人教版九年级数学上册同步练习:第24章 圆24.3正多边形和圆
- 格式:pdf
- 大小:94.71 KB
- 文档页数:2
2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习基础题知识点1 认识正多边形1.下面图形中,是正多边形的是( )A.矩形 B.菱形C.正方形 D.等腰梯形2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )A.240° B.120° C.60° D.30°3.一个正多边形的一个外角等于30°,则这个正多边形的边数为.4.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= .知识点2 与正多边形有关的计算5.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A. 3 B.2 C.2 2 D.2 36.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( )A.正三角形 B.正方形C.正五边形 D.正六边形7.若正方形的外接圆半径为2,则其内切圆半径为( )A. 2 B.2 2C.22D.18.边长为6 cm的等边三角形的外接圆半径是.9.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C的坐标为( ).10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 (结果保留根号).知识点3 画正多边形11.如图,甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确12.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为( )A.4R=5r B.3R=4rC.2R=3r D.R=2r14.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2 B.3a2 C.4a2 D.5a217.如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为.18.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.综合题20.如图1,2,3,…,m,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形ABCDEF…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是,图3中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案01 基础题知识点1 认识正多边形1.下面图形中,是正多边形的是(C)A .矩形B .菱形C .正方形D .等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B)A .240°B .120°C .60°D .30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB=36°.知识点2 与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是(B)A. 3B .2C .2 2D .2 3 6.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A .正三角形 B .正方形 C .正五边形 D .正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2C.22D .1 8.边长为6 cm 的等边三角形的外接圆半径是23.9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C 的坐标为(12,-32).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于1+2(结果保留根号).知识点3 画正多边形甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断(A)A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2 D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为2∶1;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.解:BE是⊙O的内接正十二边形的一边,理由:连接OA ,OB ,OE ,在正方形ABCD 中,∠AOB=90°,在正六边形AEFCGH 中,∠AOE=60°,∴∠BOE=30°.∵n=360°30°=12, ∴BE 是正十二边形的边.03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM=CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).解:(1)连接OA ,OB.∵正三角形ABC 内接于⊙O ,∴OA=OB ,∠OAM=∠OBA=30°,∠AOB=120°.∵BM=CN ,AB=BC ,∴AM=BN.∴△AOM ≌△BON(SAS).∴∠AOM=∠BON.∴∠AOM +∠BOM=∠BON +∠BOM ,即∠AOB=∠MON.∴∠MON=120°.(3)∠MON=360°n.。
24.3 正多边形和圆同步练习2024-2025学年九年级上学期数学人教版基础题夯实知识点1正多边形的有关概念1.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A.正三角形B.正方形C.正五边形D.正七边形2.下列说法:①矩形是正多边形;②菱形是正多边形;③各角相等的圆内接多边形是正多边形;④各边相等的圆内接多边形是正多边形.其中结论正确的个数是( )A.0B.1C.2D.33.第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9B.10C.11D.12知识点2 正多边形的有关计算4.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD 的度数为 .5.⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是 .6.如图,正八边形的边长为2,对角线AB,CD 相交于点E,则线段 BE 的长为 .7.半径为 R 的圆内接正十二边形的面积为( )A.R 24B.12R2 C.3R² D.6R²8.分别求半径为R 的圆内接正三角形、正方形、正六边形的边长、边心距、周长和面积.(直接写出结果)边长边心距周长面积圆内接正三角形圆内接正方形圆内接正六边形中档题运用̂上,Q是DF̂的中点,则∠CPQ的度数为 .9.如图,正六边形ABCDEF内接于⊙O,点P在AB10.如图,点P₁∼P₁是⊙O 的八等分点.若△P₁P₁P₁,四边形P₁P₁P₁P₁的周长分别为a,b,比较a,b的大小 .11.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .12.如图,⊙O 的半径为R,六边形 ABCDEF 是圆内接正六边形,四边形 EFGH 是正方形.(1)求∠OGF 的度数;(2)求正六边形与正方形的面积比.综合题探究13.如图1,正五边形ABCDE 内接于⊙O,阅读以下作图过程,并解答下列问题,作法如图2.步骤如下:①作直径AF;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点 M,N;③连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN 是正三角形吗? 请说明理由;(3)从点 A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.。
第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .BC .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在»AD 上,则∠BEC= . 6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
九年级数学上册第二十四章圆:24.3.2正多边形和圆(二)1.如果一个正多边形的一个内角为135°,则这个正多边形为( )A .正八边形B .正九边形C .正七边形D .正十边形2.如图,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为( )A .16B .8C .4D .23. 若正六边形的边长为2,则此正六边形的边心距为__________.4.如图,菱形花坛ABCD 的边长为6m ,∠B =60°,其中由两个正六边形组成的部分种花,则种花部分的图形周长为____________.5.各边相等的圆内接多边形一定是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么,如果不是,举出反例.6.如图,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形).(1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值;(2)求正六边形1T ,2T 的面积比21:S S 的值.D C答案:1.A2. D3. 34. 22m5.解:各边相等的圆内接多边形一定是正多边形.因为圆内接多边形如果各边相等,则圆的每段弧相等,则多边形的每个内角相等.故一定是正多边形.各角相等的圆内接多边形不一定是正多边形.反例为:矩形是各角相等的圆内接四边形,但它不是正方形.6.解:(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.所以r∶a=1∶1;连接圆心O和T2相邻的两个顶点,得以圆O半径为高的正三角形,所以r∶b=3∶2.(2)T1∶T2的连长比是3∶2,所以S1∶S2=4:3):(2ba.。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
人教版九年级数学上册24.3正多边形和圆一.选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
0, 连接BD.则ZCDB 的度数是()3.下列判断中正确的是()A.矩形的对角线互相垂直B.正八边形的每个内角都是145°C.三角形三边垂直平分线的交点到三角形三边的距离相等D. 一组对边平行,一组对角相等的四边形是平行四边形 4.正六边形的周长为6,则它的外接圆半径为()5.若一个正六边形的半径为2,则它的边心距等于()6.有一边长为2去的正三角形,则它的外接圆的而积为(二.填空题(共6小题)7. 如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么匕1=60° C. 45° D. 30°2.若一个圆内接正多边形的中心角是36’ ,则这个多边形是(A.正五边形B.正八边形C.正十边形D. 正十八边形A. 1B. 2C. 3D.A. 2B. 1c. VsD.2^3C. 4nD. 12n8.如图,将边长相等的正六边形和正五边形拼接在一起,则ZABC的度数为9.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为.10.如果一个正〃边形的每个内角为108° ,那么这个正〃边形的边数为.11.正六边形的中心角为:当它的半径为1时,边心距为.12.已知。
过正方形ABCD顶点A、B,且与CO相切,若正方形边长为2,则圆的半径13.有一正六边形ABCDEF的内切圆半径为R,求R与这个正六边形ABCDEF的外接圆半径之比.14.如图,已知正六边形ABCDEF内接于。
,且边长为4.(1)求该正六边形的半径、边心距和中心角;(2)求该正六边形的外接圆的周长和面积.15.如图所示,在正五边形ABCDE中,A/是CD的中点,连接AC, BE, AM.求证:(1)AC=BE;(2)AMLCD.人教版九年级数学上册24.3正多边形和圆参考答案一. 选择题(共6小题)1.如图,正六边形ABCDEF 内接于。
24.3 正多边形和圆一.选择题1.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S正八边形ABCDEFGH=AE•DF.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③2.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣3.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5B.6C.8D.104.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个5.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.正六边形的半径为,则该正六边形的边长是()A.B.2C.3D.7.如图,以正六边形ABCDEF的对角线CF为边,再作一个正六边形CFGHMN,若AB=,则EG的长为()A.2B.2C.3D.28.圆内接正十边形的外角和为()A.180°B.360°C.720°D.1440°9.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O 均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD10.如图,△ABD是⊙O的内接正三角形,四边形ACEF是⊙O的内接正四边形,若线段BC恰是⊙O的一个内接正n边形的一条边,则n=()A.16B.12C.10D.811.如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是()A.4B.C.D.12.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是()A.42°B.40°C.36°D.32°13.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.914.已知圆的内接正六边形的面积为18,则该圆的半径等于()A.3B.2C.D.15.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°二.填空题16.如图,正六边形ABCDEF内接于半径为5的圆,则B、E两点间的距离为.17.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是.18.若一个正方形的半径是3,则这个正方形的边长是.19.中心角为36°的正多边形边数为.20.一个半径为4cm的圆内接正六边形的面积等于cm2.21.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.22.正六边形的边长为2,则边心距为.23.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为.24.如图,将边长为20的正方形剪去四个角,得到一个正八边形ABCDEFGH,那么这个正八形的边长为.(≈1.41,结果保留一位小数)25.圆内接正五边形中,每个外角的度数=度.三.解答题26.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.27.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.28.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.29.七年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,等边三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60°,试说明:∠NOC=60°(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么∠DON=度,并说明理由.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=,且∠EON=度.(正n边形内角和(n﹣2)×180°,正多边形各内角相等)30.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.参考答案一.选择题1.D.2.A.3.B.4.A.5.D.6.A.7.C.8.B.9.D.10.B.11.C.12.A.13.B.14.B.15.B.二.填空题16.10.17.A.18.3.19.10.20.24.21.(3,3).22..23.::1.24.8.2.25.72.三.解答题26.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.27.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.28.解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.29.(1)证明:∵△ABC是正三角形,∴∠A=∠ABC=60°,AB=BC,在△ABN和△BCM中,,∴△ABN≌△BCM(SAS),∴∠ABN=∠BCM,又∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°;(2)解:∵四边形ABCD是正方形,∴∠DAM=∠ABN=90°,AD=AB,又∵AM=BN,∴△ABN≌△DAM(SAS),∴AN=DM,∠ADM=∠BAN,又∵∠ADM+∠AMD=90°,∴∠BAN+∠AMD=90°∴∠AOM=90°;即∠DON=90°;(3)解:∵五边形ABCDE是正五边形,∴∠A=∠B,AB=AE,又∵AM=BN,∴△ABN≌△EAM(SAS),∴AN=ME,∴∠AEM=∠BAN,∴∠NOE=∠NAE+∠AEM=∠NAE+∠BAN=∠BAE=108°.故答案为:90°,EM,108°.30.解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD=2.∴⊙O的内接正四边形的边长为AD的长为2.24.4 弧长和扇形面积一、选择题1. 2019·湖州已知圆锥的底面半径为5 cm ,母线长为13 cm ,则这个圆锥的侧面积是( )A .60π cm2B .65π cm2C .120π cm2D .130π cm22.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )A.π B.2π C.2 2π D.4π3. 在半径为6 cm 的圆中,长为2π cm 的弧所对的圆周角的度数为 ( ) A .30°B .45°C .60°D .90°4. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cmB .3 2 cmC .4 2 cmD .4 cm5. 如图,一段公路的转弯处是一段圆弧(AB ︵),则AB ︵的展直长度为( )A .3π mB .6π mC .9π mD .12π m6. 如图0,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CD =2 3,则图中阴影部分的面积为( )A .4πB .2πC .π D.2π37. 如图,点I 为△ABC 的内心,AB =4,AC =3,BC =2,将∠ACB 平移使其顶点与点I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .28. 如图,△ABC 是等腰直角三角形,且∠ACB=90°.曲线C DEF…叫做“等腰直角三角形的渐开线”,其中CD ︵,DE ︵,EF ︵,…的圆心依次按A ,B ,C ,…循环.如果AC =1,那么曲线CDEF和线段CF 围成图的面积为( )图 A .(12+72)4π B .(9+52)4π C .(12+72)π+24 D .(9+52)π+249. 如图,在△AOC 中,OA =3 cm ,OC =1 cm ,将△AOC 绕点O 顺时针旋转90°后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( )A.π2cm2 B .2π cm2 C.17π8cm2D.19π8 cm210. 2017·衢州 运用图变化的方法研究下列问题:如图AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图阴影部分的面积是( )图A.252πB.10π C.24+4πD.24+5π二、填空题 11. 如图,已知⊙O 的半径为4,∠A =45°,若一个圆锥的侧面展开图与扇形OBC 能完全重合,则该圆锥底面圆的半径为________.12.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=123,OP=6,则劣弧AB ︵的长为________.(结果保留π)13. (2019•贺州)已知圆锥的底面半径是115__________度.14. 2018·烟台如图,点O 为正六边形ABCDEF 的中心,M 为AF 的中点,以点O 为圆心,OM 长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,DE 长为半径画弧得到扇形DEF .将扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1∶r 2=________.15. 如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置.若AB=16 cm,则图中阴影部分的面积为________.16.如图在边长为3的正方形ABCD中,以点A为圆心,2为半径作圆弧EF,以点D为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S1,S2,则S1-S2=________.17. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.18. 一个圆锥形漏斗,某同学用三角尺测得其高度的尺寸(单位:cm)如图所示,则该圆锥形漏斗的侧面积为________cm2.三、解答题19. 如图所示的粮囤可以看成是圆柱体与圆锥体的组合体,已知其底面圆的半径为6 m,高为4 m,下方圆柱的高为3 m.(1)求该粮囤的容积;(2)求上方圆锥的侧面积(计算结果保留根号).20. 已知扇形的圆心角为120°,面积为300π cm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?21. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比;(2)圆锥的全面积.22. 如图,点A,B,C,D均在圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD 的周长为15.(1)求此圆的半径;(2)求图中阴影部分的面积.人教版九年级数学24.4 弧长和扇形面积课后训练-答案一、选择题1. 【答案】B [解析] ∵r =5 cm ,l =13 cm ,∴S 圆锥侧=πrl =π×5×13=65π(cm2).故选B.2. 【答案】B3. 【答案】A [解析] 设长为2π cm 的弧所对的圆心角的度数为n°,则nπR180=2π,解得n=60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.4. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =42.5. 【答案】B [解析] AB ︵的展直长度=108π·10180=6π(m).故选B.6. 【答案】D [解析] 如图,连接OD.∵CD ⊥AB ,∴CE =DE =3,∠CEO =∠DEO =90°.又∵OE =OE , ∴△COE ≌△DOE , 故S △COE =S △DOE ,即可得阴影部分的面积等于扇形OBD 的面积. ∵∠CDB =30°,∴∠COB =60°, ∴∠OCD =30°,∴OE =12OC.在Rt △COE 中,CE =3, 由勾股定理可得OC =2, ∴OD =2.∵△COE ≌△DOE ,∴∠DOE =∠COE =60°,∴S 扇形OBD =60π·22360=23π,即阴影部分的面积为2π3.故选D.7. 【答案】B [解析] 设CA ,CB 平移后分别交AB 于点M ,N ,连接AI ,BI.由平移可知AC∥MI ,∴∠CAI =∠AIM.∵∠CAI =∠BAI ,∴∠BAI =∠AIM ,∴AM =MI.同理BN =NI.∴△MNI 的周长=MI +NI +MN =AM +BN +MN =AB =4.故选B.8. 【答案】C [解析] 曲线CDEF 和线段CF 围成的图是由三个圆心不同,半径不同的扇形以及△ABC 组成的,所以根据面积公式可得135π×1+135π×(2+1)2+90π×(2+2)2360+12×1×1=(12+7 2)π+24.9. 【答案】B [解析] 如图,AC 边在旋转过程中所扫过的图形的面积即阴影部分的面积.S阴影=S △OCA +S 扇形OAB -S 扇形OCD -S △ODB.由旋转知△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴S 阴影=S 扇形OAB -S 扇形OCD =90π×32360-90π×12360=2π(cm2).故选B.10. 【答案】A [解析] 如图作直径CG ,连接OD ,OE ,OF ,DG .∵CG 是⊙O 的直径,∴∠CDG =90°,则DG =CG 2-CD 2=8. 又∵EF =8,∴DG =EF , ∴DG ︵=EF ︵, ∴S 扇形ODG =S 扇形OEF .∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.二、填空题11. 【答案】1 [解析] ∵∠A =45°,∴∠BOC =2∠A =90.设该圆锥底面圆的半径为r ,则有2πr =90π×4180,解得r =1.12. 【答案】8π【解析】∵AB是小圆的切线,∴OP⊥AB,∴AP=1 2AB=63.如解图,连接OA,OB,∵OA=OB,∴∠AOB=2∠AOP.在Rt△AOP中,OA=OP2+AP2=12,tan∠AOP=APOP=636=3,∴∠AOP=60°.∴∠AOB=120°,∴劣弧AB的长为120π·12180=8π.13. 【答案】90【解析】设圆锥的母线为a,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n︒,根据题意得π42π1180n⨯⨯=,解得90n=,即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.14. 【答案】3∶2[解析] 如图连接OA,OB,OF.∵六边形ABCDEF为正六边形,∴OA=OF,∠AOF=∠AOB=60°,∠E=120°.∵M为AF的中点,∴∠AOM=30°.由题意,得ON=OM.易证△BON≌△AOM,∴∠BON =∠AOM =30°,∴∠MON =120°.设AM =a ,则AB =OA =2a ,OM =3a ,∴扇形MON 的弧长为120×π×3a 180=2 33πa ,则r 1=33a .同理可得,扇形DEF 的弧长为120×π×2a 180=43πa ,则r 2=23a ,∴r 1∶r 2=3∶2.15. 【答案】32π cm2 [解析] 由旋转的性质得∠BAB′=45°,四边形AB′C′D′≌四边形ABCD ,则图中阴影部分的面积=四边形ABCD 的面积+扇形ABB′的面积-四边形AB′C′D′的面积=扇形ABB′的面积=45π×162360=32π(cm2).16. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π, ∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝⎛⎭⎪⎫9-9π4=13π4-9.17. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.18. 【答案】15π三、解答题19. 【答案】解:(1)容积V =π×62×3+13×π×62×(4-3)=108π+12π=120π(m3).答:该粮囤的容积为120π m3.(2)圆锥的母线长l =62+12=37(m),所以圆锥的侧面积S =π×6×37=637π(m2).20. 【答案】解:(1)设扇形的半径为r cm.由题意,得120π×r2360=300π,解得r =30,∴扇形的弧长=120π×30180=20π(cm).(2)设圆锥的底面圆的半径为x cm , 则2π·x =20π, 解得x =10,∴圆锥的高=302-102=20 2(cm),∴圆锥的体积=13·π·102·202=2000 23π(cm3).21. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r ,根据题意得2πr =180πl180,所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1.(2)因为r 2+(3 3)2=l 2,即r 2+(33)2=4r 2,解得r =3(负值已舍去),所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.22. 【答案】解:(1)∵AD ∥BC ,∠BAD =120°, ∴∠ABC =60°,∠ADB =∠DBC. 又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°, ∴AB ︵=AD ︵=DC ︵,∠BCD =60°, ∴AB =AD =DC ,∠BDC =90°, ∴BC 是圆的直径,BC =2DC , ∴BC +32BC =15,解得BC =6,∴此圆的半径为3.(2)设BC 的中点为O ,由(1)可知点O 为圆心,连接OA ,OD. ∵∠ABD =30°,∴∠AOD =60°.根据“同底等高的三角形的面积相等”可得S △ABD =S △OAD , ∴S 阴影=S 扇形OAD =60×π×32360=32π.。
正多边形和圆同步练习一、选择题1.如图,点P是正六边形ABCDEF内部一个动点,AB=1cm,则点P到这个正六边形六条边的距离之和为()cm.A. 6B. 3C. 3√3D. 6√32.校园内有一个由两个全等的正六边形(边长为3.5m)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为()A. 28mB. 35mC. 42mD. 56m3.正九边形不具有的性质是()A. 外角为40°B. 一定有外接圆C. 是轴对称图形D. 是中心对称图形4.一个正多边形的中心角为90°,它的边心距为a,则它的半径为()A. √2aB. √2a C. 2√2a D. 4a25.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM的长为()A. 2B. 2√3C. √3D. 4√36.下列命题正确的是()A. 各边相等的多边形是正多边形B. 各角相等的多边形是正多边形C. 既是轴对称图形又是中心对称图形的多边形是正多边形D. 各边相等、各角也相等的多边形是正多边形7.如图,正六边形ABCDEF内接于⊙O,连接BD.则∠CBD的度数是()A. 30°B. 45°C. 60°D. 90°8.正六边形的周长为6,则它的外接圆半径为()A. 1B. 2C. 3D. 69.在正五边形的外接圆中,任一边所对的圆周角的度数为()A. 36°B. 72°C. 144°D. 36°或144°10.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A. 2√2:√3B. √2:√3C. √3:√2D. √3:2√2二、解答题11.如图,已知在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB,BC,CD,DE,EA与⊙O分别相切于点A′,B′,C′,D′,E′.求证:五边形ABCDE是正五边形.12.如图,等边三角形ABC内接于⊙O,BD为内接正十二边形的一边,CD=5√2,求⊙O的半径.13.如图,分别求出半径为R的圆内接正三角形圆内接正方形的周长和面积.14.如图,正六边形ABCDEF内接于⊙O,求∠ADB的度数.答案和解析1.C解:如图,当点P是正六边形的中心时,连接PB、PC,过点P作PH⊥BC于点H,延长HP交EF于点G,则点P到这个正六边形六条边的距离之和即为6PH的长.根据正六边形的性质可知:△BPC是等边三角形,∴∠BPC=60°,∵PH⊥BC,∴∠BPH=30°,BH=12BC=12(cm),∴PH=√32(cm),∴6PH=3√3(cm).∴点P到这个正六边形六条边的距离之和为3√3cm.2.C解:如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=3.5(m),同理可证:AF=EF=3.5(m),∴AB=BG+GF+AF=3.5×3=10.5(m),∴扩建后菱形区域的周长为10.5×4=42(m),3.D解:A.正九边形的每一个外角都是,故此选项不合题意;B.所有的正多边形一定有外接圆,因此正九边形一定有外接圆,故此选项不合题意;C.所有的正多边形都是轴对称图形,因此正九边形是轴对称图形,故此选项不合题意;D.正九边形不是中心对称图形,故此选项合题意.4.A=4,即正多边形是正方形.解:正多边形的边数是36090如图,正方形的边心距就是其内切圆的半径OA,即a,则半径是OB=√2a.5.B解:如图,连接OB,OC.因为多边形ABCDEF是正六边形,所以∠BOC=60∘,因为OB=OC,所以△BOC是等边三角形,所以∠OBM=60∘,∠BOM=30∘,OB=2,所以BM=12所以OM=2−BM2=√42−22=2√3.故选B.6.D解:各边相等、各角也相等的多边形是正多边形,故A,B错误,D正确;矩形既是轴对称图形又是中心对称图形,但其不是正多边形,故C错误.7.A解:∵在正六边形ABCDEF中,=120°,BC=CD,∠BCD=(6−2)×180°6∴∠CBD=1(180°−120°)=30°,28.A解:∵正六边形的周长是6,=1.∴其边长=66∵正六边形的边长与其外接圆半径恰好组成等边三角形,∴它的外接圆半径是1.故选:A.9.D解:连接OA、OB、BD、AD,在AB⏜上取点F,连接AF、BF,如图所示:∵五边形ABCDE是正五边形,=72°,∴AB=BC=CD=DE=AE,∠AOB=360°5∴∠ADB=1∠AOB=36°,2∴∠AFB=180°−∠ADB=144°,即在正五边形的外接圆中,任一边所对的圆周角的度数为36°或144°;10.B解:连接OA、OB、OD,过O作OH⊥AB于H,如图所示:AB,则AH=BH=12∵正方形ADEF和等边三角形ABC都内接于⊙O,∴∠AOB=120°,∠AOD=90°,∵OA=OD=OB,×120°=60°,∴△AOD是等腰直角三角形,∠AOH=∠BOH=12OA,∴AD=√2OA,AH=OA⋅sin60°=√32OA=√3OA,∴AB=2AH=2×√32∴AD AB =√2OA √3OA =√2√3, 故选:B . 连接OA 、OB 、OD ,过O 作OH ⊥AB 于H ,由垂径定理得出AH =BH =12AB ,证出△AOD是等腰直角三角形,∠AOH =∠BOH =60°,AH =BH =12AB ,得出AD =√2OA ,AH =√32OA ,则AB =2AH =√3OA ,进而得出答案. 11.证明:如图,连接OA ,OB ,OC ,OA′,OB′,OC′, 由题意,得A′B =B′B ,∠OBA′=∠OBB′, 同理∠OCB′=∠OCC′,又∠ABC =∠BCD ,∴∠OBB′=∠OCB′,∴OB =OC .又OB′⊥BC ,∴BB′=12BC ,同理A′B =12AB ,∴AB =BC ,同理BC =CD =DE =EA =AB , 又∠EAB =∠ABC =∠BCD =∠CDE =∠DEA , ∴五边形ABCDE 是正五边形. 12.解:设⊙O 的半径为r.如图,连接OB ,OC ,OD . 则∠BOC =360∘3=120∘,∠BOD =360∘12=30∘.∴∠COD=∠BOC−∠BOD=120∘−30∘=90∘.在Rt△COD中,根据勾股定理,得r2+r2=(5√2)2,∴r=5.13.解:如图1,连接OB、OC,过O作OD⊥AB于D,∵⊙O是正三角形ABC的外接圆,∴∠AOB=360°3=120°,∵OA=OB,∴∠AOD=∠BOD=60°,在Rt△ADO中,AO=R,AD=R×sin60°=√32R,OD=Rcos60°=12R,∵OD⊥AB,∴AB=2AD=√3R,∴正△ABC的周长是3AB=3√3R;面积是3×12AB×OD=3×12×√3R×12R=3√34R2;如图2,连接OA、OB、OD,∵⊙O是正方形ABCD的外接圆,∴∠COD=360°4=90°,∵OD=OC=R,由勾股定理得;CD=√R2+R2=√2R,∴正方形ABCD的周长为4×√2R=4√2R,面积为√2R×√2R=2R2.14.解:连接OB,∵六边形ABCDEF是正六边形,∴∠AOB=360°6=60°,∴∠ADB=12∠AOB=12×60°=30°.。
基础导练
1.一正多边形外角为90°,则它的边心距与半径之比为()
A.1∶2B.1∶2C.1∶3D.1∶3
2.如图,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()
A.60°B.45°C.30°D.22.5°
3.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比()
A.扩大了一倍
B.扩大了两倍
C.扩大了四倍
D.没有变化
能力提升
4.从一个半径为10cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________cm. 5.如图,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?
参考答案
1.B 2.C 3.D 4.102
5.解:三个小三角形是等边三角形且边长为1
3a,正六边形的边长为1
3
a,正六边形的面积为3
6
a2,
原正三角形的面积为3
4
a2,它们的面积比为2∶3.。