研究有限差分格式稳定性的其他方法 - 报告
- 格式:doc
- 大小:303.64 KB
- 文档页数:9
有限差分法——傅立叶稳定性分析分析差分格式稳定性的方法很多,大部份应用于线性方程,这里只介绍其中最常用的一种:傅立叶稳定性分析法。
傅立叶稳定分析法由V on Neumann 于20世纪40年代提出,所以又称为V on Neumann 稳定性分析法。
该方法的基本思想是,将解的误差作周期延拓并用傅立叶级数表示出来,然后考察每一个傅立叶级数分量的增大和衰减情况。
如果每一分量的强度(或振幅)是随时间的推移而增大的,则所讨论的差分格式是不稳定的;反之,若每一分量的振幅是随时间的推移而衰减或保持不变,则格式是稳定的。
为了进行这种分析,可以把某一分量的表达式代入到误差传播方程中,得出相邻二时间层间该分量的振幅比,通常称为放大因子。
稳定性的条件要求放大因子的绝对值(或模)小于或等于1。
当放大因子等于1时,称为中性稳定,在这种情况下任何时刻引进的误差都不会衰减或放大。
【例11.1E 】讨论逼近以下一维对流方程的FTCS 格式的稳定性:0=∂∂+∂∂xu t u α α> 0 (11.1.51)该方程的FTCS 格式为 02111=∆-+∆--++xu u t u u n i n i n i n i α (11.1.52) 将式(11.1.52)改写成易于递推计算的差分格式,有()n i n i n i n i u u u u 1112-++--=λα式中,)/(x t ∆∆λ=为网格比。
相应于上式的误差传播方程为()n i n i n i n i 1112-++--=εελαεε (11.1.53) 式中,ε是各节点上的离散量。
如果对ε在正负方向上作周期延拓,即把ε看作是以某一定值为周期的周期函数,则n ε、1+n ε可以展开为以下的傅立叶级数:⎪⎪⎩⎪⎪⎨⎧==∑∑∞-∞=++∞-∞=k kx n k n k kx n k n e C x e C x I 11I )()(εε 于是⎪⎪⎩⎪⎪⎨⎧====∑∑∞-∞=+++∞-∞=k kx n k i n n i k kx n k i n n i i i e C x e C x I 111I )()(εεεε (11.1.54) ⎪⎪⎩⎪⎪⎨⎧=±==±=∑∑∞-∞=±+++±∞-∞=±±k x x k n k i n n i k x x k n k i n n i i i e C x x e C x x )(I 1111)(I 1)()(∆∆∆εε∆εε (11.1.55) 其中,1I -=。
文献综述信息与计算科学热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展.计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”.在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程.有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解.热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计算过程是逐层推进的, 在计算第n +1层的近似值时要用到第n 层的近似值 , 直到与初始值有关. 前面各层若有舍入误差, 必然影响到后面各层的值, 如果误差的影响越来越大, 以致差分格式的精确解的面貌完全被掩盖, 这种格式是不稳定的, 相反如果误差的传播是可以控制的, 就认为格式是稳定的. 只有在这种情形, 差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解. 由Lax 等价定理告诉我们, 对于各适定的线性的初值问题, 对相容性的差分逼近来说, 稳定性则是差分方程的解收敛于微分方程的解的充分必要条件. 收敛是差分方程的本质要求, 稳定是差分方程的基本特性, 对于计算的问题来说, 数值稳定性事差分格式必须要具备的条件, 一个不稳定的差分格式, 即使其他方面有很多的优点, 也是不能用来计算的. 可见由于收敛性和稳定性的重要性, 对于他们的研究是非常具有价值的.热传导方程: 2222222.u u u u a t x y z ⎛⎫∂∂∂∂=++ ⎪∂∂∂∂⎝⎭ 一维热传导方程的初边值问题:22200120(0,0),()(0),(),()(0).t x x l u u a x l t t x u x x l u t u t t ϕμμ===⎧∂∂==<<>⎪∂∂⎪⎪ =<<⎨⎪⎪⎪ = =>⎩用, , 及分别表示初边值问题的解及其偏导数及n j u n j u t ∂⎛⎫ ⎪∂⎝⎭22nj u x ⎛⎫∂ ⎪∂⎝⎭(,)u x t (,)u x t t ∂∂在点之值, 表示求解区域内网格节点. 当初边值问题的解在22(,)u x t x ∂∂(,)j n x t (,)j n x t 区域内部适当光滑时, 对任一区域内部的节点利用泰勒展开公式, 然后化简得(,)j n x t 到显示差分格式:1112200220,()()(1,,1),(),()(0,1,2,).n n nn n j j j j j j n n J U U U U U a t x U j x j J U n t U n t n ϕμμ++-⎧--+-=⎪∆∆⎪⎪=∆=⋅⋅⋅-⎨⎪⎪⎪=∆=∆=⋅⋅⋅⎩这里由于差分方程的解与原初边值问题的解一般是不同的, 故用不同的记号表示.U u 明显的用上式近似热传导方程的初边值问题, 所忽略掉的项, 即截断误差是. 记 2()(())O t O x ∆+∆22()t a x λ∆=∆ 其隐式格式: 111110012(12),()(1,,1),(),()(0,1,2,).n n n n j j j j j n n J U U U U U j x j J U n t U n t n λλλϕμμ+++-+⎧-++-=⎪⎪=∆=⋅⋅⋅-⎨⎪=∆=∆=⋅⋅⋅⎪⎩ 其中. 22()t a x λ∆=∆参考文献[1] 谷超豪, 李大潜, 陈恕行等. 数学物理方程[M ]. 北京: 高等教育出版社, 2002.[2] 刘盾. 实用数学物理方程[M ]. 重庆: 重庆大学出版社, 1996.[3] 张锁春. 抛物型方程定解问题的有限差分数值计算[M ]. 北京: 科学出版社, 2010.[4] (美)哈伯曼. 实用偏微分方程[M ]. 北京: 机械工业出版社, 2007.[5] 陆金甫, 关治. 偏微分方程数值解法[M ]. 北京: 清华大学出版社, 2003.[6] K. W. Morton, D. F. Mayers. 偏微分方程数值解[M ]. 北京: 人民邮电出版社, 2006.[7] 戴嘉尊, 邱建贤. 微分方程数值解法[M ]. 南京: 东南大学出版社, 2002.[8] 徐琛梅. 一类非线性偏微分方程差分格式的稳定性分析[J ]. 江西科学, 2008,27(3) :227~230.[9] 张天德, 张希华, 王玮. 偏微分方程差分格式的构造[J]. 山东工业大学学报, 1997,26(2) :245~246.[10] P. Darania and A. Ebadian. A method for the numerical solution of integrodifferentialequations [J]. Applied Mathematics and Computation , 2007, 188(1): 657~668.[11] Yang Zhang. A finite difference method for fractional partial differential equation [J].Journal of Computational and Applied Mathematics, 2009, 215(2):524~529.。
差分格式稳定性及数值效应比较实验一实验目的:1.以一阶线性双曲线方程为例,使用Matlab工具分析4种差分格式的误差。
2.了解4种差分格式的稳定性。
二实验问题:对于一阶线性双曲型方程:取a=1,2,4, h=0.1, τ=0.08, 对不同的差分格式(迎风格式,Lax-Friedrichs格式,Lax-Wendroff格式,修正迎风格式)及不同的a值进行迭代计算。
通过将计算结果与精确解来进行比较,来讨论分析差分格式的稳定性。
三实验原理:1.迎风格式:这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特征线方向一侧的单边差商来代替,格式如下:运算格式:x-Friedrichs格式:运算格式:x-Wendroff格式:这种格式构造是采用Taylor 级数展开和微分方程本身得到运算格式:4.修正迎风格式(目标点范围跟踪格式):其中是取整数部分,=。
根据之后的理论分析可以得到这是一个无条件稳定结构。
四四种格式理论分析:通过求差分格式的增长因子G(τ, k),来判定差分格式是否稳定。
1.迎风格式:记,则,得,即。
所以。
则在,满足von Neumann条件,格式稳定。
以下格式用相同方法求解稳定性条件。
x-Friedrichs格式:,在时稳定。
x-Wendroff格式:,在时稳定。
4.修正迎风格式(目标点范围跟踪格式):,其中,的成立条件为。
而恒成立,故格式无条件稳定。
五实验结果:a=1()迎风格式Lax-Friedrichs格式Lax-Wendroff格式修正迎风格式a=2()迎风格式Lax-Friedrichs格式Lax-Wendroff格式修正迎风格式a=4()迎风格式Lax-Friedrichs格式Lax-Wendroff格式修正迎风格式六总结:本次实验,通过4种差分格式求解T=4时的解并与解析解画图比较,可以看出:(1)a=1(aλ=0.8<1)时,迎风格式,Lax-Friedrichs格式,修正迎风格式的计算结果与解析解近似情况较好,而Lax-Wendroff格式则在间断点处出现了波前波,形成双波现象,这符合Lax-Wendroff格式为二阶迭代格式的性质。
差分方法的稳定性1.实验内容对于一阶线性双曲线型方程:其中初值()01,00,0x u x x ≤⎧=⎨>⎩取空间长度h=0.01,对于不同的差分格式(迎风格式,Lax-Friedrichs 格式,Lax-Wendroff 格式,Beam-Warming 格式以及蛙跳格式)及不同的网格比(时间长度与空间长度比h τλ=)进行迭代计算。
通过将计算结果与精确解进行比较,来讨论和分析差分格式的稳定性。
2.算法思想与步骤2.1迎风格式这种格式的基本思想是简单的,就是在双曲型方程中关于空间偏导数用在特征线方向一侧的单边差商来代替,格式如下:运算格式: ()1111(1),01,0n n n j j j n n n j j j u a u a u a u a u a u a λλλλ+-++=-+>=+-<2.2 Lax-Friedrichs 格式运算格式: ()()111111122n n nj j j u a u a u λλ++-=-++ 2.3 Lax-Wendroff 格式这种格式构造采用Taylor 级数展开和微分方程本身得到运算格式: ()()()()111111122n n n n j j j j a a ua u a a u a u λλλλλλ++-=-++-++ 2.4 Bean-Warming 格式(二阶迎风格式)借助于双曲型方程的解在特征线上为常数这一事实,可以构造出多种差分格式。
设在n t t =时间层上网格点A,B,C 和D 上u的值已给定,要计算出在1n t t +=时间层上网格点P 上的u 的值。
假定C.F.L 条件成立,过P 点特征线与BC 交于点Q ,故微分方程解的性质知()()u P u Q =。
对于()u Q :① 用B,C 两点值进行线性插值,得到的是迎风格式; ② 用B,D 两点值进行线性插值,得到的是Lax-Friedrichs 格式;③ 用B,C 和D 三点值进行抛物型插值,得到的是Lax-Wendroff 格式。
差分格式的稳定性讨论
关于差分格式的稳定性讨论
本文在差分格式稳定性的概念的基础上,按照稳定性的定义来验证某个差分格式,验证差分格式是否稳定,往往比较复杂.讨论稳定性有很多方法,如矩阵方法,离散扰动方法.Hitt呲启示性方法和Fouder方法等等.每个方法各有优劣,本文讨论应用最广泛,也较为方便的Fourier方法.
作者:李卓识作者单位:吉林农业大学,吉林,长春,130118 刊名:网络财富英文刊名:INTEMET FORTUNE 年,卷(期):2009 ""(23) 分类号:G64 关键词:差分格式稳定性 Lax等价定理 Foutier方法。
Crank-Nicolson差分格式及其稳定性研究
李华;周维奎;邓培智
【期刊名称】《矿物岩石》
【年(卷),期】1998(0)S1
【摘要】本文以自己独特的方式,构造了一维和二维抛物型方程的Crank-Nicolson差分格式。
本文不仅详细地给出了离散误差的表达式,而且论证了它们的稳定性。
该差分格式具有精度高,稳定性好,计算量和存储量都比较小的特点,是一个很理想,便于应用的差分格式。
【总页数】4页(P253-256)
【关键词】抛物型方程;隐格式;离散误差;绝对稳定性
【作者】李华;周维奎;邓培智
【作者单位】成都理工学院;核工业部西南物理研究院
【正文语种】中文
【中图分类】O24
【相关文献】
1.扩大稳定性区域的扩散方程新型显式差分格式研究 [J], 张宝琳;杭旭登;徐涛;陆金甫
2.若干差分格式非线性计算稳定性研究的新进展 [J], 季仲贞;杨晓忠;林万涛
3.自忆模式中差分格式的稳定性研究 [J], 封国林;董文杰;李建平;丑纪范
4.一类非线性偏微分方程的有限差分格式的稳定性研究 [J], 王秀琴;徐琛梅
5.一类非线性反应-扩散方程有限差分格式的稳定性研究 [J], 徐琛梅
因版权原因,仅展示原文概要,查看原文内容请购买。