尿素热解技术
- 格式:doc
- 大小:86.00 KB
- 文档页数:4
尿素热解工艺流程简介:首先将尿素输送到装有除盐水的溶解罐,溶解形成50%的尿素溶液(需要外部加热,溶液温度保持在40℃以上),荣国尿素溶液给料泵输送到尿素溶液储罐。
尿素溶液经由给料泵、计量与分配装置、雾化喷嘴进入绝热分解室,在600℃,的条件下分解,生成NH3,H2O和CO2,稀释空气经加热后也进入分解室,与生成的分解产物氨气和二氧化碳混合,经充分混合后由氨喷射系统进入脱销烟道。
尿素的热解反应如下:CO( NH2)2→NH3 +HNCOHNCO+H2O→NH3 +CO2尿素热解过程中出现的问题:尿素热解工艺在使用过程中也存在一些问题。
由于采用尿素热解法,尿素热解设备和管道应注意保温,尤其是在北方地区在实际操作中如果不加伴热带(电伴热或者蒸汽伴热)在尿素输送过程中会发生结晶现象,另外尿素溶液在热解室里的停留时间太短,未分解的尿素也会在热解室的尾部形成结晶在烟气脱硝系统投运初期,在喷氨格栅管道手动阀前后段有大量的蜂窝状的沉积物,这不仅影响尿素的使用效率,而且还影响到脱硝系统运行的安全和稳定性。
稀释风的温度太低、流量大再加上系统需氨量大,尿素热解需求的热量大,所以尿素热解装置在运行过程中能耗较大尿素水解工艺流程:将尿素输送到尿素溶解罐,经搅拌器的搅拌溶解形成60%的尿素溶液,混合泵再将溶液送到尿素溶液储罐,尿素溶液经输送泵送至水解反应器,饱和蒸汽通过管束进入水解反应器,尿素溶液在150~250℃,~下发生分解反应,转化成二氧化碳和氨气,水解后的残留液体回收到系统设备中重复利用,以减少系统的热损失。
尿素水解产生的氨气和二氧化碳进入缓冲罐,再由缓冲罐输送到锅炉的喷氨系统进行脱硝。
尿素水解反应方程式:CO( NH2)2 +H2O=NH2CO2NH4NH2CO2NH4=2NH3 +CO2第一步: 尿素和水反应生成氨基甲酸铵,此反应为微放热反应,反应速度较慢。
第二步: 氨基甲酸铵分解生成氨气和二氧化碳,此反应为强吸热反应,反应迅速。
尿素热解和水解技术在锅炉烟气脱硝工程中的应用尿素热解和水解技术在锅炉烟气脱硝工程中的应用引言:锅炉烟气脱硝工程是环保领域中的重要一环,其主要目的是降低锅炉烟气排放中的氮氧化物(NOx)浓度,减少大气污染对环境和人类健康的影响。
尿素热解和水解技术作为一种现代化的脱硝方法,其应用在锅炉烟气脱硝工程中逐渐受到关注。
本文将从尿素热解和水解技术的原理、应用以及优势等方面综合评估其在锅炉烟气脱硝工程中的价值和作用。
一、尿素热解和水解技术的原理1. 尿素热解技术原理尿素热解技术是利用高温下尿素分解生成氨和氰酸酯的反应过程。
尿素经过加热后产生氨气,而氨气可以与烟气中的NOx反应生成氮气和水,从而实现脱硝的目的。
2. 尿素水解技术原理尿素水解技术是将尿素与碱性溶液反应生成氨气的过程。
水解反应一般在碱性环境中进行,并通过调节反应条件和溶液浓度来实现对NOx 的脱除。
二、尿素热解和水解技术在锅炉烟气脱硝工程中的应用1. 尿素热解技术的应用尿素热解技术因其简便、高效的特点在锅炉烟气脱硝工程中得到广泛应用。
通过在锅炉燃烧过程中注入尿素,可以有效降低烟气排放中的NOx浓度,达到减少大气污染的效果。
尿素热解技术还可以与其他脱硝技术相结合,提高脱硝效果。
2. 尿素水解技术的应用尿素水解技术是一种适用于低温、低压条件下的脱硝方法,因其操作简便、能耗低的特点受到关注。
该技术主要应用于小型锅炉和工业锅炉等烟气处理中,可以有效降低烟气排放中的NOx浓度,实现环境保护的目标。
三、尿素热解和水解技术的优势1. 高效性尿素热解和水解技术在锅炉烟气脱硝工程中具有高效的优势。
通过合理设计脱硝装置和优化工艺参数,可以实现高效的脱硝效果,使锅炉烟气排放中的NOx浓度大幅度降低。
2. 环保性尿素热解和水解技术对环境友好,其产生的副产物往往可以再利用。
在脱硝过程中,尿素经过热解或水解反应后生成的氮气、水和少量的氨气等对环境没有明显的污染。
3. 经济性尿素热解和水解技术的投资和运维成本相对较低,适用于各种规模和类型的锅炉。
1尿素热解和水解尿素热解反应方程式:CO(NH2)2(溶液) → CO(NH2)2(固) + H2O(气) (1)CO(NH2)2→ NH3+HNCO (2)HNCO+H2O → NH3+CO2(3)目前普遍认为尿素热解制氨的生成分三步实现:(1)尿素水溶液蒸发析出尿素颗粒;(2)尿素热解生成等物质的量的氨气和异氰酸HNCO;(3)异氰酸进一步水解生成等物质量的氨气和二氧化碳[1]。
尿素热解产物HNCO在气相中稳定存在,不易分解,只有在反应温度≥400 °C 时才会发生水解。
反应温度较低致使尿素热解过于复杂,中间反应产物降低了目标产物NH3的转化率,不利于尿素彻底分解。
因此提高反应温度、添加催化剂是脱硝过程中常用的提高尿素分解效率的手段。
尿素水解反应方程式:CO(NH2)2+ H2O → 2 NH3+ CO2(4)表1 尿素热解和水解技术参数对比[2]调研来看,尿素热解的反应速度最快且最安全,现场几乎没有储氨的容器,但其能耗和运行费用很高,所以较早进入中国市场,业绩较多,但用户的运行成本压力较大。
和尿素热解相比,尿素水解由于采用电厂较为丰富的蒸汽作为热源,能耗较低。
但 AOD、U2A 等国外水解技术,反应较慢需要庞大的反应器和缓冲装置,其投资和能耗较高。
催化水解的反应速度也较快,起停迅速,能耗较低,但是该技术相对来说还不是很成熟,在国内尚无应用。
尿素在热解时最终的产物是等量的氨气(NH)和异氰酸(HNCO)。
虽然HNCO能3,但是HNCO在气相下非常稳定,水解反应只有在特进一步发生水解反应生成NH3定的金属或金属氧化物下才能进行[3]。
HNCO的存在对于脱硝过程是不利的,HNCO 与NO能进行还原反应,部分NO被还原成有害的氧化亚氮;在选择性催化还原(selective catalytic reduction,SCR)过程中,HNCO先在SCR催化剂的作用后再进一步与NO发生还原反应,减少了还原反应的时间,从下快速水解成NH3而有可能降低催化效果[4, 5]。
尿素热解工作原理
尿素热解是指将尿素(H2NCONH2)在高温下分解成氨气和二氧化碳的化学反应。
它是
一种重要的化学反应,被广泛应用于化肥、燃料和聚合物工业等领域。
尿素热解的工作原
理与尿素分子的结构和化学性质密切相关,下面将对其进行详细阐述:
1.尿素分子的结构
尿素分子由两个氨基和一个甲酰基组成,化学式为H2NCONH2。
它是一种有机化合物,分子量为60.06 g/mol。
尿素的分子结构与含有双键的碳氢化合物类似,但其分子中的双
键被氧原子所代替。
2.尿素的物理性质
尿素在常温下为白色结晶体,易溶于水,但也能溶于乙醇和苯等极性溶剂。
尿素具有
的糖类甜味,而且还具有很强的吸湿性。
在300℃左右的高温下,尿素会发生热解反应。
3.尿素热解反应的机理
尿素热解反应的机理与尿素分子的结构密切相关。
当尿素被加热到一定温度时,尿素
分子中的N-C-N键断裂,形成两个氨基和一个甲酰基自由基,同时释放出一分子的水分子。
甲酰基自由基会被氧空气氧化为CO2,而氨基则被分解为氨气。
H2NCONH2 → H2O + CO2 + 2NH3
尿素热解的应用非常广泛。
在化肥工业中,尿素热解可用于生产氨、尿素和硝酸等各
种氮化合物。
在燃料领域中,尿素热解被用作SCR(选择性催化还原)技术的反应剂,用于减少柴油车辆废气中的氮氧化物排放。
此外,尿素热解反应也被应用于高分子材料的制备、生物质转化和化学分析等领域。
尿素热解和水解的区别性报告一、背景SCR技术中还原剂NH3的来源有3种:液氨(anhydrous Ammonia)、氨水(Aqueous Ammonia)和尿素(Urea)。
由于液氨是危险化学品,随着国家对安全的日益重视,逐渐出台一系列相关的限制措施,使得电厂在用液氨时会在审批、工期、占地等诸多方面受到越来越多的制约,投运后通过环保验收的程序也较为繁琐;氨水也因为其运行成本居高不下而受到应用的局限。
作为无危险的制氨原料,尿素具有与液氨相同的脱硝性能,是绿色肥料、无毒性,使用完全,因而没有法规限制,并且便于运输、储存和使用。
目前在国内SCR脱硝采用尿素为还原剂已经成为一种趋势,并逐渐成为主流,尤其是在一些重点区域和离居民区较近的城市电厂,已有了越来越多的应用。
二、尿素热解和水解技术简述尿素制氨工艺的原理是尿素水溶液在一定温度下发生分解,生成的气体中含二氧化碳、水蒸气和氨气。
尿素制氨工艺包括尿素水解和尿素热解。
尿素水解和尿素热解工艺由于温度压力条件不同,有着不同的化学过程。
2.1尿素水解制氨技术作为应用于脱硝目的的水解技术在1999年开始运用在国外锅炉烟气脱硝工程, 目前这样的技术主要有AOD 法、U2A 法及SafeD eNOx 法三种。
在一定的温度条件下尿素能水解生成氨和二氧化碳。
主要反应式:CO (NH2 ) 2 + H2O = 2NH3 + CO2尿素水解制氨工艺:用溶解液泵将约90℃溶解液送入尿素溶解槽, 颗粒状尿素经斗式提升机输送到尿素溶解槽,经搅拌后, 配制成浓度约40% ~ 50% (w t)的尿素溶液; 经搅拌溶解合格的尿素溶液, 温度约60℃,利用溶解液泵打入尿素溶液槽储存, 用尿素溶液泵加压至表压2. 6 MPa 送至水解换热器, 先与水解器出来温度约200℃的残液换热, 温度升至185℃左右, 然后进入尿素水解器进行分解。
尿素水解器的蒸汽加热方式分为直接加热和间接加热方式。
直接加热: 尿素水解器的操作压力为2.2MPa, 操作温度约200℃ , 水解器用隔板分为9个小室。
尿素热解技术在SCR系统(选择性催化还原脱硝工艺)中,利用还原剂--氨气和NOx反应来达到脱硝的目的,目前成熟的还原剂制备工艺有液氨法、氨水法、尿素水解法、尿素热解法。
采用液氨法和氨水法制备还原剂具有工艺简单、能耗低、维护方便等特点,但液氨和氨水都是有毒物质,其运输和储存都属于重大危险源,具有较大的安全风险。
使用液氨法作为还原剂时,在设计安全规范、运输线路许可、储存的安全评价及环评认证等支持性文件,并在相关管理部门进行危险化学品使用登记;采用尿素制备还原剂时,从尿素的运输、储存及最终制成还原剂都非常安全,虽然工艺相对复杂、投资运行费用相对高,但能够确保氨来源的安全可靠。
在较大城市、人口密集、和靠近饮用水源的地方,越来越多的电厂脱硝系统开始倾向于选用安全的尿素作为还原剂。
尿素热解制氨技术利用高温空气或烟气作为热源,将雾化的尿素水溶液迅速分解为氨气,低浓度的氨气作为还原剂进入烟道与烟气混合后进入SCR反应器,在催化剂的作用下将氮氧化物还原成无害的氮气和水。
尿素热解制氨系统一般包括尿素储备间、斗提机、尿素溶解罐和储罐、给料泵、尿素溶液循环传输装置、电加热器、计量分配装置、绝热分解室(内含喷射器)、控制装置等设备。
袋装尿素颗粒储存于尿素储备间,由斗提机输送到溶解罐里,用去离子水将干尿素溶解成质量浓度40%~60%的尿素溶液,通过尿素溶液给料泵输送到尿素溶液储罐。
空预器提供的热一次风通过电加热装置(或直接采用空气加热,也可使用燃油、天然气、高温蒸汽等各种热源)加热到600℃左右进入绝热分解室。
尿素溶液经由循环传输装置、计量分配装置、雾化喷嘴等以雾化状态进入绝热分解室内高温下分解,生成NH3、H2O和CO2,分解产物通过氨气喷射格栅喷入脱硝系统前端烟道。
控制装置保证还原剂的供应量满足锅炉不同负荷与脱硝效率的要求。
技术特点:使用安全的尿素,且易于运输和储存,无危险源建设、运行、管理的困扰;占地面积小,周围不需要大距离的防火安全间距;与尿素水解相比,投资与运行费用相当,但不需要压力容器,安全性更高;精确计量,调节控制容易,响应速度更快;分解完全,热解炉能将尿素溶液完全分解为还原剂;热源可根据现场实际情况选择性的组合。
尿素热解和水解的区别性报告This model paper was revised by LINDA on December 15, 2012.尿素热解和水解的区别性报告一、背景SCR技术中还原剂NH3的来源有3种:液氨(anhydrous Ammonia)、氨水(Aqueous Ammonia)和尿素(Urea)。
由于液氨是危险化学品,随着国家对安全的日益重视,逐渐出台一系列相关的限制措施,使得电厂在用液氨时会在审批、工期、占地等诸多方面受到越来越多的制约,投运后通过环保验收的程序也较为繁琐;氨水也因为其运行成本居高不下而受到应用的局限。
作为无危险的制氨原料,尿素具有与液氨相同的脱硝性能,是绿色肥料、无毒性,使用完全,因而没有法规限制,并且便于运输、储存和使用。
目前在国内SCR脱硝采用尿素为还原剂已经成为一种趋势,并逐渐成为主流,尤其是在一些重点区域和离居民区较近的城市电厂,已有了越来越多的应用。
二、尿素热解和水解技术简述尿素制氨工艺的原理是尿素水溶液在一定温度下发生分解,生成的气体中含二氧化碳、水蒸气和氨气。
尿素制氨工艺包括尿素水解和尿素热解。
尿素水解和尿素热解工艺由于温度压力条件不同,有着不同的化学过程。
尿素水解制氨技术作为应用于脱硝目的的水解技术在1999年开始运用在国外锅炉烟气脱硝工程, 目前这样的技术主要有AOD 法、U2A 法及SafeD eNOx 法三种。
在一定的温度条件下尿素能水解生成氨和二氧化碳。
主要反应式:CO (NH2 ) 2 +H2O = 2NH3 + CO2尿素水解制氨工艺:用溶解液泵将约90℃溶解液送入尿素溶解槽, 颗粒状尿素经斗式提升机输送到尿素溶解槽,经搅拌后, 配制成浓度约40% ~ 50% (w t)的尿素溶液; 经搅拌溶解合格的尿素溶液, 温度约60℃, 利用溶解液泵打入尿素溶液槽储存, 用尿素溶液泵加压至表压 2. 6 MPa 送至水解换热器, 先与水解器出来温度约200℃的残液换热, 温度升至185℃左右, 然后进入尿素水解器进行分解。
尿素热解系统原理及常见缺陷处理尿素热解系统是一种将尿素转化为氨气和二氧化碳的技术,是一种高效、低成本的处理尿素废气的方法。
尿素热解系统利用高温催化剂,将尿素在300-500℃的高温下热解,形成氨气和二氧化碳,进而净化废气,达到环保效果。
尿素热解系统的原理是通过加热将尿素分解,同时加入催化剂,催化剂能够加速尿素分解反应,将尿素转化为氨气和二氧化碳。
在热解反应过程中,氨气和二氧化碳被一起排放出去,有效地净化了废气。
然而,尿素热解系统在实际应用过程中也存在一些常见缺陷,以下是其中的几点:1、催化剂失效催化剂的化学性质和活性会随着使用时间和使用环境而逐渐发生变化,催化剂失效会导致尿素热解反应速率降低,从而影响氨气的净化效果。
针对这种情况,需要对催化剂进行定期的检测和更换,以保证尿素热解反应的高效性。
2、温度控制不准确尿素热解反应需要在一定的温度范围内进行,若温度过高,催化剂容易过热熔化;若温度过低,反应速率也会变慢。
因此,温度的控制非常关键。
针对这种情况,可以对尿素热解系统进行温度定时监测和控制,保持反应处于最优条件下,这样可以提高氨气净化效率。
3、热解产物的副反应在尿素热解反应时,氨气和二氧化碳是目标产物,但是热解反应也容易产生其他副反应产物,如一氧化碳、甲醛、丙酮等有毒有害物质,这些物质会对环境和人体健康造成危害。
针对这种情况,可以进行热解产物的监测和分析,采取相应的处理措施,有效减少有害物质的排放。
总之,尿素热解系统是一种成熟的废气处理技术,利用其高效、低成本的优势,能够有效净化废气。
针对其常见缺陷,需要加强系统监测和维护,以保障其高效、稳定地运行,保护环境,维护人体健康。
尿素制氨SCR脱硝技术
一、国内外脱硝还原剂制备现状
目前大型电厂烟气脱硝主要采用选择性催化脱硝(SCR)技术,其化学反应机理比较复杂,但主要的反应是NH3在一定的温度和催化剂作用下,选择性地把烟气中的NOx 还原为N2和水,目前最常用的还原剂制备方法一般有3 种:液氨法、氨水法、尿素法。
液氨法
采用液氨法,具有投资少,运行费用较低等优点。
但根据我国《危险化学物品名表》(GB12268-90)和《重大危险源辨识》(GB18218-2000)的有关规定,液氨在生产场所超过40t、储存场所超过100t时构成重大危险源,需报相关安全生产部门审批。
液氨的储存和制备系统在安全、消防和环保等方面需满足相关的规范,对电厂的日常运行和管理按二级重大危险源要求。
液氨储存和装卸场所应禁止设置在学校、医院、居民区等人口稠密区附近,如表1所示。
表1 液氨储存及装卸的限制区域
据统计, 我国95%以上的危险化学品涉及异地运输问题, 例如液氨的年流动量达100多万吨,,其中80%是通过公路运输的。
国内外统计表明, 危险化学品运输事故占危险化学品事故总数的30%~40%。
危险化学品公路运输事故频繁发生, 对社会公共安全造成了巨大的损失和潜在威胁。
此外,液氨具有极强的挥发性、
腐蚀性,因此,在使用及运输过程中也容易产生泄露,从而导致事故的发生。
图1 我国各种危险化学品事故发生比例
氨水法
氨水法采用浓度为20%~25%的氨水溶液作为原料。
氨水储罐中的氨水通过加热装置使其蒸发,形成氨气和水蒸汽,送至烟气系统。
采用氨水法较液氨法相对安全,但同样存在安全隐患,且与其它常用方法比较运行费用最高。
因此90年代以后国际上已经很少采用氨水作为SCR脱硝还原剂。
尿素法
热解法:国际上应用的是由美国FuelTech公司设计的NOxOUT ULTRA尿素热解制氨技术。
其技术要点为利用热空气作为热源,在450-600℃来快速分解40%-55%的尿素水溶液。
其优点为:近常压热解,操作压力低。
其缺点和容易出现的故障现象有:
1)燃油耗量大、运行费用高。
尿素热解装置在运行过程中,由于稀释风温度低、流量大,同时系统需氨量大,尿素热解吸收较大的热量,需要燃油提供的热量就越多;
2)热解炉尾部积物较快。
热解炉工作温度过高(450-600℃),在使用过程中发生由于底部尾管处尿素存积过多,导致出口风量减少,系统供氨量不够,直接造成热解炉停运清理,影响脱硝装置的可靠性。
如果热解炉内热空气的流量低或温度低,都会造成尿素溶液得不到完全热解而在尾部形成沉积。
水解法:尿素水解技术主要有AOD法、U2A法及SafeDeNOx 法三种。
主要技
术特点为外界热源加热分解左右的,185℃的尿素水溶液。
其不足主要表现为:尿素水解过程中会生成一些酸性中间体(如氨基甲酸铵等),氨基甲酸铵会严重破坏不锈钢表面的氧化膜,使系统的腐蚀速度加快,超过190℃时,一般的不锈钢材料(如304SS)会遭受严重腐蚀,当超过220℃时,即使采用钛等耐腐蚀材料,系统也会遭受腐蚀。
管道堵塞高浓度的尿素水溶液受热容易生成难溶于水的缩二脲及其他缩合物,这是造成尿素水解系统易产生堵塞的原因。
此外水解反应的不完全性导致无法预测NH3 的生成量, 因而也就无法很快地跟踪NOx 的瞬时变化, 造成要么NH3 喷多了增加氨逃逸, 要么NH3喷少了降低脱硝效率的现象。
就水解的AOD 和U2A 法来说, 使用前就必须预先制备一些NH3存放在容器中, 额外增加了一个危险源。
二、技术经济比较
表2 以一台600MW机组还原剂制备为例,进行技术经济比较:
三、山东省应用前景
尿素和液氨作为SCR还原剂各有优劣,其中液氨SCR 在建造成本、运行费用等方面均较尿素SCR低,目前工程中运用比较广泛。
但液氨作为重大危险源,在运输成本上以及在生产安全管理上对电厂的运行水平要求较高;液氨罐区要求的场地布置也较大(一般5000~6000m2),对于场地较紧张的老厂改造项目或座落于
人口较密集地区的电厂不宜采用。
而尿素相对来说安全可靠,在运输及储存等方面没有特殊要求,场地布置相对紧凑(约500m2),设备投资、能源消耗成本下降20%。
山东工业发达,人口密集,许多电厂、火电厂都附近都居住着大量居民,电厂等的脱硝工程中,还原剂的制备必须充分考虑到安全的因素,随着国家对重大危险源及产品使用的控制,液氨运输也将得到严格的控制,液氨法在脱硝工程中的应用将受到影响。
而尿素热解制氨具有高度的安全性,因此在山东省内的电厂、热电厂中具有较大的应用前景。