spss多配对样本非参数检验
- 格式:doc
- 大小:128.50 KB
- 文档页数:4
原文地址:SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)作者:王江源一、概述非参数检验对于总体分布没有要求,因而使用范围更广泛。
对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
二、问题为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。
请问该放松方法对入睡时间有无影响。
本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。
三、统计操作数据视图菜单选择打开如下的对话框该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。
点击进入“字段”选项卡。
将“放松前”、“放松后”均选入右边“检验字段”框中。
点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon 匹配样本对符号秩(二样本)”复选框。
“检验选项”可以设定显著性水平。
点击“运行”按钮,输出结果四、结果解读这就是输出结果。
原假设示放松前好放松后差值的中位数等于0,P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。
双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。
如下图。
统计第十一课:SPSS 多相关样本的非参数检验(Friedman检验)关键词:SPSS多相关样本非参数检验2015-07-14 00:00来源:互联网点击次数:5103先讲讲什么是 Friedman 检验Friedman 检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。
其原假设是:多个配对样本来自的多个总体分布无显著差异。
SPSS 将自动计算 Friedman 统计量和对应的概率 P 值。
如果概率 P 值小于给定的显著性水平 0.05,则拒绝原假设,认为各组样本的秩存在显著差异,多个配对样本来自的多个总体的分布有显著差异。
SPSS操作:多个相关样本的⾮参数检验(CochransQ检验)点击Settings→Customize tests,勾选Cochran's Q (k samples)。
点击Define Success,在Cochran's Q: Define Success对话框中,点击Combine values into success category,在Success框中填⼊1(这⾥是“成功”对应的编码,本例中即为通过体能测试,“Passed”对应的是1,所以这⾥填“1”)。
点击OK→Run,输出结果。
3.4 不符合假设4的“精确”Cochran's Q检验当不符合假设4时,需要使⽤“精确”Cochran's Q检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→K Related Samples,出现Tests for Several Related Samples对话框。
将变量initial_fitness_test、month3_fitness_test和final_fitness_test选⼊Test Variables框中。
在Test Type 下⽅去掉Friedman,然后勾选Cochran's Q。
(如果数据符合假设4,则此时点击OK,结果与3.3部分的操作结果⼀致)点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
3.5 “精确”Cochran's Q检验后的两两⽐较对于符合假设4的Cochran's Q检验(3.3部分),事后的两两⽐较将在结果解释部分展⽰(4.2部分)。
对于不符合假设4的“精确”Cochran's Q检验(3.4部分)事后的两两⽐较,可采⽤经Bonferroni法校正的多重McNemar检验。
在主界⾯点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。
课程名称实用统计软件实验项目名称多配对样本非参数检验实验成绩指导老师(签名)日期2011-12-6一.实验目的1,掌握多配对样本的非参数检验基本原理和算法;2,能够用SPSS软件解决多配对样本的非参数检验的问题。
二. 实验内容与要求1.实验内容1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度量单位为mm2):(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)2.实验要求:作业中要出现检验过程。
如本ppt第8页、第20页、第30页的表格及统计计算过程。
注意:今天的三种方法所处理的实际问题类型有所不同,需要根据具体问题选择不同的检验方法。
三.实验步骤具体操作参见课件多配对样本非参数检验.PPT(ftp://10.66.28.22:22)四. 实验结果(数据与图形)与分析1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)得到卡方统计量为9.782,W系统系数为0.466,小于1,相伴概率为0.201,大于显著性水平0.05,所以评分标准不够一致。
3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)得到卡方统计量为14.609,W系统系数为0.609,小于1,相伴概率为0.006,小于显著性水平0.05,所以皮肤疱疹大小无差异。
SPSS-⾮参数检验⾮参数检验(卡⽅(Chi-square)检验、⼆项分布(Binomial)检验、单样本K-S(Kolmogorov-Smirnov)检验、单样本变量值随机性检验(Runs Test)、两独⽴样本⾮参数检验、多独⽴样本⾮参数检验、两配对样本⾮参数检验、多配对样本⾮参数检验)参数检验:T检验、F检验等常⽤来估计或检验总体参数,统称为参数检验⾮参数检验:这种不是针对总体参数,⽽是针对总体的某些⼀般性假设(如总体分布)的统计分析⽅法称⾮参数检验1.总体分布的卡⽅(Chi-square)检验(Q统计量)定义:总体分布的卡⽅检验适⽤于配合度检验,是根据样本数据的实际频数推断总体分布与期望分布或理论分布是否有显著差异。
特点:⽐较适⽤于⼀个因素的多项分类数据分析。
总体分布的卡⽅检验的数据是实际收集到的样本数据,⽽⾮频数数据。
SPSS操作2.⼆项分布检验(Z统计量)⼆项分布:从这种⼆分类总体中抽取的所有可能结果,要么是对⽴分类中的这⼀类,要么是另⼀类,其频数分布称为⼆项分布⼆项分布检验:SPSS⼆项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的⼆项分布SPSS操作3.SPSS单样本变量值随机性检验(Z统计量)定义:单样本变量值的随机性检验是对某变量的取值出现是否随机进⾏检验,也称为游程检验(Run过程)SPSS操作4.SPSS单样本K-S检验(Z统计量)定义:单样本K-S检验是利⽤样本数据推断总体是否服从某⼀理论分布的⽅法,适⽤于探索连续型随机变量的分布形态SPSS操作5.两独⽴样本⾮参数检验定义:两独⽴样本的⾮参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来⾃的两个独⽴总体分布是否存在显著差异。
⼀般⽤来对两个独⽴样本的均数、中位数、离散趋势、偏度等进⾏差异⽐较检验。
检验⽅法:①两独⽴样本的Mann-Whitney U检验(主要检验总体均值有没有显著差异)②两独⽴样本的K-S检验③两独⽴样本的游程检验④两独⽴样本的极端反应检验SPSS操作6.多独⽴样本⾮参数检验定义:多独⽴样本⾮参数检验分析样本数据是推断样本来⾃的多个独⽴总体分布是否存在显著差异SPSS多独⽴样本⾮参数检验⼀般推断多个独⽴总体的均值或中位数是否存在显著差异检验⽅法:①多独⽴样本的中位数检验②多独⽴样本的K-W检验③多独⽴样本的Jonkheere-Terpstra检验SPSS操作7.两配对样本⾮参数检验定义:两配对样本(2 Related Samples)⾮参数检验是在对总体分布不很清楚的情况下,对样本来⾃的两相关配对总体分别进⾏检验。
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
SPSS20.0实现多个独立样本非参数检验后两两比较
SPSS---分析---非参数检验---独立样本(I)...
在出现的名为“非参数检验:两个或更多独立样本”的对话框里,点击“字段”选项卡。
在出现的画面中把要检验的变量放入右边的“检验字段(T)”文本框里,把分组变量
放入其下面的“组(G)”里。
点击“运行”按钮即可。
在输出的结果中,双击“假设检验汇总”图表,在出现的模型浏览器里的右下角的“视图”的
右边下拉菜单里,选中其中的“成对比较”,结果就会出现两两的非参数检验的比较的结果。
注:
①分组变量(G)变量类型(度量标准)需定义为“序号”或“名义”
变量;
②两两比较方法:Mann-Whitney U检验?。
SPSS操作:多个独立样本的非参数检验及两两比较一、问题与数据某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。
因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。
利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。
部分数据如下图。
二、对问题的分析研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。
Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作1. Kruskal-Wallis H检验在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare Median Difference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。
Spss的两样本非参数检验一、实验目的1.理解两独立样本非参数检验方法的设计思想,重点掌握曼—惠特尼U检验和kruskal-wallis及钠盐的基本原理及适用的场合,熟练掌握spss独立样本的数据组织方式和具体操作。
2.理解两配对样本非参数检验方法的设计思想,重点掌握wilcoxon符号秩检验和friedman 检验的基本原理及适用场合,熟练掌握spss配对样本的数据组织方式和具体操作。
二、实验内容1.超市中有A,B两种品牌的袋装白糖,标重均为400克。
分别对两种袋装白糖进行随机请选择适合的非参数检验方法,分析这两种品牌的袋装白糖的实际重量是否存在显著差异。
2.为研究喝酒是否显著增加驾驶员在应急情况下的刹车反应时间,随机测试了10名驾驶选择恰当的非参数检验方法对上述问题进行分析。
三、实验步骤及结果分析实验一:1.实验步骤●将数据输入spss软件环境中,建立两个变量一个是实际重量,另一个是分组标志。
然后对实际重量进行升序操作。
如:选择要排序的变量,右击鼠标,然后点击sort ascending 即可。
●对数据进行两独立样本的非参数检验;操作如下:analyze→nonparametric tests→2independent sample,打开2 independent sample tests对话框。
●在2 independent sample tests对话框中,将左侧“实际重量”变量选到右侧testvariable list中,将“分组标志”变量选到grouping variable中,点击define grouping 进入对话框,在group 1中填1,group 2中填2,点击continue完成分组定义。
●在test type框中,选择mann-whitney U和kolmogorov-smirnov Z;点击OK完成两独立样本检验。
2.实验结果及分析方法一:Mann-Whitney Test结果分析:在上面两个表格可知,A品牌及B品牌的样本量都是12个,两个秩和分别为95.5和204.5;W统计量取了A品牌的秩和95.5;U,Z统计量分别为17.5和-3.148。
spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。
还是以SPSS教程为例:假设:HO: 不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900自由度为:3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为 kw 那么:其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为:3.6*5=18接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003,由于0.003<0.01 所以得出结论:H1:不同地区的儿童,身高分布是不同的秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。
课程名称实用统计软件
实验项目名称多配对样本非参数检验
实验成绩指导老师(签名)日期2011-12-6
一.实验目的
1,掌握多配对样本的非参数检验基本原理和算法;
2,能够用SPSS软件解决多配对样本的非参数检验的问题。
二. 实验内容与要求
1.实验内容
1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)
3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度量单位为mm2):
(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)
2.实验要求:
作业中要出现检验过程。
如本ppt第8页、第20页、第30页的表格及统计计算过程。
注意:今天的三种方法所处理的实际问题类型有所不同,需要根据具体问题选择不同的检验方法。
三.实验步骤
具体操作参见课件多配对样本非参数检验.PPT(ftp://10.66.28.22:22)
四. 实验结果(数据与图形)与分析
1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)
得到卡方统计量为9.782,W系统系数为0.466,小于1,相伴概率为0.201,大于显著性水平0.05,所以评分标准不够一致。
3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度
(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)
得到卡方统计量为14.609,W系统系数为0.609,小于1,相伴概率为0.006,小于显著性水平0.05,所以皮肤疱疹大小无差异。