薄膜干涉原理
- 格式:doc
- 大小:54.00 KB
- 文档页数:3
薄膜干涉公式推导原理薄膜干涉是一种光学现象,它是由于光线通过一个非常薄的膜时,由于光线的干涉而产生的颜色变异。
薄膜干涉公式是计算出这种干涉的方法之一,也是理解薄膜干涉的基础。
薄膜由于其极薄的厚度和透明性,可以把光线进行反射、透射和折射,从而引起干涉现象。
当光线经过两个介质的分界面时,会发生反射和折射。
光线与薄膜相交时,会发生多次反射和透射,甚至还会形成多次反射和透射的干涉。
根据薄膜原理,光线从薄膜表面反射后,与透射光线相遇,因而形成干涉,产生波动干涉的现象。
那么薄膜干涉公式如何推导呢?假设一个平行光束入射一块平行的亚克力薄膜,并且从薄膜的两面均反射一次,这个过程中,光束在薄膜内产生波动干涉。
我们可以用傅利叶光学的方法将反射和透射波分解为振幅和相位的函数。
光波在经过全反射时会受到反射系数r的损失,而透射波不受反射系数损失,但是它在传播的过程中会受到相位延迟,因为它必须穿过薄膜两次。
在干涉光学中,我们假设光的相位是连续递增的。
在实际计算过程中,我们往往使用两条光线之间的相位差来计算薄膜干涉的影响。
在理想情况下,这个相位差可以表示为:Δφ = 2π(2d/nλ)(cosθ−cosθi)其中,d是膜的厚度,n是膜的折射率,λ是入射光波长,θ是出射角,θi是入射角。
这个公式展示了光波在薄膜中反射和透射的过程,从而导致干涉的发生。
这个公式可以帮助我们计算薄膜的干涉效果,并进一步使我们理解波动光学的原理和应用。
综上所述,薄膜干涉公式的推导涉及多种基本的光学原理,它解释了光线在薄膜内部反射和透射的过程,由此产生的干涉效果。
这个公式展示了理论和实际操作上的重要性和实用性,对我们理解和应用光学技术有重要指导意义。
第1篇一、实验目的1. 理解薄膜干涉的基本原理和现象。
2. 通过实验观察薄膜干涉条纹,分析薄膜的厚度和折射率。
3. 掌握使用薄膜干涉现象测量薄膜厚度和折射率的方法。
4. 了解薄膜干涉在光学器件中的应用。
二、实验原理薄膜干涉是指当光波照射到透明薄膜上时,从薄膜的前后表面分别反射的光波发生干涉,形成明暗相间的干涉条纹。
这种现象与薄膜的厚度、折射率和入射光的波长有关。
根据薄膜干涉的原理,当光波从光疏介质(如空气)进入光密介质(如薄膜)时,会发生部分反射和部分折射。
从薄膜的前表面反射的光波与从薄膜的后表面反射的光波之间会产生光程差,这个光程差与薄膜的厚度和折射率有关。
当光程差为波长的整数倍时,两束反射光波发生相长干涉,形成明条纹;当光程差为半波长的奇数倍时,两束反射光波发生相消干涉,形成暗条纹。
因此,通过观察干涉条纹的分布,可以计算出薄膜的厚度和折射率。
三、实验仪器与材料1. 薄膜干涉实验装置(包括光源、薄膜样品、显微镜等)。
2. 精密测量工具(如游标卡尺、读数显微镜等)。
3. 记录本和笔。
四、实验步骤1. 将薄膜样品放置在实验装置中,确保光源垂直照射到薄膜上。
2. 观察显微镜下的干涉条纹,调整薄膜样品的位置,使干涉条纹清晰可见。
3. 使用游标卡尺测量薄膜样品的厚度。
4. 通过显微镜观察干涉条纹,记录明暗条纹的位置。
5. 根据干涉条纹的位置和薄膜的厚度,计算薄膜的折射率。
五、实验结果与分析1. 通过实验观察,成功观察到了明暗相间的干涉条纹。
2. 使用游标卡尺测量薄膜样品的厚度,得到厚度为d。
3. 通过显微镜记录明暗条纹的位置,计算光程差ΔL。
4. 根据公式ΔL = 2nd,计算出薄膜的折射率n。
六、讨论与结论1. 实验结果表明,薄膜干涉现象确实存在,且与薄膜的厚度和折射率有关。
2. 通过实验,成功测量了薄膜的厚度和折射率,验证了薄膜干涉原理的正确性。
3. 薄膜干涉在光学器件中具有广泛的应用,如增透膜、滤光膜、偏振膜等。
薄膜干涉原理
薄膜干涉原理是一种基于光的波动性质的现象。
当光线穿过一个薄膜时,由于光的波动性质,光波会分成两部分,分别经过薄膜的上下表面,并在后续的叠加过程中产生干涉现象。
这种干涉现象是由于光波在不同介质中传播速度不同而引起的。
当光波由空气射入到薄膜中时,由于光速在薄膜中的折射率不同,光波的传播速度发生改变,从而产生了相位差。
根据薄膜的厚度和折射率,光波在薄膜内部的传播路径和相位差会发生变化。
当两个传播路径相遇时,它们会发生干涉现象。
如果两个光波之间的相位差为整数倍的波长,就会出现增强的干涉条纹,也称为增强干涉,而当相位差为半波长的奇数倍时,则会出现减弱的干涉条纹,也称为消除干涉。
根据薄膜的性质,薄膜干涉现象可以用于测量光的波长、厚度以及透明度等物理参数。
例如,利用薄膜干涉现象可以制作偏振镜、干涉滤光片、反射镀膜等光学器件。
此外,薄膜干涉还常用于表面质量检测、光学信号传输等领域。
在实际应用中,为了增加干涉效果,常常使用多层薄膜叠加的方法。
通过调节每层薄膜的厚度和折射率,可以实现对光的不同波长的选择性透射或反射。
这种叠加的多层薄膜结构可以用于制作彩色滤光片、干涉式显示器、激光器等光学器件。
总之,薄膜干涉原理是一种基于光的波动性质的现象,通过控
制薄膜的性质和排列方式,可以实现对光波的干涉效果,从而应用于光学器件和光学测量中。
薄膜干涉的原理及应用薄膜干涉是指光线在两个平行的透明介质界面之间传播时发生的干涉现象。
薄膜干涉的原理主要有两种,一种是取决于光线经过薄膜时的反射和折射,另一种是取决于薄膜上存在的厚度变化。
首先,光线经过薄膜时的反射和折射产生干涉是薄膜干涉的一种原理。
当入射光线照射到薄膜上时,一部分光线被薄膜上的介质反射,一部分光线经过薄膜后折射出去。
由于折射率的差异,光线的相位发生变化,产生了干涉现象。
根据不同的入射角度和薄膜的厚度,干涉的结果有时是增强,有时是消减。
也就是说,入射光线经过薄膜干涉后,会出现明暗相间的干涉条纹。
其次,薄膜上存在的厚度变化也会导致光线的干涉现象。
当薄膜具有不均匀的厚度分布时,入射光线在不同位置的薄膜上经过不同的光程,从而产生干涉现象。
这种干涉称为厚度干涉,通过观察干涉条纹的形态可以获取薄膜的厚度信息。
薄膜干涉具有许多应用。
以下是几个常见的应用:1.薄膜干涉可以用于制造薄膜光学器件,如光学镀膜和光学滤光片。
通过选择适当的薄膜材料和调节厚度,可以实现对特定波长光的反射或透射。
这些器件在摄影、显示器、激光技术等领域中得到了广泛应用。
2.薄膜干涉在非破坏性测试技术中起着重要作用。
通过测量干涉条纹的变化,可以获取材料的厚度、表面形貌、应力等信息,从而判断材料的质量和性能。
3.薄膜干涉还可以用于生物医学领域的光学显微镜。
通过将样本置于薄膜上,当入射光通过样本和薄膜时,会发生干涉现象。
通过观察干涉条纹的形态和变化,可以获得有关样本的信息,如细胞的形态、结构和运动等。
4.薄膜干涉还可以应用于材料的质量控制和检测。
通过测量干涉条纹的变化,可以判断材料的化学成分、密度、厚度等,从而实现对材料质量的检测和控制。
总之,薄膜干涉是光学中一种重要的现象,其原理包括光线的反射和折射产生的干涉以及薄膜的厚度变化引起的干涉。
薄膜干涉具有广泛的应用,包括光学器件制造、非破坏性测试、生物医学等领域。
通过利用薄膜干涉的原理,可以实现对材料性能和质量的检测和控制。
1. 了解薄膜干涉现象的产生原理;2. 观察和分析薄膜干涉条纹的特点;3. 学习利用薄膜干涉现象进行相关物理量的测量。
二、实验原理薄膜干涉是光在薄膜两表面反射后,反射光相互干涉形成的现象。
当一束单色光垂直照射到薄膜上时,部分光在薄膜的上表面反射,部分光进入薄膜并在下表面反射,然后两束反射光在薄膜的上表面附近发生干涉。
根据光程差的不同,干涉条纹呈现出明暗相间的特征。
三、实验仪器与材料1. 实验仪器:牛顿环仪、钠光灯、光学显微镜、白纸、直尺、铅笔等;2. 实验材料:平凸透镜、光学玻璃平板、肥皂膜等。
四、实验步骤1. 将牛顿环仪安装在实验台上,调整仪器使其稳定;2. 用钠光灯作为光源,调节光源与牛顿环仪的距离,使光线垂直照射到平凸透镜的凸面上;3. 观察平凸透镜与光学玻璃平板之间的肥皂膜,用显微镜观察肥皂膜的干涉条纹;4. 用直尺测量干涉条纹的间距,记录数据;5. 改变光源与牛顿环仪的距离,观察干涉条纹的变化,记录数据;6. 比较不同厚度肥皂膜的干涉条纹,分析薄膜干涉现象的特点。
五、实验结果与分析1. 观察到肥皂膜上出现明暗相间的干涉条纹,且条纹间距随着肥皂膜厚度的增加而增大;2. 当光源与牛顿环仪的距离增大时,干涉条纹的间距也随之增大;3. 通过测量干涉条纹的间距,可以计算出肥皂膜的厚度。
1. 薄膜干涉现象的产生是由于光在薄膜两表面反射后,反射光相互干涉形成的;2. 薄膜干涉条纹的特点是明暗相间,且条纹间距与肥皂膜的厚度有关;3. 通过测量干涉条纹的间距,可以计算出肥皂膜的厚度。
七、实验注意事项1. 实验过程中,注意保持牛顿环仪的稳定性,避免仪器晃动影响实验结果;2. 调整光源与牛顿环仪的距离时,要缓慢进行,以免干涉条纹发生较大变化;3. 观察肥皂膜时,要调整显微镜的焦距,使干涉条纹清晰可见;4. 记录实验数据时,要准确无误,避免因误差导致实验结果不准确。
八、实验总结本次薄膜干涉演示实验,使我们了解了薄膜干涉现象的产生原理和特点,学会了利用干涉条纹进行相关物理量的测量。
薄膜的干涉的原理及应用一、薄膜干涉的基本概念薄膜干涉是指光波在经过透明薄膜时发生的干涉现象。
薄膜是一种在物体表面上有一定厚度的透明材料层。
当光波通过薄膜时,部分光波会被反射,而部分光波会被折射。
这两部分光波在空间中叠加形成干涉。
薄膜干涉现象是由于光的波动性和光在不同介质中传播速度不同的性质所引起的。
主要的原理是反射干涉和折射干涉。
二、薄膜干涉的原理2.1 反射干涉当一束光波垂直入射到薄膜上时,部分光波被反射,部分光波被折射。
反射光波和折射光波之间会发生干涉现象,形成反射干涉。
反射干涉的原理可以用光程差来解释。
光程差是指光波从光源到达观察者的路径长度差。
当反射的两束光波的光程差是波长的整数倍时,它们会相干叠加,形成明暗相间的干涉条纹。
2.2 折射干涉当光波从一个折射率较高的介质进入到一个折射率较低的介质中时,光波会发生折射。
在这个过程中,反射和透射的光波之间也会发生干涉。
折射干涉的原理与反射干涉类似,都是由光程差引起的。
当折射的两束光波的光程差是波长的整数倍时,它们会相干叠加,形成干涉条纹。
三、薄膜干涉的应用薄膜干涉在许多领域中有着广泛的应用,下面列举了几个主要的应用:3.1 光学镀膜薄膜干涉在光学镀膜中有着重要的应用。
通过在光学元件的表面上镀上特定的薄膜,可以改变光学元件的反射和透射特性。
利用薄膜的干涉效应,可以实现对特定波长的光的反射和透射的选择性增强或减弱,从而改善光学元件的性能。
3.2 惠斯托克森干涉仪惠斯托克森干涉仪是一种基于薄膜干涉原理的光学仪器。
它由两个平行的透明薄膜组成,在光路中产生干涉现象。
通过观察干涉条纹的变化,可以测量物体的形状、厚度和折射率等参数。
3.3 光学薄膜滤波器光学薄膜滤波器利用薄膜干涉的原理,可以选择性地透过或反射特定波长的光。
这种滤波器在光学传感器、摄像机、光学仪器等领域中广泛应用,用于分离和选择特定的光谱成分。
3.4 光膜干涉显示技术光膜干涉显示技术利用薄膜的干涉效应,在显示屏上产生出明亮、清晰的图像。
薄膜干涉和半波损失
薄膜干涉是一种物理现象,它可以改变光线的路径和颜色,从而
用于光学技术,如无损检查、光学测定和光学探测系统中。
薄膜干涉
是由平行光线在空气中传播的过程的一种变现,它也可以用来分离光
线的晶体,如水晶。
这种变现有时也被称为拉普拉斯干涉或偏振干涉。
薄膜干涉的工作原理主要是在光的衍射过程中。
当光穿过几层薄
膜之间的环境时,它将受到不同的衍射,然后,这些衍射的照射效果
使得光线的相位发生变化。
此外,这些薄膜衍射和折射之间发生了交
叉结构,从而影响了光线的波长和方向。
这就是半波损失的主要原因,因此,光线会以所示的140度的角度反射,而不是预期的90度。
薄膜干涉主要用于传感,分离和分析,以及光纤传输。
它可以用
于生物分析,样品表面检查或线性和非线性光学元件的测量。
同时,
它也可以用于实现图像传感和显示。
总之,薄膜干涉是一种物理现象,它是由光穿过不同环境时受到
衍射和折射等效果所致,可以用于传感,分离和分析,以及光纤传输
等应用。
然而,它也会导致半波损失,从而影响光线的波长和方向。
高中物理知识点:解决薄膜干涉-光学验平问题(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!高中物理知识点:解决薄膜干涉-光学验平问题一、薄膜干涉原理在教资考试当中,选择题部分经常会出现光的干涉的问题,其中,光的干涉经常考查的内容有杨氏双缝干涉实验以及薄膜干涉问题,我们今天就来主要讨论薄膜干涉当中的光学验平问题。
薄膜干涉原理肥皂泡薄膜干涉是一种光的干涉现象,通过薄膜中的光线之间的干涉来产生彩色的干涉图案。
肥皂泡中的薄膜就是典型的应用薄膜干涉原理的实例。
肥皂泡是由肥皂水和空气形成的薄膜形状的泡状物体。
当光线经过肥皂泡的薄膜时,会发生反射和折射现象。
根据薄膜干涉原理,当光线从一个介质进入另一个介质时,光线会发生折射,并且在两个介质的边界上会发生反射。
这两个反射光线之间以及折射光线与薄膜表面之间的干涉将会产生干涉图案。
肥皂泡中的薄膜由一个上下两个表面组成,光线在进入和离开薄膜的过程中会反射和折射两次。
当光线进入泡壁的薄膜表面时,一部分光线将会被这个表面反射回来,而另一部分光线会进入泡壁内部的液体中,并在液体中发生折射。
折射光线会继续经过薄膜的另一个表面,然后再次进入空气中。
当光线经过两次反射或折射后重新相遇,就会发生干涉。
干涉的结果是光线的波峰与波谷之间的相位差会发生变化。
这种相位差取决于入射光线的入射角度、波长和薄膜的厚度。
如果入射光线的相位差达到一定条件,就会出现干涉增强或干涉消失的现象。
这种干涉现象导致了薄膜干涉产生的彩色图案。
当光线从空气进入肥皂泡的薄膜时,部分光线被反射回来,形成逆相干涉。
而另一部分光线进入薄膜内部,然后再次反射回来与已反射的光线相干涉,形成同相干涉。
这两部分干涉光线会产生光的干涉图案。
根据薄膜干涉原理,不同波长的光会发生不同程度的干涉。
波长较长的红光在薄膜上干涉得较好,波长较短的蓝光干涉效果较差。
因此,在肥皂泡中,会出现类似于彩虹一样的彩色干涉图案。
在肥皂泡中,由于泡壁的薄膜厚度是不均匀的,不同位置的薄膜厚度不同,因此形成了不同厚度的薄膜区域。
在这些区域上,会分布有不同波长的光的干涉。
在整个肥皂泡中,由于不同位置泡壁的薄膜厚度不同,会产生一系列不同波长的光的干涉图案,形成彩色的干涉效果。
这就是为什么我们在看肥皂泡时会看到彩虹一样的光线颜色。
总之,肥皂泡中的薄膜干涉是由光线的反射和折射引起的干涉现象。
薄膜干涉的原理与应用1. 原理薄膜干涉是一种光学现象,产生于两个介质之间的薄膜。
薄膜的厚度一般在几个波长的范围内,因此光线在通过薄膜时会发生干涉,导致光的干涉条纹的出现。
薄膜干涉的原理可以通过以下几个方面来解释:1.反射光干涉:当光线从一个介质进入另一个介质时,会发生一定程度的反射。
如果两个反射光线的相位存在差异,它们在重叠的区域内会发生干涉。
2.折射光干涉:当光线从一个介质进入另一个折射率不同的介质时,会发生折射。
如果两个折射光线的相位存在差异,它们在重叠的区域内会发生干涉。
3.波长选择性:薄膜的厚度和折射率会决定光线的传播路径和相位差的大小。
当光线的波长符合特定条件时,会产生特定的干涉效应。
薄膜干涉的原理可以通过光的波动性和传播性来解释。
干涉效应的产生需要满足相位差为整数倍波长的条件,这样才能形成明暗相间的干涉条纹。
2. 应用薄膜干涉在许多领域都有广泛的应用。
以下列举了一些常见的应用:1.光学涂层:薄膜干涉被广泛应用于光学涂层领域。
通过在光学元件的表面上添加特定厚度的薄膜,可以实现对特定波长的光线进行选择性反射或透射。
这种涂层技术可以用于镜片、滤光片、激光器等光学元件中,以实现特定的光学性能。
2.光学薄膜传感器:薄膜干涉可以被用于制作高灵敏度的光学传感器。
通过控制薄膜的厚度和折射率,可以使传感器对特定物理或化学量的变化非常敏感。
这种传感器可以应用于气体浓度检测、压力传感、湿度测量等领域。
3.反光膜:薄膜干涉也可以用于制作反光膜,将入射光线的大部分反射回去,从而提高能量利用效率。
反光膜广泛应用于太阳能电池、照明设备和光学镜头等领域,以提高光的利用效率。
4.光学干涉滤波器:薄膜干涉滤波器可以选择性地透过特定波长的光线。
这种滤波器可以用于光谱分析、光学通信和光学监测等领域。
5.薄膜干涉在光学相干层析成像(OCT)中的应用也非常重要。
OCT是一种无创的、高分辨率的影像技术,可以用于检测眼科疾病、皮肤病变和心血管疾病等。
薄膜干涉原理薄膜干涉是一种光学现象,它基于光在薄膜中的多次反射和折射所产生的干涉效应。
薄膜干涉现象在日常生活和科学研究中都有广泛应用,例如用于制造彩色反射膜的薄膜涂层、光学仪器的镀膜、光学透镜和反射镜等领域。
本文将介绍薄膜干涉的基本原理以及一些相关的应用。
一、薄膜干涉的基本原理薄膜干涉的基本原理可以用两个光波的相长干涉来解释。
当光波通过一个薄膜时,由于薄膜的存在,光波将发生反射和折射。
在薄膜的两个表面之间形成的空气膜就是一个典型的薄膜系统。
当光波从空气射入薄膜时,一部分光会发生反射,一部分光会进入薄膜中。
这两束光同时存在于薄膜内部,而在薄膜内部的光波会继续反射和折射。
这样,光波将经过多次反射和折射,并在薄膜内部形成一系列的相长和相消干涉。
当光波从薄膜射出时,再次发生一部分反射和折射,最终形成干涉图案。
这些干涉图案通常表现为彩色的条纹,被称为干涉条纹。
干涉条纹的颜色和形状是由光波的频率、薄膜的厚度以及薄膜材料的折射率决定的。
二、薄膜干涉的应用薄膜干涉现象在许多领域都有应用,下面将介绍其中的一些典型应用。
1. 反射膜和镀膜:在光学仪器和光学设备中,薄膜干涉常用于制造反射膜和镀膜。
通过在物体表面镀上薄膜,可以使光在物体表面产生干涉现象,从而实现对光的反射和透射的调控。
这样的反射膜和镀膜可以被广泛应用于镜片、镜头、投影仪和光纤器件等光学设备中。
2. 彩色薄膜:薄膜干涉现象也是制造彩色薄膜的基本原理。
彩色薄膜是通过在透明材料表面基于特定的几何形状布置多层薄膜来产生干涉现象。
不同的几何形状和薄膜厚度会导致不同颜色的干涉条纹,从而实现对光的颜色调控。
彩色薄膜在电子产品、玻璃制品和装饰品等领域中有着广泛的应用。
3. 暗腾腾的薄膜:薄膜干涉现象在“暗腾腾的薄膜”(Thin-film optics)中也得到了广泛的研究和应用。
通过在特定的条件下选择薄膜材料、薄膜厚度和光波的入射角度,可以实现针对特定波长的光的完全反射。
一、实验目的1. 理解薄膜干涉的原理,观察薄膜干涉现象。
2. 学习利用薄膜干涉现象测量薄膜厚度。
3. 了解薄膜干涉在生产实践中的应用。
二、实验原理薄膜干涉是指当光波入射到薄膜时,由于薄膜的上下表面反射,两束反射光发生干涉,形成干涉条纹。
根据薄膜厚度的不同,干涉条纹的间距也会发生变化。
实验中常用的薄膜干涉现象包括等厚干涉和等倾干涉。
1. 等厚干涉:当薄膜厚度均匀时,干涉条纹的间距相等,称为等厚干涉。
例如,牛顿环实验中,平凸透镜与平板之间的空气层形成等厚干涉,产生明暗相间的圆环状干涉条纹。
2. 等倾干涉:当薄膜厚度不均匀时,干涉条纹的间距不等,称为等倾干涉。
例如,肥皂膜实验中,肥皂膜表面形成的薄膜厚度不均匀,产生彩色干涉条纹。
三、实验仪器1. 牛顿环实验装置:包括平凸透镜、平板、读数显微镜等。
2. 肥皂膜实验装置:包括透明玻璃板、喷水器、光源等。
四、实验步骤1. 牛顿环实验(1)将平凸透镜放在平板上,调整使其与平板接触。
(2)用读数显微镜观察牛顿环干涉条纹。
(3)记录干涉条纹的直径,计算薄膜厚度。
2. 肥皂膜实验(1)将透明玻璃板放在光源前,用喷水器喷水形成肥皂膜。
(2)用光源照射肥皂膜,观察彩色干涉条纹。
(3)记录干涉条纹的位置,计算薄膜厚度。
五、实验结果与分析1. 牛顿环实验通过实验,观察到牛顿环干涉条纹为明暗相间的圆环状,条纹间距随着直径的增加而增大。
根据干涉条纹的直径,计算出薄膜厚度为0.0015mm。
2. 肥皂膜实验通过实验,观察到肥皂膜表面形成彩色干涉条纹。
根据干涉条纹的位置,计算出薄膜厚度为0.002mm。
六、实验结论1. 薄膜干涉现象是由于光波在薄膜上下表面反射后发生干涉而产生的。
2. 利用薄膜干涉现象可以测量薄膜厚度。
3. 薄膜干涉在生产实践中有着广泛的应用,如光学元件的检测、光学仪器的校准等。
七、实验注意事项1. 实验过程中,注意保持实验环境的清洁,避免灰尘干扰干涉条纹的观察。
2. 牛顿环实验中,注意调整平凸透镜与平板的接触,确保接触良好。
光学薄膜及其应用
目录
一、引言
二、什么是光学薄
膜?
三、光学薄膜干涉
原理
四、光学薄膜的应
用
五、薄膜的制备
六、应用于望远镜
的光学薄膜分
析第三版光学薄膜干涉原理
光是一种电磁波。
可以设想光源中的分子或原子被某种原因激励而振动,这种振动导致分子或原子中的电磁场发生电磁振动。
可以证明,电场强度与磁场强度两者有单一的对应关系,同时在大多光学现象中电场强度起主导作用,所以我们通常将电场振动称为光振动,这种振动沿空间方向传播出去就形成了电磁波。
电磁波的波长λ、频率f、传播速度v三者之间的关系为:
v=λ•f
各种频率的电磁波在真空中的速度都是一样的,即3.0E+8m/s,常用C 表示。
但是在不同介质中,传播速率是不一样的。
假设某种频率的电磁波在某一介质中的传播速度为v,则C与v的比值称为这种介质对这种频率电磁波的折射率。
频率不同的电磁波,它们的波长也不同。
波长在
400~760nm这样一段电磁波能引起人们的视觉,称为可见光。
普通光源如太阳、白炽灯等内部大量振动中的分子或原子彼此独立,各自有自己的振动方向、振幅及发光的起始时间。
每个原子每一次振动所发出的光波只有短短的一列,持续时间约为1.0E-8秒。
我们通常观察到的光都是光源内大量分子或原子振动辐射出来的结果,而观察不到其作为一种波动在传播过程中所能表现出来的特征———干涉、衍射和偏振等现象。
这是因为实现光的干涉是需要条件的,即只有频率相同、相位差恒定、振动方向一致的两列光波才是相干光波,这样的两列波辐射到同一点上,彼此叠加,产生稳定的干涉抵消(产生暗影)或者干涉加强(产生比两束光能简单相加更强的光斑)图像,才是我们观察到的光的干涉现象。
光学薄膜可以满足光干涉的这些条件。
如图1所示,它表示一层镀在基底(n2)上的折射率为n1厚度为d1的薄膜,假定n1<n2,n0为入射介质的折射率。
入射光束I中某一频率的波列W在薄膜的界面1上反射形成反射光波W1,透过界面的光波穿过薄1膜在界面2上反射后再次穿过薄膜,透过界面1在反射空间形成反射波W2。
W1和W2是从同一波段中分离出来的,所以频率相同,振动方向相同,所不同的是W2比W1多走了往返两次薄膜厚度的路径,从而造成了它们的相位差。
入射光I中相同频率的其他波列同样也有着相同的相位差。
对于入射光中其它频率的光也有着类似的讨论。
所以在薄膜的界面1与界面2上形成的两束反射光I1与I2是相干光,在它们相遇区域中会产生光的干涉现象。
如果我们忽略光在薄膜内的多次反射,只考虑这两束光的干涉,那么W1和W2所经过的路径之差是薄膜厚度(d1)的两位。
当薄膜的折射率n1与厚度d1的乘积(n1d1称为光学厚度)是某一参考光波波长的四分之一时,两束光的光程差是二分之一波长(2n1d1=2×λ/4=λ/2),即相位差为π(2σ1=2×(2π/λ)n1d1=π)。
我们将这时的两束反射光波示意地画在图2中,可以观察到此时的干涉是相消干涉。
如果我们选择薄膜的折射率等于基底折射率的平方根,即n1=n2(1/2),那么两束反射光的振幅相等,两束光完全相消。
由于反射光的强度是反射振幅的平方,所以合成的反射光强度为零,也就是完全消除了表面的反射光。
对于不是参考波长的其他波长,两束反射光的光程差不再是二分之一波长,所以就不会观察到这种完全相消的效果,会有不同程度的剩余反射。
由于这种薄膜具有减少光学表面反射率的作用,所以我们常称之为减反射膜。
将多种不同折射率、不同厚度的薄膜组合在一起,就形成一个比上面单层膜更为复杂的分层结构的多层膜系,膜系的合理组合会使光在其上面反射、透射、偏振等特征发生变化。
通过现代计算机技术可以方便地计算各种光学薄膜的各种性能,或者根据人们的需求设计出满足要求的膜系来。
现代复杂光学薄膜的膜系结构可能多达几百层。