差分格式的稳定性与收敛性1
- 格式:pdf
- 大小:235.56 KB
- 文档页数:6
数值分析中的差分方法与收敛性分析数值分析是一门研究利用数值方法解决数学问题的学科。
在数值分析中,差分方法是一种常用的数值求解方法。
差分方法的基本思想是将求解区域进行离散化,通过逼近原问题的离散形式来求解。
差分方法通过引入差分公式将微分方程转化为差分方程,从而利用计算机进行数值求解。
差分方法的精确性和稳定性对应着数值解的准确性和可靠性。
本文将探讨数值分析中的差分方法及其收敛性分析。
我们将重点介绍常用的差分算法,包括前向差分、后向差分和中心差分。
以及如何通过收敛性分析来评估差分方法的精确性和可靠性。
1. 前向差分方法前向差分方法是一种通过近似计算函数导数的差分方法。
其基本思想是利用函数在相邻点的差商来逼近导数的值。
设函数f(x)在点x处可导,则其一阶导数可以用如下差分公式进行逼近:\[f'(x) \approx \frac{f(x+h) - f(x)}{h}\]其中h是差分步长。
通过不断减小h的值,可以提高逼近的精确度。
然而,过小的h值可能会导致数值计算中的舍入误差,因此需要在精确度和稳定性之间进行权衡。
2. 后向差分方法后向差分方法与前向差分方法类似,只是近似计算函数导数时采用了后一个点和当前点的差商。
其差分公式为:\[f'(x) \approx \frac{f(x) - f(x-h)}{h}\]后向差分方法在数值计算中具有一定的优势,特别是对于非线性函数,因为它利用了当前点之前的函数值,减小了计算中的舍入误差。
3. 中心差分方法中心差分方法是一种结合了前向差分和后向差分的方法。
它通过利用当前点之前和之后的函数值来近似计算函数导数。
其差分公式为:\[f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}\]中心差分方法相对于前向差分和后向差分方法具有更高的精确度,但在一些情况下可能会引入数值不稳定性。
4. 收敛性分析收敛性分析是评估差分方法精确性和可靠性的关键步骤。
大气数值模式及模拟(数值天气预报)习题第一章大气数值模式概论1.试述原始方程组、全球模式、区域模式和非静力模式之间的区别。
2.试述天气模式、气候模式的主要区别?3.区域气候模式、大气环流模式、中尺度模式、陆面模式、边界层模式各有什么特点?第二章 大气运动方程组1. 试证明球坐标系中单位矢量i 的个别变化率为(sin cos )cos di u j k dt r ϕϕϕ=- 2.试说明局地直角坐标系(即z 坐标系)中的运动方程与球坐标系中的运动方程有何异同?3.用球坐标导出下面两个方程:(sin cos )cos d i u j k dt r ϕϕϕ=- tan d j u v i k dt r rϕ=-- 4.由热力学方程v dT d C p Q dt dtα+=推导出如下方程: p dT C Q dt αω-= ()dp dtω= 式中v dT C dt为单位质量理想空气内能的变化率,v C 为空气的定容比热,d p dtα为可逆过程中单位质量非粘性气体在单位时间里膨胀所作的功。
Q 为外界对单位质量空气的加热率。
第三章 数值计算方案1. 什么是差分格式的收敛性和稳定性?二者之间有何关系?2. 试证明一阶偏微商u x ∂∂的三点差商近似式:3(,)(,)213(,)4(,)(2,)22u u x x t u x t x x u x t u x x t u x x t x ∂+∆-⎡⎤=⎢⎥∂∆⎣⎦-++∆-+∆⎡⎤-⎢⎥∆⎣⎦的截断误差为2()O x ∆。
3. 用中央差分将涡度方程()()()l l u u u v l t x y x y∂Ω∂Ω+∂Ω+∂∂++=-+∂∂∂∂∂ 写成有限差形式。
设(,)l l x y =,并取水平坐标步长为s δ,时间步长为t δ。
4. 分别对x 轴上的i+1和i+3格点,以d 和2d 为步长,写出一阶微商dF dx的前差、后差和中央差的差分近似式,以及二阶微商22d F dx 的二阶中央差分近似式。
差分格式收敛性分析相容性概念:相容性(consistency):当有限差分网格变小时,截断误差趋于0。
经典显示差分格式:h→,k →截断误差→经典显式差分无条件相容DuFort-Frankel差分格式截断误差条件相容。
绝大多数差分格式为无条件相容!稳定性(stability):计算所得解的全部扰动有界。
条件稳定/无条件稳定数值分析的稳定性概念与偏微分方程无关,它关心的是在求解有限差分方程时由于进行算术运算而产生误差的不稳定增长或稳定衰减问题。
Lax等价定理:对一个适定的定解问题,若给出的差分格式是相容的,则该差分格式收敛的充分必要条件是该差分格式稳定。
算法稳定性是最重要的问题,精度排在其后,只有在稳定的情况下再追求精度。
(1)显式差分为例:误差的传播过程图:(2) Richardson 显式差分来自<https:///wiki/Von_Neumann_stability_analysis >要点:a 误差满足同样的方程b 误差函数的分解(傅里叶分解+分离变量法)Von Neumann stability analysis -稳定性分析Von Neumann条件稳定分析过程两边同除以得到:经典显式差分稳定性条件:Richardson显式差分O(Δ)结论:Richardson显式差分格式无条件不稳定,即使精度高也无用处%%%%%%%%%%%%%%%%%%%%%%%%%%%%%隐式差分结论:无条件稳定Crank-Nicolson隐式差分结论:无条件稳定加权隐式差分向量函数稳定性:增长矩阵方法增长矩阵可以得到要求矩阵特征值满足。
差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。
拉克斯等价定理:
拉克斯等价性定理(Lax equivalence theorem )揭示差分方程相容性、稳定性与收敛性三者之间关系的重要定理。
该定理表述为:对于适定的线性偏微分方程组初值问题,一个与之相容的线性差分格式收敛的充分必要条件是该格式是稳定的。
该定理以美国数学家拉克斯(Lax , P. D.)命名,利用这一定理,可把困难的收敛性研究转化成对相容性与稳定性的讨论。
在数值分析中,拉克斯等价性定理是偏微分方程数值解的有限差分法的基本定理。
它表明,对于一个良好的线性初始值问题的一致的有限差分法,当且仅当它是稳定的时候,该方法是收敛的。
定理的重要性在于,尽管有限差分法的解与收敛偏微分方程是一致的,但通常难以确定,因为数值方法是由递推关系定义的,而微分方程涉及可微的功能。
然而,有限差分方法近似正确的偏微分方程的要求是直接验证的,并且稳定性通常比收敛更容易显示(并且在任何情况下都需要显示舍入误差不会破坏计算)。
因此,收敛通常通过拉克斯等价定理来表示。
在这种情况下的稳定性意味着在迭代中使用的矩阵的矩阵范数最多是一致的,称为(实用的)Lax-Richtmyer稳定性。
通常,为了方便而采取冯·诺依曼的稳定性分析,尽管冯·诺依曼稳定仅在某些情况下意味着Lax-Richtmyer的稳定性。
这个定理是由于彼得·拉克斯。
有时被称为Lax-Richtmyer定理,彼得·拉克斯(Robert Lax)和罗伯特·里奇特(Robert D. Richtmyer)
之后。