行水解尿素反应的主要设备,一般由耐高压、耐腐蚀的材料制成。
釜内通常设置搅拌装置,以保证反应物的充分混合。
4.3 加热冷却系统加热冷却系统用于控制反应温度。
可以通过加热器和冷却器来实现对反应体系的温度控制,确保在适宜的温度下进行水解尿素反应。
4.4 气体分离装置水解尿素反应生成的氨气需要通过气体分离装置进行分离和收集。
常见的气体分离装置有吸收塔和冷凝器等。
5. 反应条件控制为了实现高效、安全地进行水解尿素制氨作业,需要合理控制反应条件。
以下几个条件对于该作业至关重要:5.1 温度控制水解尿素反应是一个放热反应,需要在适宜的温度下进行。
一般情况下,反应温度控制在150-200摄氏度之间。
5.2 压力控制反应釜内的压力也需要进行控制。
一般情况下,反应压力控制在1-3兆帕之间。
5.3 pH控制尿素溶液的pH值对于水解尿素反应也有一定影响。
一般情况下,pH值控制在7-9之间。
5.4 反应时间反应时间对于水解尿素反应的效果也有影响。
尿素热解和水解的区别性报告一、背景SCR技术中还原剂NH3的来源有3种:液氨(anhydrous Ammonia)、氨水(Aqueous Ammonia)和尿素(Urea)。
由于液氨是危险化学品,随着国家对安全的日益重视,逐渐出台一系列相关的限制措施,使得电厂在用液氨时会在审批、工期、占地等诸多方面受到越来越多的制约,投运后通过环保验收的程序也较为繁琐;氨水也因为其运行成本居高不下而受到应用的局限。
作为无危险的制氨原料,尿素具有与液氨相同的脱硝性能,是绿色肥料、无毒性,使用完全,因而没有法规限制,并且便于运输、储存和使用。
目前在国内SCR脱硝采用尿素为还原剂已经成为一种趋势,并逐渐成为主流,尤其是在一些重点区域和离居民区较近的城市电厂,已有了越来越多的应用。
二、尿素热解和水解技术简述尿素制氨工艺的原理是尿素水溶液在一定温度下发生分解,生成的气体中含二氧化碳、水蒸气和氨气。
尿素制氨工艺包括尿素水解和尿素热解。
尿素水解和尿素热解工艺由于温度压力条件不同,有着不同的化学过程。
2.1尿素水解制氨技术作为应用于脱硝目的的水解技术在1999年开始运用在国外锅炉烟气脱硝工程, 目前这样的技术主要有AOD 法、U2A 法及SafeD eNOx 法三种。
在一定的温度条件下尿素能水解生成氨和二氧化碳。
主要反应式:CO (NH2 ) 2 + H2O = 2NH3 + CO2尿素水解制氨工艺:用溶解液泵将约90℃溶解液送入尿素溶解槽, 颗粒状尿素经斗式提升机输送到尿素溶解槽,经搅拌后, 配制成浓度约40% ~ 50% (w t)的尿素溶液; 经搅拌溶解合格的尿素溶液, 温度约60℃,利用溶解液泵打入尿素溶液槽储存, 用尿素溶液泵加压至表压2. 6 MPa 送至水解换热器, 先与水解器出来温度约200℃的残液换热, 温度升至185℃左右, 然后进入尿素水解器进行分解。
尿素水解器的蒸汽加热方式分为直接加热和间接加热方式。
直接加热: 尿素水解器的操作压力为2.2MPa, 操作温度约200℃ , 水解器用隔板分为9个小室。
尿素水解制氨在电厂中的应用概述尿素水解制氨是一种常见的化学反应过程,通过将尿素与水加热反应产生氨气和二氧化碳。
在电厂中,尿素水解制氨被广泛应用于烟气脱硝系统中,用于减少烟气中的氮氧化物排放。
本文将介绍尿素水解制氨在电厂中的应用,并探讨其原理、工艺流程和优势。
原理尿素水解制氨的化学反应过程如下:(NH2)2CO + H2O → 2NH3 + CO2在这个反应过程中,尿素(化学式:(NH2)2CO)与水发生反应生成氨气(NH3)和二氧化碳(CO2)。
这个反应是一个放热反应,需要一定的温度来促进反应的进行。
在实际应用中,通常会加入催化剂来提高反应速率和转化率。
工艺流程在电厂中,尿素水解制氨主要用于烟气脱硝系统。
该系统通常由脱硝催化剂、氨水溶液喷射系统和反应器组成。
工艺流程如下:1. 尿素水解反应器:在反应器中,将尿素水溶液与水混合并加热,通过水解反应产生氨气和二氧化碳。
2. 氨水溶液喷射系统:将产生的氨气与水混合形成氨水溶液。
3. 脱硝催化剂:利用氨水溶液作为还原剂,与烟气中的氮氧化物进行反应,将其还原成氮气和水,从而实现脱硝的目的。
优势尿素水解制氨在电厂中具有以下优势:1. 高效:尿素水解制氨可以高效地将烟气中的氮氧化物转化为无害的氮气和水,从而达到脱硝的目的。
2. 环保:尿素水解制氨的反应产物主要是氨气和二氧化碳,对环境没有污染。
3. 低成本:尿素作为原料相对便宜,在硫酸铵等氨基化学品价格较高的国际市场,尤其有着显著的优势。
4. 安全性高:尿素水解制氨反应条件温和,操作简单,安全可靠。
应用示例尿素水解制氨在电厂中的应用,已经得到了广泛的推广和应用。
以下是一些具体的应用示例:1. 中国华电集团曲靖电厂:曲靖电厂在脱硝系统中采用尿素水解制氨技术,成功实现烟气脱硝,大大降低了氮氧化物排放。
2. 美国Exelon公司:Exelon公司在其多个火电厂中采用尿素水解制氨技术进行烟气脱硝,取得了良好的环保效果和经济效益。
尿素水解制氨在电厂中的应用1. 引言1.1 电厂中的氨的重要性在电厂中,氨是一种重要的化学品。
氨在电厂中的主要用途包括氮气吹扫、冷凝剂、吸附剂、脱硫剂等。
作为氨基团含量最高的碱氧化物,氨在电厂中具有很强的还原性和碱性,能够与酸性氧化物反应生成盐类,从而达到脱除硫化氢等有毒气体的目的。
氨还可以被用作燃料添加剂,在锅炉中发挥活性剂的作用,提高燃烧效率。
在现代电力工业中,氨已经成为不可或缺的重要化学品。
随着电力需求的不断增加,电厂的规模不断扩大,氨的应用范围也在不断扩大。
通过尿素水解制氨这一技术,可以更加高效地生产氨气,满足电厂燃料添加剂、脱硫剂等多种用途的需求,为电厂正常运行和环境保护提供了重要的支持。
电厂中的氨的重要性不可忽视,尿素水解制氨技术的发展对于提高电厂效率、降低排放并保护环境具有重要意义。
1.2 尿素水解制氨的原理尿素水解制氨的原理是指通过尿素水解反应,将尿素分解成氨和二氧化碳。
这是一种重要的化学反应,可在适当的条件下将尿素转化为氨气。
具体的水解反应式如下:(NH2)2CO + 2H2O → 2NH3 + CO2该反应在碱性条件下进行更为迅速,因此常常使用氢氧化钠或氢氧化钾等碱性物质作为催化剂。
在高温和高压下,反应速度也会增加。
尿素水解制氨的原理基于尿素的结构,尿素中含有两个氨基和一个羰基,当接受水分子的攻击时,将断裂成两个氨基和一个羰基,形成氨气。
通过调控反应条件和催化剂的选择,可以高效地实现尿素水解制氨的反应。
这种原理不仅在实验室中得到了广泛应用,而且在工业生产中也被广泛采用。
尿素水解制氨是一种具有高效率和环保性的氨生产方法,对于电厂等工业领域具有重要意义。
1.3 尿素水解制氨在电厂中的应用意义尿素水解制氨在电厂中的应用意义非常重大。
氨是电厂中一种重要的原料,用于脱硫和脱氮等环保设备的运行。
通过尿素水解制氨可以提供稳定的氨气来源,确保环保设备的正常运行。
尿素水解制氨可以减少对外购氨的依赖,降低成本,提高电厂的经济效益。