2.4 差分方程的相容性、收敛性和稳定性
- 格式:ppt
- 大小:1.31 MB
- 文档页数:23
第三章 有限差分法函数()f x ,x 为定义在区间[]a b ,上的连续变 量。
将区间[]a b ,等分成n 份,令()h b an =-称为 步长,x 在这些离散点处的取值为x a ih i =+ ()i n =01,,,Λ称为节点。
函数()f x 在这些节点处的差值()()()()()()f x h f x f x f x h f x h f x h i i i i i i +---+--⎧⎨⎪⎩⎪ (5-1) 分别称为一阶向前、向后和中心差分,可以用它 们作为函数()f x 在x i 处的微分近似值。
这些差分 与相应x 区间的比值()()[]()()[]()()[]1112h f x h f x h f x f x h h f x h f x h i i i i i i +---+--⎧⎨⎪⎪⎪⎩⎪⎪⎪ (5-2) 分别称为一阶向前、向后和中心差商,可以用它 们作为函数()f x 在x i 处的导数近似值。
完全类似 地可以定义高阶差商,例如常用的二阶中心差商()()()[]122hf x h f x f x h i i i +-+- (5-3) 可以作为函数()f x 在x i 处的二阶导数近似值。
§3.1 常微分方程初值问题的差分解法考虑电学中的一个问题:如图5-1。
研究 电容器上的电荷随时间的变化规律。
图5-1 RC 放电回路这个问题对应的微分方程及其定解条件为:d d Q tQ RC Q Q t =-=⎧⎨⎪⎩⎪=00(5-4) 这是一阶微分方程的初值问题,它的解析解为 Q Q e t RC =-0 (5-5)一、欧拉(Euler )折线法求解下列普遍形式的一阶微分方程的初值 问题:()[]()'=∈=⎧⎨⎪⎩⎪y f x y x a b y a y ,,0(5-6) 首先,将区间[]a b ,等分n 份,取值a x x xb n =<<<=01Λ,步长h x x i i =-+1。
稳定性与收敛性分析方法稳定性和收敛性是科学研究中非常重要的概念和指标,用于评估一个系统、方法或算法的可行性和有效性。
在各个领域,包括数学、物理学、工程学等,稳定性和收敛性分析方法都起着关键的作用。
本文将介绍稳定性和收敛性的概念,并重点讨论在数值计算中常用的分析方法。
一、稳定性分析方法稳定性是指一个系统在输入或参数扰动下,输出的响应是否会趋于有界或者稳定的状态。
在数学建模、控制理论等领域,稳定性分析是评估一个系统的重要手段之一。
以下是一些常见的稳定性分析方法:1. Lyapunov 稳定性分析方法: Lyapunov 稳定性分析方法是一种基于Lyapunov 函数的稳定性判断方法。
通过构造一个满足特定条件的Lyapunov 函数,可以判断系统是否是稳定的。
2. Routh-Hurwitz 稳定性判据: Routh-Hurwitz 稳定性判据是一种基于判别式的稳定性分析方法。
通过构造一个 Routh-Hurwitz 判别式,可以得到系统的稳定性边界条件。
3. 极点配置法: 极点配置法是一种常用的控制系统设计方法,也可以用于稳定性分析。
通过选择合适的极点位置,可以实现系统的稳定性。
二、收敛性分析方法收敛性是指一个数值计算方法在迭代过程中,得到的结果是否趋于准确解。
在数值计算和优化算法中,收敛性是评估算法有效性的重要指标。
以下是一些常见的收敛性分析方法:1. 收敛准则: 收敛准则是一种用于判断迭代算法是否收敛的方法。
常见的收敛准则包括绝对误差判据、相对误差判据和残差判据等。
2. 收敛速度分析: 收敛速度是指迭代算法的收敛过程有多快。
常用的收敛速度分析方法包括收敛阶数的估计、收敛速度的比较等。
3. 收敛性证明: 在一些数值计算方法中,为了证明其收敛性,需要使用一些数学工具和技巧,如递推关系、数学归纳法等。
总结:稳定性和收敛性分析方法在科学研究和工程实践中具有重要的意义。
通过对系统的稳定性进行分析,可以评估其可靠性和安全性。
文献综述信息与计算科学热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展.计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”.在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程.有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计算过程是逐层推进的, 在计算第n +1层的近似值时要用到第n 层的近似值 , 直到与初始值有关. 前面各层若有舍入误差, 必然影响到后面各层的值, 如果误差的影响越来越大, 以致差分格式的精确解的面貌完全被掩盖, 这种格式是不稳定的, 相反如果误差的传播是可以控制的, 就认为格式是稳定的. 只有在这种情形, 差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解. 由Lax 等价定理告诉我们, 对于各适定的线性的初值问题, 对相容性的差分逼近来说, 稳定性则是差分方程的解收敛于微分方程的解的充分必要条件. 收敛是差分方程的本质要求, 稳定是差分方程的基本特性, 对于计算的问题来说, 数值稳定性事差分格式必须要具备的条件, 一个不稳定的差分格式, 即使其他方面有很多的优点, 也是不能用来计算的. 可见由于收敛性和稳定性的重要性, 对于他们的研究是非常具有价值的.热传导方程: 2222222.u u u u a t x y z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 一维热传导方程的初边值问题:22200120(0,0),()(0),(),()(0).t x x l u u a x l t t x u x x l u t u t t ϕμμ===⎧∂∂==<<>⎪∂∂⎪⎪ =<<⎨⎪⎪⎪ = =>⎩用, , 及分别表示初边值问题的解及其偏导数及n j u n j u t ∂⎛⎫ ⎪∂⎝⎭22nj u x ⎛⎫∂ ⎪∂⎝⎭(,)u x t (,)u x t t ∂∂在点之值, 表示求解区域内网格节点. 当初边值问题的解在22(,)u x t x ∂∂(,)j n x t (,)j n x t 区域内部适当光滑时, 对任一区域内部的节点利用泰勒展开公式, 然后化简得(,)j n x t 到显示差分格式:1112200220,()()(1,,1),(),()(0,1,2,).n n nn n j j j j j j n n J U U U U U a t x U j x j J U n t U n t n ϕμμ++-⎧--+-=⎪∆∆⎪⎪=∆=⋅⋅⋅-⎨⎪⎪⎪=∆=∆=⋅⋅⋅⎩这里由于差分方程的解与原初边值问题的解一般是不同的, 故用不同的记号表示.U u 明显的用上式近似热传导方程的初边值问题, 所忽略掉的项, 即截断误差是. 记 2()(())O t O x ∆+∆22()t a x λ∆=∆ 其隐式格式: 111110012(12),()(1,,1),(),()(0,1,2,).n n n n j j j j j n n J U U U U U j x j J U n t U n t n λλλϕμμ+++-+⎧-++-=⎪⎪=∆=⋅⋅⋅-⎨⎪=∆=∆=⋅⋅⋅⎪⎩ 其中. 22()t a x λ∆=∆参考文献[1] 谷超豪, 李大潜, 陈恕行等. 数学物理方程[M ]. 北京: 高等教育出版社, 2002.[2] 刘盾. 实用数学物理方程[M ]. 重庆: 重庆大学出版社, 1996.[3] 张锁春. 抛物型方程定解问题的有限差分数值计算[M ]. 北京: 科学出版社, 2010.[4] (美)哈伯曼. 实用偏微分方程[M ]. 北京: 机械工业出版社, 2007.[5] 陆金甫, 关治. 偏微分方程数值解法[M ]. 北京: 清华大学出版社, 2003.[6] K. W. Morton, D. F. Mayers. 偏微分方程数值解[M ]. 北京: 人民邮电出版社, 2006.[7] 戴嘉尊, 邱建贤. 微分方程数值解法[M ]. 南京: 东南大学出版社, 2002.[8] 徐琛梅. 一类非线性偏微分方程差分格式的稳定性分析[J ]. 江西科学, 2008,27(3) :227~230.[9] 张天德, 张希华, 王玮. 偏微分方程差分格式的构造[J]. 山东工业大学学报, 1997,26(2) :245~246.[10] P. Darania and A. Ebadian. A method for the numerical solution of integrodifferentialequations [J]. Applied Mathematics and Computation , 2007, 188(1): 657~668.[11] Yang Zhang. A finite difference method for fractional partial differential equation [J].Journal of Computational and Applied Mathematics, 2009, 215(2):524~529.。
分类号 学号密题 目(中、英文)作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学咸阳师范学院2016届本科毕业设计(论文)摘要微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。
它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。
而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。
而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。
本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。
关键字:差分方程;差分方程模型;平衡点;稳定性差分方程模型的稳定性分析AbstractDifference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation.Key words:Difference equation;Difference equation model ; Balance point; Stability咸阳师范学院2016届本科毕业设计(论文)目录摘要 (1)Abstract (II)目录 ................................................................................................................................................ I II 引言 .. (1)1、差分方程的定义及其分类 (1)(1)差分算子: (1)2. 差分方程的求解与稳定性判断方法: (2)(1)差分方程的求解: (2)(2).差分方程的平衡解稳定性判断方法: (4)3. 差分方程模型的应用: (4)3.1模型:种群模型 (4)3.11模型的引入与假设 (4)3.12线性差分方程模型的建立与求解 (5)3.13生态模型的平衡点及稳定性分析: (7)总结 (10)参考文献 (11)附录 (12)谢辞 (13)差分方程模型的稳定性分析咸阳师范学院2016届本科毕业设计(论文)引言随着科学技术的不断发展,将数学思想融入实际生活解决社会问题变得非常普遍。
差分格式收敛性分析相容性概念:相容性(consistency):当有限差分网格变小时,截断误差趋于0。
经典显示差分格式:h→,k →截断误差→经典显式差分无条件相容DuFort-Frankel差分格式截断误差条件相容。
绝大多数差分格式为无条件相容!稳定性(stability):计算所得解的全部扰动有界。
条件稳定/无条件稳定数值分析的稳定性概念与偏微分方程无关,它关心的是在求解有限差分方程时由于进行算术运算而产生误差的不稳定增长或稳定衰减问题。
Lax等价定理:对一个适定的定解问题,若给出的差分格式是相容的,则该差分格式收敛的充分必要条件是该差分格式稳定。
算法稳定性是最重要的问题,精度排在其后,只有在稳定的情况下再追求精度。
(1)显式差分为例:误差的传播过程图:(2) Richardson 显式差分来自<https:///wiki/Von_Neumann_stability_analysis >要点:a 误差满足同样的方程b 误差函数的分解(傅里叶分解+分离变量法)Von Neumann stability analysis -稳定性分析Von Neumann条件稳定分析过程两边同除以得到:经典显式差分稳定性条件:Richardson显式差分O(Δ)结论:Richardson显式差分格式无条件不稳定,即使精度高也无用处%%%%%%%%%%%%%%%%%%%%%%%%%%%%%隐式差分结论:无条件稳定Crank-Nicolson隐式差分结论:无条件稳定加权隐式差分向量函数稳定性:增长矩阵方法增长矩阵可以得到要求矩阵特征值满足。
差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。
第二讲 有限差分法基本原理一般的流体控制方程都是非线性的偏微分方程。
在绝大多数情况下,这些偏微分方程无法得到精确解;而CFD 就是通过采用各种计算方法得到这些偏微分方程的数值解,或称近似解。
当然这些近似解应该满足一定的精度。
目前,主要采用的CFD 方法是有限差分法和有限体积法。
本讲主要介绍有限差分法,它也是下一讲中的有限体积法的基础[1]。
有限差分法求解流动控制方程的基本过程是:首先将求解区域划分为差分网格,用有限个网格点代替连续的求解域,将待求解的流动变量(如密度、速度等)存储在各网格点上,并将偏微分方程中的微分项用相应的差商代替,从而将偏微分方程转化为代数形式的差分方程,得到含有离散点上的有限个未知变量的差分方程组。
求出该差分方程组的解,也就得到了网格点上流动变量的数值解。
2.1 差分和逼近误差由于通常数字计算机只能执行算术运算和逻辑运算,因此就需要一种用算术运算来处理函数微分运算的数值方法。
而有限差分法就是用离散网格点上的函数值来近似导数的一种方法。
设有x 的解析函数)(x f y =,从微分学知道函数y 对x 的导数为 xx f x x f x y dx dy x x ∆-∆+=∆∆=→∆→∆)()(lim lim 00 (2-1) dy 、dx 分别是函数及自变量的微分,dx dy /是函数对自变量的导数,又称微商。
相应地,上式中的x ∆、y ∆分别称为自变量及函数的差分,x y ∆∆/为函数对自变量的差商。
在导数的定义中x ∆是以任意方式逼近于零的,因而x ∆是可正可负的。
在差分方法中,x ∆总是取某一小的正数。
这样一来,与微分对应的差分可以有三种形式:向前差分 )()(x f x x f y -∆+=∆向后差分 )()(x x f x f y ∆--=∆中心差分 )21()21(x x f x x f y ∆--∆+=∆上面谈的是一阶导数,对应的称为一阶差分。
对一阶差分再作一阶差分,就得到二阶差分,记为y 2∆。