差分方法的稳定性
- 格式:doc
- 大小:434.50 KB
- 文档页数:12
对流方程差分格式稳定性判定李五明【摘要】The paper decided the stability of different difference schemes of the one dimension convection equation using Fourier stability analysis. The fundamental idea of Fourier stability analysis is to extend periodically the error of solution for the linear differential equation and express it using Fourier series, then check the enlargement and decay of every component of the Fourier series. According to Fourier series for each component change over time, we judged the stability of difference schemes by the magnification factor. Using the method, the paper decided the stability of different difference schemes for the given equation.%用傅里叶稳定性分析法判断一维对流方程不同差分格式的稳定性.傅里叶稳定性分析法的基本思想是:对于线性微分方程,将解的误差做周期延拓并用傅里叶级数表示出来,然后考察每一个傅里叶级数分量的增大和衰减情况;根据傅里叶级数每一个分量随时间的变化情况,由放大因子判断差分格式的稳定性.用该方法对给定方程不同差分格式的稳定性进行了判断.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2012(031)003【总页数】4页(P369-372)【关键词】对流方程;差分格式;稳定性【作者】李五明【作者单位】河南理工大学数学与信息科学学院,河南焦作454000【正文语种】中文【中图分类】O175.210 引言用有限差分法数值求解偏微分方程是计算数学中的一个重要课题.在有限差分法中,差商代替了微商,差分方程代替了微分方程.然而,并不是任何情况下,差分方程都可以逼近原微分方程.因为,方程形式的逼近是一回事,方程解的逼近又是一回事.因此,在基本理论上必须解决数值计算中可能出现的诸如稳定性、精度等问题.采用有限差分法求解由偏微分方程所描述的具体问题时,在确定差分离散格式是否可用之前必须解决3个问题:当差分网格的时间与空间步长都趋近于零时,差分方程是否充分逼近原微分方程;差分格式的真解是否充分逼近原微分方程的精确解;差分格式的近似解与真解之间的误差是否有界.这3个问题在有限差分理论中分别称为相容性、收敛性和稳定性.差分格式的相容、收敛和稳定并不是孤立的,而是互有联系.根据LAX等价定理,若线性微分方程的初值问题适定、差分格式相容,则稳定性是收敛性的必要和充分条件.因此,常常通过判定一个差分格式的稳定性来判定其收敛性.因为,直接证明一个差分格式的收敛性是比较困难的,但对稳定性的证明却容易得多,且现有的方法也比较有效.本文介绍其中最常用的一种分析差分格式稳定性的方法:傅里叶稳定性分析法.傅里叶稳定性分析法的基本思想是将解的误差做周期延拓并用傅里叶级数表示出来,然后考察每一个傅里叶级数分量的增大和衰减情况.如果每一个分量的强度(或振幅)是随时间的推移而增大的,则所讨论的差分格式是不稳定的;反之,若每一个分量的振幅是随时间的推移而衰减或保持不变的,则格式是稳定的.为了进行这种分析,可以把某一分量的表达式代入到误差传播方程中,以得出相邻两时间层该分量的振幅比(通常称为放大因子).稳定性的条件要求放大因子的绝对值(或模)小于或等于1.当放大因子等于1时,称为中性稳定.在这种情况下,任何时刻引进的误差都不会衰减或放大.本文主要针对一维对流方程,利用傅里叶稳定性分析方法讨论其不同差分格式的稳定性.1 傅里叶稳定性分析法针对一个具体的方程来考察傅里叶稳定性分析法,然后再将该方法推广到其他差分格式.一维对流方程的初值问题如下:,(1)问题的定解域为x-t的上平面(图1),分别引入平行于x轴和平行于t轴的两族直线,把求解域划分为矩形网格.网格线的交点称为节点,x方向上网格线之间的距离Δx称为空间步长,t方向上网格线之间的距离Δx称为时间步长.这样,两族网格可记为x=xi=iΔx,(i=0,±1,±2,…),t=tn=nΔt,(n=0,1,2,…).网格划定后,就可针对其中的任一节点,如图1中的节点(xi,tn).将函数u在该点记为,tn)=u(iΔx,nΔt).(2)方程(1)的FTCS(Forward Time Central Space)格式为α.(3)将式(3)改写为易于递推计算的差分格式,有,式中:λ为网格比.相应于上式的误差传播方程为,(4)式中:ε为各节点上的误差.如果对ε在正负方向上作周期延拓,即把ε看作是以某一定值为周期的周期函数,则εn,εn+1可以展开为以下的傅里叶级数[5-6]:.于是,,(5),(6)式中:将式(5)和(6)代入式(4)得.(7)式(7)相当于将零展开成傅里叶级数,式中{ }内相当于傅里叶系数,它对于所有的k都等于零,即,(8)令,(9)则式(8)成为(不失一般性,支掉式中的下标记号k)Cn+1=GCn,(10)表示误差从第n层传播到第n+1层时,以傅里叶级数表示的每一误差分量的振幅放大或衰减了G倍.所以,称G为放大因子.傅里叶稳定性分析法就集中在对G 的分析上,如果|G|>1,则误差的振幅随n的增大而增大,差分格式不稳定;如果|G|≤1,则误差的振幅随n的增大而减小或不变,差分格式稳定.应用欧拉公式e±iz=cos z±isin z,将式(9)改写为G=1-iαλsin kΔx,得|G|2=1+α2λ2sin2kΔx.当sin2kΔx≠0时,选取网格比λ总有|G|>1.因此,差分格式(3)是不稳定的.从上例的分析注意到,以傅里叶稳定性分析法判断差分格式稳定性时,是从误差传播方程出发,将计算节点的误差延拓为傅里叶级数,并通过分析式(7)中傅里叶级数任一系数来确定放大因子G,进而确定差分格式的稳定性.对于齐次线性微分方程,由于误差传播方程与其相应的差分方程形式相同,在傅里叶稳定性分析中,只要令,(11)并将它们代入相应的差分格式中,同样可以得到与上例相同的放大因子G的表达式.为方便起见,在以后的傅里叶稳定性分析讨论中将采用式(11)的方式.2 应用举例例1 试讨论一维对流方程(1)的FTCS隐式差分格式的稳定性.解:方程(1)的FTCS隐式差分格式为α,(12)或写为,λ,将式(11)代入上式,有Cn+1eik(xi-Δx)]=Cneikxi,约去公因子eikxi后,得,即,由此得放大因子为,即≤1,所以,式(12)是无条件稳定的.例2 试讨论一维对流方程(1)的格式的稳定性.解:方程(1)的格式为,(13)或,λ,将式(11)代入上式,有,约掉公因子eikxi,得,由此得放大因子为,有|G|2=1.所以,差分格式(13)是无条件稳定的.3 结论(1)本文利用傅里叶稳定性分析法仅讨论一维对流方程不同差分格式稳定性的判断,实际上,该方法对二维对流方程、一(二)维扩散方程、一维对流-扩散方程也是适用的.(2)本文没有给出一维对流方程迎风格式稳定性的判定,主要是因为需要考虑CFL(Courant-Friedrichs-Lewy)条件,并且要对α的正负进行讨论.限于篇幅,略去.(3)傅里叶稳定性分析法只适用于线性微分方程,对于非线性方程差分格式稳定性的判定,目前还没有严格的一般性理论处理.通常的做法是,从非线性方程对应的线性化模型得出的稳定性判定准则出发,对非线性方程差分格式的稳定性进行大致估计,然后在实际计算中采用试算方法将其扩展到非线性问题中去.参考文献:[1] 张国强,吴家鸣.流体力学[M].北京:机械工业出版社,2005.[2] 顾丽珍.求解对流扩散方程的一些高阶差分格式[J].清华大学学报:自然科学版,1996,36(2):9-14.[3] 管秋琴.一类对流扩散方程组的差分格式与稳定性[J].上海电力学院学报,2009,25(2):192-195.[4] 余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2003.[5] 范德辉,陈辉,王秀凤,等.对流扩散方程差分格式稳定性分析[J].暨南大学学报:自然科学与医学版,2006,27(1):24-29.[6] 阴继翔,李国君,李卫华,等.对流扩散方程不同格式的数值稳定性分析[J].太原理工大学学报:自然科学版,2004,35(2):121-124,133.[7] 马荣,石建省,张翼龙,等.对流-弥散方程显式差分法稳定性分析方法的初探[J].水资源与水工程学报,2010,21(1):132-134.[8] 陆金甫,关治.偏微分方程数值解解法[M].北京:清华大学出版社,2004.[9] 王静,王艳.RICCATI方程有理展开法及其在非线性反应扩散方程中的应用[J].河南理工大学学报:自然科学版,2010,29(5):689-694.[10] 王同科,马明书.二维对流扩散方程的二阶精度特征差分格式[J].工程数学学报,2004,21(5):727-731.。
差分方程及其稳定性分析随着科技的不断发展和应用,数学作为一门基础学科,得到了越来越广泛的应用。
其中,差分方程作为一种离散化的微积分,被广泛地运用于电子、天文、生物、经济等领域中的模型计算和分析。
本文将介绍差分方程的基本概念和常见类型,以及如何对其进行稳定性分析。
一、差分方程的基本概念差分方程是指在内插点上的函数值之间的关系方程,其通常形式为:$$x_{n+1} = f(x_n)$$其中,$x_{n}$ 表示第 $n$ 个内插点的函数值,$f$ 是描述$x$ 的随时间变化关系的任意函数。
当然,差分方程还可以有更多的变量和函数,形式也可以更加复杂。
二、差分方程的类型根据差分方程的形式和特征,可将其分为以下几种类型:1、线性差分方程线性差分方程的一般形式为:$$x_{n+1} = ax_n+b$$其中,$a,b$ 为常数,$x_n$ 为第 $n$ 个内插点的函数值。
线性差分方程的求解可以采用常数变易法、特征方程法、生成函数法等多种方法。
2、非线性差分方程非线性差分方程是指其中的关系函数 $f$ 不是线性函数。
一般来说,非线性差分方程更难于求解。
3、线性递推方程线性递推方程是指卷积和形式的一类差分方程。
其形式为:$$x_{n+k} = a_1x_{n+k-1} + a_2x_{n+k-2} + \cdots + a_kx_n$$其中,$a_1,a_2,\cdots,a_k$ 为常数。
三、稳定性分析差分方程作为一种离散化的微积分,常常代表系统的动态演化过程。
因此,判断差分方程的解在过程中是否保持稳定性非常重要。
下面将介绍两种常见的差分方程稳定性分析方法。
1、线性稳定性分析法线性稳定性分析法是指对线性差分方程的解进行稳定性分析。
对于一般型的线性差分方程:$$\Delta x_{n+1} = a\Delta x_n$$其中,$\Delta x_n = x_{n+1} - x_n$,$a$ 为常数。
通过求解特征方程 $r-1=ar$,求得 $a$ 的值,便可判断差分方程解的稳定性。
差分方法的稳定性1.实验内容对于一阶线性双曲线型方程:[][]()()00,0,1,0,,0u u x t T t x u x u x ∂∂+=∈∈∂∂= 其中初值 ()01,00,0x u x x ≤⎧=⎨>⎩取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间长度与空间长度比hτλ=)进行迭代计算。
通过将计算结果与精确解进行比较,来讨论和分析差分格式的稳定性。
2.算法思想与步骤2.1迎风格式这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特征线方向一侧的单边差商来代替,格式如下:110,0n n n nj jj j u u u u a a hτ+---+=> 110,0n n n n j jj ju u u u aa hτ++--+=<运算格式: ()1111(1),01,0n n nj j j n n n j j j u a u a u a u a u a u a λλλλ+-++=-+>=+-<2.2 Lax-Friedrichs 格式()111111202n nn n n jj j j j u u u u u a hτ++-+--+-+=运算格式: ()()111111122n nn jj j ua u a u λλ++-=-++2.3 Lax-Wendroff 格式这种格式构造采用Taylor 级数展开和微分方程本身得到 运算格式:()()()()111111122n n n n jj j j a a ua u a a u a u λλλλλλ++-=-++-++2.4 Bean-Warming 格式(二阶迎风格式)借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。
设在n t t =时间层上网格点A,B,C 和D 上u 的值已给定,要计算出在1n t t +=时间层上网格点P 上的u 的值。
非定常流体力学中间差分格式稳定性分析研究随着计算机技术的发展,数值模拟已经成为研究非定常流体力学的重要手段。
其中差分法是最常用的一种计算方法。
而中心差分法是差分法中最为常用的方法之一。
在数值计算中,稳定性是非常重要的一个问题。
本文将从非定常流体力学的角度出发,分析中心差分格式的稳定性问题。
一、中心差分法中心差分法是一种最为常用的差分法,其具体计算过程是将计算点的函数值表示为它自身与周围计算点值的线性组合,其中,每个计算点的函数值均采用相同的线性组合模式。
这个模式就是中心差分法的核心。
中心差分法可以用于求解一些常见的偏微分方程,例如泊松方程、热传导方程、对流扩散方程,以及非定常流体力学中的纳维-斯托克斯方程等。
二、非定常流体力学的求解非定常流体力学是流体运动学和动力学的研究,其中:研究的是在时间和空间上变化的流场。
在非定常流体力学中,求解纳维-斯托克斯方程是相当难的。
要解决这一问题,可以采用数值模拟的方法。
由于非定常流体力学的求解过程涉及到高维空间和复杂的数学模型,因此需要具有高性能的计算机和优秀的数值方法。
中心差分法作为一种常见的数值方法,可以用于求解非定常流体力学。
不过,如果不考虑其稳定性问题,这种方法也是会出现一些问题的。
三、中心差分格式的稳定问题在数值计算中,稳定性问题是非常重要的一个问题。
稳定性是指对精度的要求。
一种数值计算方法,如果该方法对初始误差非常敏感,或者计算过程中误差放大得太快,那么这种方法就是不稳定的。
因此,中心差分格式的稳定性问题需要引起我们的关注。
中心差分格式的稳定性取决于流场的不稳定性,并且与形式构成的方程相关。
由于中心差分格式本身是一种稳定的方法,但它的稳定性却取决于数值格式和解的一些特性,如模型方程、网格尺寸等因素。
为了解决中心差分格式的稳定性问题,我们可以采用标量稳定性分析和矩阵稳定性分析两种方法。
通过这两种方法的研究和分析,我们可以更好地了解中心差分格式的稳定性问题,并实现更为精准的求解。
离散时间系统的稳定性分析离散时间系统是一种在离散时间点上进行状态变化的系统,与连续时间系统相对应。
稳定性分析是对系统行为的一个重要特征进行评估和判断的过程。
对于离散时间系统的稳定性分析,我们可以通过不同方法进行研究和判断,如利用差分方程、状态空间法、Lyapunov稳定性理论等。
本文将从这些角度出发,深入探讨离散时间系统的稳定性分析方法。
一、差分方程法差分方程法是一种基于离散时间点上变量之间的差分关系进行稳定性分析的方法。
对于离散时间系统,我们可以通过建立差分方程来描述系统的动态行为。
一般而言,稳定的离散时间系统在各个时间点上的状态变量都保持在某个有界范围内。
因此,我们可以通过差分方程的解析解或数值解来判断系统的稳定性。
二、状态空间法状态空间法是一种通过描述系统在不同离散时间点上状态变化的方法。
在状态空间中,系统的状态由一组关于时间的差分方程表示。
通过对系统状态进行迭代,我们可以从初始状态推导出系统在未来时间点上的状态。
根据这些状态的变化,我们可以判断系统是否稳定。
三、Lyapunov稳定性理论Lyapunov稳定性理论是一种通过利用Lyapunov函数来判断离散时间系统稳定性的方法。
Lyapunov函数是一个用于衡量系统状态的能量函数,它在系统稳定时具有稳定性的性质。
通过构造和分析Lyapunov函数,我们可以判断离散时间系统是否稳定。
如果能够找到一个Lyapunov函数,使得对于系统的每一个状态,该函数都是非负的,并且沿着系统的状态变化轨迹递减,那么系统就是稳定的。
四、其他稳定性分析方法除了以上介绍的几种常见方法外,还存在其他一些稳定性分析方法,如频率域方法、随机系统稳定性分析等。
这些方法可以根据具体问题的需求进行选择和应用,从而更好地评估离散时间系统的稳定性。
综上所述,离散时间系统的稳定性分析是研究系统动态行为的一个重要问题。
通过差分方程法、状态空间法、Lyapunov稳定性理论以及其他稳定性分析方法,我们可以对离散时间系统的稳定性进行全面评估和判断。
差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。
差分知识点总结一、差分的概念差分是一种数学运算方法,用来计算函数在两个相近的点之间的变化量。
差分的基本思想是利用两个相近点之间的函数值的差来近似表示函数在这一区间的变化率。
差分主要应用在数值计算、微分方程数值解法、离散化微分方程和差分方程等领域。
二、差分的方法1. 前向差分前向差分是指用函数在点x和x+h处的函数值之差来近似表示函数在点x处的导数。
前向差分的公式为:f'(x) ≈ (f(x+h) - f(x)) / h2. 后向差分后向差分是指用函数在点x和x-h处的函数值之差来近似表示函数在点x处的导数。
后向差分的公式为:f'(x) ≈ (f(x) - f(x-h)) / h3. 中心差分中心差分是指用函数在点x+h和x-h处的函数值之差来近似表示函数在点x处的导数。
中心差分的公式为:f'(x) ≈ (f(x+h) - f(x-h)) / 2h4. 二阶中心差分二阶中心差分是指用函数在点x+h、x和x-h处的函数值之差来近似表示函数在点x处的二阶导数。
二阶中心差分的公式为:f''(x) ≈ (f(x+h) - 2f(x) + f(x-h)) / h^25. 前向差分法和后向差分法的优缺点前向差分法和后向差分法都是利用简单的迭代方式得到节点之间的差值。
前向差分法计算简单,但是会使误差更大;后向差分法计算较为繁琐,但是误差相对较小。
6. 应用差分方法广泛用于微分方程和差分方程的数值解法,离散化微分方程,数值积分等方面,其基本思想是用差分概念近似表示数学模型的微分和积分运算。
三、差分方法的误差分析1. 截断误差在差分近似计算中,由于只取有限个点的函数值,使得近似结果与真实结果之间存在一定的误差,这种误差称为截断误差。
2. 离散化误差差分方法中最主要的误差来源是离散化误差。
因为使用差分方法时,通常需要将连续的问题离散化为一个离散的问题,这个离散化的过程会使得结果与真实结果之间存在误差。
有限差分方法的稳定性
限制差分法(Finite Difference Method)具有计算容易,计算时间短,扩展性强等特点,已在微分方程数值解决问题中有较广泛的应用。
在以有限差分(FD)求解各类微分方程时,精确求解的前提是构建的有限差分格式的局部精度及其稳定性要达到一定的水平,否则结果就不可靠。
因此,有限差分(FD)方法的稳定性具有重大的实际意义。
首先,稳定性与差分格式的精度密切相关。
高精度的有限差分格式的构建,及精确的微分方程的求解,都要求对构建差分格式及精度进行正确的仿真,以便拥有有限差分方法的稳定性。
其次,模拟所求解的微分方程类型。
在常微分方程数值解决问题中,有限差分(FD)求解器将微分方程模拟为一个格点数值模型,在这个模型之中,所需要求解方程类型及求解区域都将影响方程的稳定性。
最后,改变构建有限差分格式的方案及公式都会影响求解的稳定性。
在解决某一类型的微分方程时,不论采用什么方案及公式构建有限差分格式,它们都会影响有限差分(FD)求解各类微分方程时,所构建差分格式的稳定性。
总之,以有限差分方法求解微分方程的稳定性总体上受到差分格式的精度、模拟的微分方程类型及构建有限差分格式的方案及公式的影响。
因此,正确掌握以上这几个方面知识,有助于提高以有限差分法解决微分方程的稳定性。
差分方法的稳定性
1.实验内容
对于一阶线性双曲线型方程:
其中初值
取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间来讨论和分析差分格式的稳定性。
2.算法思想与步骤
2.1迎风格式
这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特
征线方向一侧的单边差商来代替,格式如下:
运算格式:
2.2 Lax-Friedrichs 格式
运算格式:
2.3 Lax-Wendroff格式
这种格式构造采用Taylor级数展开和微分方程本身得到
运算格式:
2.4 Bean-Warming格式(二阶迎风格式)
借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。
A,B,C和D
层上网格点P
假定C.F.L条件成立,过P点特征线与BC交于点Q,
①用B,C两点值进行线性插值,得到的是迎风格式;
②用B,D两点值进行线性插值,得到的是Lax-Friedrichs格式;
③用B,C和D三点值进行抛物型插值,得到的是Lax-Wendroff格式。
如果我们采用A,BC三点来进行抛物型插值,可以得到
这就是Beam-Warming格式。
2.5 蛙跳格式
运算格式:
保持精度的阶数相同,一般我们用Lax-Wendroff格式或Beam-Warming格式。
2.6 目标点范围跟踪格式(迎风格式的改进)
下面的分析将会得到这是一个无条件稳定结构。
3.数据分析与作图
3.1迎风格式
稳定性分析:
记,则,得
3.2 Lax-Friedrichs格式
稳定性分析:
3.3 Lax-Wendroff格式
稳定性分析:
3.4 Beam-Warming格式
稳定性分析:
3.5 蛙跳格式
稳定性分析:
3.6 目标点范围跟踪格式
稳定性分析:
,其中,
故无条件稳定。